Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

A Review of the Various Synthetic Approaches to Access Aurone Derivatives and their Biological Activities

Author(s): Ekta Lathwal and Suresh Kumar*

Volume 27, Issue 4, 2023

Published on: 05 June, 2023

Page: [308 - 351] Pages: 44

DOI: 10.2174/1385272827666230407110607

Price: $65

Abstract

Aurones, a member of the flavonoid family, have limited occurrence in nature and are relatively less explored than other flavonoids but still constitute a gleaming class of therapeutically significant oxygen heterocyclic molecules with broad-spectrum biological activities. These are secondary plant metabolites and are responsible for glaring pigmentation to various colored parts of the plants. This review covers the comprehensive history of aurones from 1918 to 2020. This review provides a generalized and systematic study of the protocols adopted for synthesizing aurone derivatives and their biological profile. Though there are many review articles on the biological activities of aurones, none of these cover the synthetic aspects of the protocols thoroughly. With the growing number of biologically active natural and synthesized aurones, a massive breakthrough in aurone research has emerged, and it is now one of the most researched O-heterocycles. The present review aims to highlight the work of the researchers on aurones to help synthetic chemists and future generations to design and develop new aurone-based heterocyclic systems of therapeutic potential. This review will also catch the attention of researchers for exploring various other potentials of aurones.

Keywords: Aurones, benzofuran-3(2H)-one, synthesis, biological activity, flavonoids, heterocyclic.

Graphical Abstract
[1]
Falcone Ferreyra, M.L.; Rius, S.P.; Casati, P. Flavonoids: Biosynthesis, biological functions, and biotechnological applications. Front. Plant Sci., 2012, 3, 222-222.
[http://dx.doi.org/10.3389/fpls.2012.00222] [PMID: 23060891]
[2]
Ashok, D.; Ravi, S.; Ganesh, A.; Lakshmi, B.V.; Adam, S.; Murthy, S.D.S. Microwave-assisted synthesis and biological evaluation of carbazole-based chalcones, aurones and flavones. Med. Chem. Res., 2016, 25(5), 909-922.
[http://dx.doi.org/10.1007/s00044-016-1537-7]
[3]
Geissman, T.A.; Harborne, J.B. Anthochlor pigments. XIII. The ultraviolet absorption spectra of phenolic plant pigments. polyhydroxyaurones. J. Am. Chem. Soc., 1956, 78(4), 832-837.
[http://dx.doi.org/10.1021/ja01585a034]
[4]
Harborne, J.B. The Flavonoids: Advances in Research Since 1986 (Harborne, J. B.). J. Chem. Educ., 1995, 72(3), A73.
[http://dx.doi.org/10.1021/ed072pA73.11]
[5]
Nakayama, T. Enzymology of aurone biosynthesis. J. Biosci. Bioeng., 2002, 94(6), 487-491.
[http://dx.doi.org/10.1016/S1389-1723(02)80184-0] [PMID: 16233339]
[6]
Olesen, J.M. R, N.; Tolderlund, U.; Cornett, C.; Mølgaard, P.; Madsen, J O.A. Mauritian red nectar remains a mystery. Nat. Energy, 1998, 393(6685), 529.
[7]
Boumendjel, A. Aurones: A subclass of flavones with promising biological potential. Curr. Med. Chem., 2003, 10(23), 2621-2630.
[http://dx.doi.org/10.2174/0929867033456468] [PMID: 14529476]
[8]
Ono, E.; Fukuchi-Mizutani, M.; Nakamura, N.; Fukui, Y.; Yonekura-Sakakibara, K.; Yamaguchi, M.; Nakayama, T.; Tanaka, T.; Kusumi, T.; Tanaka, Y. Yellow flowers generated by expression of the aurone biosynthetic pathway. Proc. Natl. Acad. Sci., 2006, 103(29), 11075-11080.
[http://dx.doi.org/10.1073/pnas.0604246103] [PMID: 16832053]
[9]
Seshadri, T.R. Recent developments in the chemistry of flavonoids. Tetrahedron, 1959, 6(3), 169-200.
[http://dx.doi.org/10.1016/0040-4020(59)80001-6]
[10]
Sun, H.; Ding, W.; Song, X.; Wang, D.; Chen, M.; Wang, K.; Zhang, Y.; Yuan, P.; Ma, Y.; Wang, R.; Dodd, R.H.; Zhang, Y.; Lu, K.; Yu, P. Synthesis of 6-hydroxyaurone analogues and evaluation of their α-glucosidase inhibitory and glucose consumption-promoting activity: Development of highly active 5,6-disubstituted derivatives. Bioorg. Med. Chem. Lett., 2017, 27(15), 3226-3230.
[http://dx.doi.org/10.1016/j.bmcl.2017.06.040] [PMID: 28651984]
[11]
Bao, Y.T.; Zhang, M.; Li, T.; Xiao, H.F.; Zhao, T.; Xu, X.H.; Yang, L.Q. Synthesis and biological activities of 6-hydroxyaurone derivatives. J. Heterocycl. Chem., 2016, 53(2), 637-642.
[http://dx.doi.org/10.1002/jhet.2497]
[12]
Atta-Ur-Rahman; Choudhary, M.I.; Hayat, S.; Khan, A.M.; Ahmed, A Two new aurones from marine brown alga Spatoglossum variabile. Chem. Pharm. Bull., 2001, 49(1), 105-107.
[http://dx.doi.org/10.1248/cpb.49.105] [PMID: 11201212]
[13]
Gómez-Garibay, F.; Chilpa, R.R.; Quijano, L.; Calderón Pardo, J.; Ríos Castillo, T. Methoxy furan auranols with fungistatic activity from Lonchocarpus castilloi. Phytochemistry, 1990, 29(2), 459-463.
[http://dx.doi.org/10.1016/0031-9422(90)85097-Y]
[14]
Reyes-Chilpa, R.; Viveros-Rodríguez, N.; Gómez-Garibay, F.; Alavez-Solano, D. Antitermitic activity of Lonchocarpus castilloi flavonoids and heartwood extracts. J. Chem. Ecol., 1995, 21(4), 455-463.
[http://dx.doi.org/10.1007/BF02036742] [PMID: 24234176]
[15]
Morimoto, M.; Fukumoto, H.; Nozoe, T.; Hagiwara, A.; Komai, K. Synthesis and insect antifeedant activity of aurones against Spodoptera litura larvae. J. Agric. Food Chem., 2007, 55(3), 700-705.
[http://dx.doi.org/10.1021/jf062562t] [PMID: 17263463]
[16]
Pare, P.W.; Dmitrieva, N.; Mabry, T.J. Phytoalexin aurone induced in Cephalocereus senilis liquid suspension culture. Phytochemistry, 1991, 30(4), 1133-1135.
[http://dx.doi.org/10.1016/S0031-9422(00)95189-6]
[17]
Farag, M.A.; Deavours, B.E.; de Fátima, Â.; Naoumkina, M.; Dixon, R.A.; Sumner, L.W. Integrated metabolite and transcript profiling identify a biosynthetic mechanism for hispidol in Medicago truncatula cell cultures. Plant Physiol., 2009, 151(3), 1096-1113.
[http://dx.doi.org/10.1104/pp.109.141481] [PMID: 19571306]
[18]
Ma, L.; Sun, Y.; Cao, D.; Chen, H.; Liu, Z.; Fang, Q. Synthesis, crystal structure and two-photon excited fluorescence properties of three aurone derivatives. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2013, 103, 120-124.
[http://dx.doi.org/10.1016/j.saa.2012.11.018] [PMID: 23257338]
[19]
Zwick, V.; Chatzivasileiou, A.O.; Deschamps, N.; Roussaki, M.; Simões-Pires, C.A.; Nurisso, A.; Denis, I.; Blanquart, C.; Martinet, N.; Carrupt, P.A.; Detsi, A.; Cuendet, M. Aurones as histone deacetylase inhibitors: Identification of key features. Bioorg. Med. Chem. Lett., 2014, 24(23), 5497-5501.
[http://dx.doi.org/10.1016/j.bmcl.2014.10.019] [PMID: 25455492]
[20]
Alsayari, A.; Muhsinah, A.B.; Hassan, M.Z.; Ahsan, M.J.; Alshehri, J.A.; Begum, N. Aurone: A biologically attractive scaffold as anticancer agent. Eur. J. Med. Chem., 2019, 166, 417-431.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.078] [PMID: 30739824]
[21]
Haudecoeur, R.; Boumendjel, A. Recent advances in the medicinal chemistry of aurones. Curr. Med. Chem., 2012, 19(18), 2861-2875.
[http://dx.doi.org/10.2174/092986712800672085] [PMID: 22519399]
[22]
Zwergel, C.; Gaascht, F.; Valente, S.; Diederich, M.; Bagrel, D.; Kirsch, G. Aurones: interesting natural and synthetic compounds with emerging biological potential. Nat. Prod. Commun., 2012, 7(3), 1934578X1200700.
[http://dx.doi.org/10.1177/1934578X1200700322] [PMID: 22545415]
[23]
Cheng, H.; Zhang, L.; Liu, Y.; Chen, S.; Cheng, H.; Lu, X.; Zheng, Z.; Zhou, G.C. Design, synthesis and discovery of 5-hydroxyaurone derivatives as growth inhibitors against HUVEC and some cancer cell lines. Eur. J. Med. Chem., 2010, 45(12), 5950-5957.
[http://dx.doi.org/10.1016/j.ejmech.2010.09.061] [PMID: 20974505]
[24]
Detsi, A.; Majdalani, M.; Kontogiorgis, C.A.; Hadjipavlou-Litina, D.; Kefalas, P. Natural and synthetic 2′-hydroxy-chalcones and aurones: Synthesis, characterization and evaluation of the antioxidant and soybean lipoxygenase inhibitory activity. Bioorg. Med. Chem., 2009, 17(23), 8073-8085.
[http://dx.doi.org/10.1016/j.bmc.2009.10.002] [PMID: 19853459]
[25]
Carrasco, M.P.; Newton, A.S.; Gonçalves, L.; Góis, A.; Machado, M.; Gut, J.; Nogueira, F.; Hänscheid, T.; Guedes, R.C.; dos Santos, D.J.V.A.; Rosenthal, P.J.; Moreira, R. Probing the aurone scaffold against Plasmodium falciparum: Design, synthesis and antimalarial activity. Eur. J. Med. Chem., 2014, 80, 523-534.
[http://dx.doi.org/10.1016/j.ejmech.2014.04.076] [PMID: 24813880]
[26]
Bandgar, B.P.; Patil, S.A.; Korbad, B.L.; Biradar, S.C.; Nile, S.N.; Khobragade, C.N. Synthesis and biological evaluation of a novel series of 2,2-bisaminomethylated aurone analogues as anti-inflammatory and antimicrobial agents. Eur. J. Med. Chem., 2010, 45(7), 3223-3227.
[http://dx.doi.org/10.1016/j.ejmech.2010.03.045] [PMID: 20430485]
[27]
Lee, C.Y.; Chew, E.H.; Go, M.L. Functionalized aurones as inducers of NAD(P)H:quinone oxidoreductase 1 that activate AhR/XRE and Nrf2/ARE signaling pathways: Synthesis, evaluation and SAR. Eur. J. Med. Chem., 2010, 45(7), 2957-2971.
[http://dx.doi.org/10.1016/j.ejmech.2010.03.023] [PMID: 20392544]
[28]
Lee, E.H.; Song, D.G.; Lee, J.Y.; Pan, C.H.; Um, B.H.; Jung, S.H. Inhibitory effect of the compounds isolated from Rhus verniciflua on aldose reductase and advanced glycation endproducts. Biol. Pharm. Bull., 2008, 31(8), 1626-1630.
[http://dx.doi.org/10.1248/bpb.31.1626] [PMID: 18670102]
[29]
Ashok, D.; Rangu, K.; Gundu, S.; Lakkadi, A.; Tigulla, P. Microwave-assisted synthesis, molecular docking, and biological evaluation of 2-arylidene-2H-furo[2,3-f]chromen-3(7H)-ones as antioxidant and antimicrobial agents. Med. Chem. Res., 2017, 26(8), 1735-1746.
[http://dx.doi.org/10.1007/s00044-017-1834-9]
[30]
Haudecoeur, R.; Ahmed-Belkacem, A.; Yi, W.; Fortuné, A.; Brillet, R.; Belle, C.; Nicolle, E.; Pallier, C.; Pawlotsky, J.M.; Boumendjel, A. Discovery of naturally occurring aurones that are potent allosteric inhibitors of hepatitis C virus RNA-dependent RNA polymerase. J. Med. Chem., 2011, 54(15), 5395-5402.
[http://dx.doi.org/10.1021/jm200242p] [PMID: 21699179]
[31]
Kayser, O.; Kiderlen, A.F. Leishmanicidal activity of aurones. Tokai J. Exp. Clin. Med., 1998, 23(6), 423-426.
[PMID: 10622641]
[32]
Nigam, S.; Jayashree, B.S. Limitation of Algar-Flynn-Oyamada reaction using methoxy substituted chalcones as reactants and evaluation of the newly transformed aurones for their biological activities. Res. Chem. Intermed., 2017, 43(5), 2839-2864.
[http://dx.doi.org/10.1007/s11164-016-2797-z]
[33]
Ono, M.; Ikeoka, R.; Watanabe, H.; Kimura, H.; Fuchigami, T.; Haratake, M.; Saji, H.; Nakayama, M. 99mTc/Re complexes based on flavone and aurone as SPECT probes for imaging cerebral β-amyloid plaques. Bioorg. Med. Chem. Lett., 2010, 20(19), 5743-5748.
[http://dx.doi.org/10.1016/j.bmcl.2010.08.004] [PMID: 20797860]
[34]
Agrawal, N.N.; Soni, P.A. A new process for the synthesis of aurones by using mercury (II) acetate in pyridine and cupric bromide in dimethyl sulfoxide. Indian J. Chem., 2006, 37(39), 1301-1303.
[35]
Narsinghani, T.; Sharma, M.C.; Bhargav, S. Synthesis, docking studies and antioxidant activity of some chalcone and aurone derivatives. Med. Chem. Res., 2013, 22(9), 4059-4068.
[http://dx.doi.org/10.1007/s00044-012-0413-3]
[36]
Li, Y.; Qiang, X.; Luo, L.; Li, Y.; Xiao, G.; Tan, Z.; Deng, Y. Synthesis and evaluation of 4-hydroxyl aurone derivatives as multifunctional agents for the treatment of Alzheimer’s disease. Bioorg. Med. Chem., 2016, 24(10), 2342-2351.
[http://dx.doi.org/10.1016/j.bmc.2016.04.012] [PMID: 27079124]
[37]
Shrestha, S.; Natarajan, S.; Park, J.H.; Lee, D.Y.; Cho, J.G.; Kim, G.S.; Jeon, Y.J.; Yeon, S.W.; Yang, D.C.; Baek, N.I. Potential neuroprotective flavonoid-based inhibitors of CDK5/p25 from Rhus parviflora. Bioorg. Med. Chem. Lett., 2013, 23(18), 5150-5154.
[http://dx.doi.org/10.1016/j.bmcl.2013.07.020] [PMID: 23927974]
[38]
Lee, Y.H.; Shin, M.C.; Yun, Y.D.; Shin, S.Y.; Kim, J.M.; Seo, J.M.; Kim, N.J.; Ryu, J.H.; Lee, Y.S. Synthesis of aminoalkyl-substituted aurone derivatives as acetylcholinesterase inhibitors. Bioorg. Med. Chem., 2015, 23(1), 231-240.
[http://dx.doi.org/10.1016/j.bmc.2014.11.004] [PMID: 25468034]
[39]
Zhao, W.; Sun, J.; Xiang, H.; Zeng, Y.; Li, X.; Xiao, H.; Chen, D.; Ma, R. Synthesis and biological evaluation of new flavonoid fatty acid esters with anti-adipogenic and enhancing glucose consumption activities. Bioorg. Med. Chem., 2011, 19(10), 3192-3203.
[http://dx.doi.org/10.1016/j.bmc.2011.03.063] [PMID: 21515060]
[40]
Ma, J.; Jones, S.H.; Hecht, S.M. A coumarin from Mallotus resinosus that mediates DNA cleavage. J. Nat. Prod., 2004, 67(9), 1614-1616.
[http://dx.doi.org/10.1021/np040129c] [PMID: 15387675]
[41]
Shanker, N.; Dilek, O.; Mukherjee, K.; McGee, D.W.; Bane, S.L. Aurones: small molecule visible range fluorescent probes suitable for biomacromolecules. J. Fluoresc., 2011, 21(6), 2173-2184.
[http://dx.doi.org/10.1007/s10895-011-0919-y] [PMID: 21748237]
[42]
Yang, Q.; Wen, Y.; Zhong, A.; Xu, J.; Shao, S. An HBT-based fluorescent probe for nitroreductase determination and its application in Escherichia coli cell imaging. New J. Chem., 2020, 44(38), 16265-16268.
[http://dx.doi.org/10.1039/D0NJ03286G]
[43]
Chen, H.; Sun, Y.; Zhou, C.; Cao, D.; Liu, Z.; Ma, L. Three hydroxy aurone compounds as chemosensors for cyanide anions. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2013, 116, 389-393.
[http://dx.doi.org/10.1016/j.saa.2013.07.041] [PMID: 23973584]
[44]
Smokal, V.; Kharchenko, O.; Karabets, Y.; Iukhymenko, N.; Kysil, A.; Krupka, O.; Kolendo, A. Photochemical activities of polymers with aurone fragment. Mol. Cryst. Liq. Cryst. (Phila. Pa.), 2018, 672(1), 11-17.
[http://dx.doi.org/10.1080/15421406.2018.1542102]
[45]
Schoepfer, J.; Fretz, H.; Chaudhuri, B.; Muller, L.; Seeber, E.; Meijer, L.; Lozach, O.; Vangrevelinghe, E.; Furet, P. Structure-based design and synthesis of 2-benzylidene-benzofuran-3-ones as flavopiridol mimics. J. Med. Chem., 2002, 45(9), 1741-1747.
[http://dx.doi.org/10.1021/jm0108348] [PMID: 11960485]
[46]
French, K.J.; Schrecengost, R.S.; Lee, B.D.; Zhuang, Y.; Smith, S.N.; Eberly, J.L.; Yun, J.K.; Smith, C.D. Discovery and evaluation of inhibitors of human sphingosine kinase. Cancer Res., 2003, 63(18), 5962-5969.
[PMID: 14522923]
[47]
Roussaki, M.; Costa Lima, S.; Kypreou, A.M.; Kefalas, P.; Cordeiro da Silva, A.; Detsi, A. Aurones: a promising heterocyclic scaffold for the development of potent antileishmanial agents. Int. J. Med. Chem., 2012, 2012, 1-8.
[http://dx.doi.org/10.1155/2012/196921] [PMID: 25374683]
[48]
Nakayama, T.; Sato, T.; Fukui, Y.; Yonekura-Sakakibara, K.; Hayashi, H.; Tanaka, Y.; Kusumi, T.; Nishino, T. Specificity analysis and mechanism of aurone synthesis catalyzed by aureusidin synthase, a polyphenol oxidase homolog responsible for flower coloration. FEBS Lett., 2001, 499(1-2), 107-111.
[http://dx.doi.org/10.1016/S0014-5793(01)02529-7] [PMID: 11418122]
[49]
Nakayama, T.; Yonekura-Sakakibara, K.; Sato, T.; Kikuchi, S.; Fukui, Y.; Fukuchi-Mizutani, M.; Ueda, T.; Nakao, M.; Tanaka, Y.; Kusumi, T.; Nishino, T. Aureusidin synthase: A polyphenol oxidase homolog responsible for flower coloration. Science, 2000, 290(5494), 1163-1166.
[http://dx.doi.org/10.1126/science.290.5494.1163] [PMID: 11073455]
[50]
Rammohan, A.; Reddy, J.S.; Sravya, G.; Rao, C.N.; Zyryanov, G.V. Chalcone synthesis, properties and medicinal applications: a review. Environ. Chem. Lett., 2020, 18(2), 433-458.
[http://dx.doi.org/10.1007/s10311-019-00959-w]
[51]
Sekizaki, H. Synthesis of 2-benzylidene-3(2 H )-benzofuran-3-ones (aurones) by oxidation of 2′-hydroxychalcones with mercury(II) acetate. Bull. Chem. Soc. Jpn., 1988, 61(4), 1407-1409.
[http://dx.doi.org/10.1246/bcsj.61.1407]
[52]
Thakkar, K.; Cushman, M. A novel oxidative cyclization of 2′-hydroxychalcones to 4-methoxyaurones by thallium (III) nitrate. Tetrahedron Lett., 1994, 35(35), 6441-6444.
[http://dx.doi.org/10.1016/S0040-4039(00)78241-4]
[53]
Harkat, H.; Blanc, A.; Weibel, J.M.; Pale, P. Versatile and expeditious synthesis of aurones via Au I-catalyzed cyclization. J. Org. Chem., 2008, 73(4), 1620-1623.
[http://dx.doi.org/10.1021/jo702197b] [PMID: 18193886]
[54]
Bose, G.; Mondal, E.; Khan, A.T.; Bordoloi, M.J. An environmentally benign synthesis of aurones and flavones from 2′-acetoxychalcones using n -tetrabutylammonium tribromide. Tetrahedron Lett., 2001, 42(50), 8907-8909.
[http://dx.doi.org/10.1016/S0040-4039(01)01938-4]
[55]
Dawane, B.; Konda, S.; Khandare, N.; Chobe, S.; Shaikh, B.;G.; Bodade, R.; Joshi, V. Synthesis and antimicrobial evaluation of 2-(2-butyl- 4-chloro-1H-imidazol-5-yl-methylene)-substituted-benzofuran-3-ones. Org. Comm., 2010, 3, 1-9.
[56]
Lee, S.K.; Heo, Y.H.; Steele, V.E.; Pezzuto, J.M. Induction of apoptosis by 1,4-phenylenebis(methylene)selenocyanate in cultured human colon cancer cells. Anticancer Res., 2002, 22(1A), 97-102.
[PMID: 12017340]
[57]
Lévai, A. Synthesis of exocyclic α,β-unsaturated ketones. Ultrason. Sonochem., 2003, 2004(7), 15-33.
[http://dx.doi.org/10.3998/ark.5550190.0005.703]
[58]
Kumar, S. An improved one-pot and eco-friendly synthesis of aurones under solvent-free conditions. Green Chem. Lett. Rev., 2014, 7(1), 95-99.
[http://dx.doi.org/10.1080/17518253.2014.895867]
[59]
Lawrence, N.J.; Rennison, D.; McGown, A.T.; Hadfield, J.A. The total synthesis of an aurone isolated from Uvaria hamiltonii : aurones and flavones as anticancer agents. Bioorg. Med. Chem. Lett., 2003, 13(21), 3759-3763.
[http://dx.doi.org/10.1016/j.bmcl.2003.07.003] [PMID: 14552774]
[60]
Löser, R.; Chlupacova, M.; Marecek, A.; Opletalova, V.; Gütschow, M. Synthetic studies towards the preparation of 2-benzyl-2- hydroxybenzofuran-3(2H)-one, the prototype of naturally occurring hydrated auronols. Helv. Chim. Acta, 2004, 87(10), 2597-2601.
[http://dx.doi.org/10.1002/hlca.200490232]
[61]
Venkateswarlu, S.; Panchagnula, G.K.; Guraiah, M.B.; Subbaraju, G.V. Isoaurones: synthesis and stereochemical assignments of geometrical isomers. Tetrahedron, 2006, 62(42), 9855-9860.
[http://dx.doi.org/10.1016/j.tet.2006.08.048]
[62]
Hassan, G.S.; Georgey, H.H.; George, R.F.; Mohamed, E.R. Aurones and furoaurones: Biological activities and synthesis. Bull. Fac. Pharm. Cairo Univ., 2018, 56(2), 121-127.
[http://dx.doi.org/10.1016/j.bfopcu.2018.06.002]
[63]
Popova, A.V.; Bondarenko, S.P.; Frasinyuk, M.S. Aurones: Synthesis and properties. Chem. Heterocycl. Compd., 2019, 55(4-5), 285-299.
[http://dx.doi.org/10.1007/s10593-019-02457-x]
[64]
Sui, G.; Li, T.; Zhang, B.; Wang, R.; Hao, H.; Zhou, W. Recent advances on synthesis and biological activities of aurones. Bioorg. Med. Chem., 2021, 29, 115895.
[http://dx.doi.org/10.1016/j.bmc.2020.115895] [PMID: 33271454]
[65]
Boucherle, B.; Peuchmaur, M.; Boumendjel, A.; Haudecoeur, R. Occurrences, biosynthesis and properties of aurones as high-end evolutionary products. Phytochemistry, 2017, 142, 92-111.
[http://dx.doi.org/10.1016/j.phytochem.2017.06.017] [PMID: 28704688]
[66]
Chintakrindi, A.S.; Gohil, D.J.; Chowdhary, A.S.; Kanyalkar, M.A. Design, synthesis and biological evaluation of substituted flavones and aurones as potential anti-influenza agents. Bioorg. Med. Chem., 2020, 28(1), 115191.
[http://dx.doi.org/10.1016/j.bmc.2019.115191] [PMID: 31744778]
[67]
Takate, S.J.; Salve, S.P.; Dare, S.B.; Karale, B.K.; Akolkar, H.N.; Falke, D.B.; Ghungurde, R.B.; Mhaske, S.D. Synthesis and antibacterial screening of some new pyrazolylchromones and pyrazolylcoumaran-3-ones. Indian J. Heterocycl. Chem., 2020, 30(4), 525-530.
[68]
Coman, F.M.; Leonte, D.; Toma, A.; Casoni, D.; Vlase, L.; Zaharia, V. Heterocycles 51: Liphophilicity investigation of some thiazole chalcones and aurones by experimental and theoretical methods. J. Sep. Sci., 2020, 43(14), 2784-2793.
[http://dx.doi.org/10.1002/jssc.202000262] [PMID: 32346992]
[69]
Coman, F.M. Heterocycles 47. synthesis, characterization and biological evaluation of some new thiazole aurones as antiproliferative agents. Farmacia, 2020, 68(3), 492-506.
[http://dx.doi.org/10.31925/farmacia.2020.3.15]
[70]
Patel, A.K.; Patel, N.H.; Patel, M.A.; Brahmbhatt, D.I. Synthesis of some 3-(4-Aryl-benzofuro[3,2-b]pyridin-2-yl)coumarins and their antimicrobial screening. J. Heterocycl. Chem., 2012, 49(3), 504-510.
[http://dx.doi.org/10.1002/jhet.778]
[71]
Venkateswarlu, S.; Panchagnula, G.K.; Gottumukkala, A.L.; Subbaraju, G.V. Synthesis, structural revision, and biological activities of 4′-chloroaurone, a metabolite of marine brown alga Spatoglossum variabile. Tetrahedron, 2007, 63(29), 6909-6914.
[http://dx.doi.org/10.1016/j.tet.2007.04.048]
[72]
Grundon, M.F.; Stewart, D.; Watts, W.E. Oxidative cyclisation of 2′-hydroxychalcones to aurones using mercury( II ) acetate in dimethyl sulphoxide. J. Chem. Soc. Chem. Commun., 1975, (19), 772-773.
[http://dx.doi.org/10.1039/C39750000772]
[73]
Yao, W.; Wang, J.; Lou, Y.; Wu, H.; Qi, X.; Yang, J.; Zhong, A. Chemoselective hydroborative reduction of nitro motifs using a transition-metal-free catalyst. Org. Chem. Front., 2021, 8(16), 4554-4559.
[http://dx.doi.org/10.1039/D1QO00705J]
[74]
Bernard, A.M.; Ghiani, M.R.; Piras, P.P.; Rivoldini, A. Dealkylation of Activated Alkyl Aryl Ethers Using Lithium Chloride in Dimethylformamide. Synthesis, 1989, 1989(4), 287-289.
[http://dx.doi.org/10.1055/s-1989-27225]
[75]
Horie, T.; Shibata, K.; Yamashita, K.; Kawamura, Y.; Tsukayama, M. Studies of the selective O-alkylation and dealkylation of flavonoids. XXII. A convenient method for synthesizing 3,5,7-trihydroxy-6-methoxyflavones. Chem. Pharm. Bull., 1997, 45(3), 446-451.
[http://dx.doi.org/10.1248/cpb.45.446]
[76]
Brady, B.A.; Kennedy, J.A.; O’Sullivan, W.I. The configuration of aurones. Tetrahedron, 1973, 29(2), 359-362.
[http://dx.doi.org/10.1016/S0040-4020(01)93302-2]
[77]
Thakkar, K.; Cushman, M. A novel oxidative cyclization of 2′-hydroxychalcones to 4,5-dialkoxyaurones by thallium(III) nitrate. J. Org. Chem., 1995, 60(20), 6499-6510.
[http://dx.doi.org/10.1021/jo00125a041]
[78]
Lewin, G.; Aubert, G.; Thoret, S.; Dubois, J.; Cresteil, T. Influence of the skeleton on the cytotoxicity of flavonoids. Bioorg. Med. Chem., 2012, 20(3), 1231-1239.
[http://dx.doi.org/10.1016/j.bmc.2011.12.038] [PMID: 22257529]
[79]
Tiwari, K.N.; Monserrat, J.P.; Hequet, A.; Ganem-Elbaz, C.; Cresteil, T.; Jaouen, G.; Vessières, A.; Hillard, E.A.; Jolivalt, C. In vitro inhibitory properties of ferrocene-substituted chalcones and aurones on bacterial and human cell cultures. Dalton Trans., 2012, 41(21), 6451-6457.
[http://dx.doi.org/10.1039/c2dt12180h] [PMID: 22240736]
[80]
Monserrat, J.P.; Tiwari, K.N.; Quentin, L.; Pigeon, P.; Jaouen, G.; Vessières, A.; Chabot, G.G.; Hillard, E.A. Ferrocenyl flavonoid-induced morphological modifications of endothelial cells and cytotoxicity against B16 murine melanoma cells. J. Organomet. Chem., 2013, 734, 78-85.
[http://dx.doi.org/10.1016/j.jorganchem.2012.12.031]
[81]
Tiwari, K.N.; Monserrat, J.P.; de Montigny, F.; Jaouen, G.; Rager, M.N.; Hillard, E. Synthesis and structural characterization of ferrocenyl-substituted aurones, flavones, and flavonols. Organometallics, 2011, 30(20), 5424-5432.
[http://dx.doi.org/10.1021/om200644e]
[82]
Sum, T.H.; Sum, T.J.; Stokes, J.E.; Galloway, W.R.J.D.; Spring, D.R. Divergent and concise total syntheses of dihydrochalcones and 5-deoxyflavones recently isolated from Tacca species and Mimosa diplotricha. Tetrahedron, 2015, 71(26), 4557-4564.
[http://dx.doi.org/10.1016/j.tet.2015.02.017]
[83]
Oh, Y.; Jang, M.; Cho, H.; Yang, S. Im, D.; Moon, H.; Hah, J.M. Discovery of 3-alkyl-5-aryl-1-pyrimidyl-1 H- pyrazole derivatives as a novel selective inhibitor scaffold of JNK3. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 372-376.
[http://dx.doi.org/10.1080/14756366.2019.1705294] [PMID: 31856610]
[84]
Spring, D.; Sum, T.; Sum, T.; Galloway, W. Divergent Total Syntheses of Flavonoid Natural Products Isolated from Rosa rugosa and Citrus unshiu. Synlett, 2016, 27(11), 1725-1727.
[http://dx.doi.org/10.1055/s-0035-1561851]
[85]
Zhang, J.; Fu, X.L.; Yang, N.; Wang, Q.A. Synthesis and cytotoxicity of chalcones and 5-deoxyflavonoids. ScientificWorldJournal, 2013, 2013, 1-6.
[http://dx.doi.org/10.1155/2013/649485] [PMID: 23844408]
[86]
Sum, T.H.; Sum, T.J.; Collins, S.; Galloway, W.R.J.D.; Twigg, D.G.; Hollfelder, F.; Spring, D.R. Divergent synthesis of biflavonoids yields novel inhibitors of the aggregation of amyloid β (1-42). Org. Biomol. Chem., 2017, 15(21), 4554-4570.
[http://dx.doi.org/10.1039/C7OB00804J] [PMID: 28513756]
[87]
Chimenti, F.; Maccioni, E.; Secci, D.; Bolasco, A.; Chimenti, P.; Granese, A.; Carradori, S.; Alcaro, S.; Ortuso, F.; Yáñez, M.; Orallo, F.; Cirilli, R.; Ferretti, R.; La Torre, F. Synthesis, stereochemical identification, and selective inhibitory activity against human monoamine oxidase-B of 2-methylcyclohexylidene-(4-arylthiazol-2-yl)hydrazones. J. Med. Chem., 2008, 51(16), 4874-4880.
[http://dx.doi.org/10.1021/jm800132g] [PMID: 18666768]
[88]
Yáñez, M.; Fraiz, N.; Cano, E.; Orallo, F. Inhibitory effects of cis- and trans-resveratrol on noradrenaline and 5-hydroxytryptamine uptake and on monoamine oxidase activity. Biochem. Biophys. Res. Commun., 2006, 344(2), 688-695.
[http://dx.doi.org/10.1016/j.bbrc.2006.03.190] [PMID: 16631124]
[89]
Badavath, V.N.; Nath, C.; Ganta, N.M.; Ucar, G.; Sinha, B.N.; Jayaprakash, V. Design, synthesis and MAO inhibitory activity of 2-(arylmethylidene)-2,3-dihydro-1-benzofuran-3-one derivatives. Chin. Chem. Lett., 2017, 28(7), 1528-1532.
[http://dx.doi.org/10.1016/j.cclet.2017.02.009]
[90]
Mughal, E.U.; Sadiq, A.; Murtaza, S.; Rafique, H.; Zafar, M.N.; Riaz, T.; Khan, B.A.; Hameed, A.; Khan, K.M. Synthesis, structure-activity relationship and molecular docking of 3-oxoaurones and 3-thioaurones as acetylcholinesterase and butyrylcholinesterase inhibitors. Bioorg. Med. Chem., 2017, 25(1), 100-106.
[http://dx.doi.org/10.1016/j.bmc.2016.10.016] [PMID: 27780618]
[91]
Elhadi, A.A.; Osman, H.; Iqbal, M.A.; Rajeswari, S.K.; Ahamed, M.B.K.; Abdul Majid, A.M.S.; Rosli, M.M.; Razak, I.A.; Majid, A.S.A. Synthesis and structural elucidation of two new series of aurone derivatives as potent inhibitors against the proliferation of human cancer cells. Med. Chem. Res., 2015, 24(9), 3504-3515.
[http://dx.doi.org/10.1007/s00044-015-1400-2]
[92]
Zarghi, A.; Ghodsi, R.; Azizi, E.; Daraie, B.; Hedayati, M.; Dadrass, O.G. Synthesis and biological evaluation of new 4-carboxyl quinoline derivatives as cyclooxygenase-2 inhibitors. Bioorg. Med. Chem., 2009, 17(14), 5312-5317.
[http://dx.doi.org/10.1016/j.bmc.2009.05.084] [PMID: 19560931]
[93]
Pérès, B.; Nasr, R.; Zarioh, M.; Lecerf-Schmidt, F.; Di Pietro, A.; Baubichon-Cortay, H.; Boumendjel, A. Ferrocene-embedded flavonoids targeting the Achilles heel of multidrug-resistant cancer cells through collateral sensitivity. Eur. J. Med. Chem., 2017, 130, 346-353.
[http://dx.doi.org/10.1016/j.ejmech.2017.02.064] [PMID: 28273561]
[94]
Chen, J.F.; Liu, Z.Q. Ferrocenyl-appended aurone and flavone: which possesses higher inhibitory effects on DNA oxidation and radicals? Chem. Res. Toxicol., 2015, 28(3), 451-459.
[http://dx.doi.org/10.1021/tx500405b] [PMID: 25548828]
[95]
Chen, H.; Liu, Z.; Cao, D.; Lu, S.; Pang, J.; Sun, Y. Two new fluorescence turn-on chemosensors for cyanide based on dipyridylamine and aurone moiety. Sens. Actuators B Chem., 2014, 199, 115-120.
[http://dx.doi.org/10.1016/j.snb.2014.03.106]
[96]
Dong, X.; Liu, T.; Yan, J.; Wu, P.; Chen, J.; Hu, Y. Synthesis, biological evaluation and quantitative structure-activities relationship of flavonoids as vasorelaxant agents. Bioorg. Med. Chem., 2009, 17(2), 716-726.
[http://dx.doi.org/10.1016/j.bmc.2008.11.052] [PMID: 19070497]
[97]
Dong, X.; Qi, L.; Jiang, C.; Chen, J.; Wei, E.; Hu, Y. Synthesis, biological evaluation of prenylflavonoids as vasorelaxant and neuroprotective agents. Bioorg. Med. Chem. Lett., 2009, 19(12), 3196-3198.
[http://dx.doi.org/10.1016/j.bmcl.2009.04.120] [PMID: 19442520]
[98]
Chen, A.H.; Kuo, W.B.; Chen, C.W. Photohydrodimerization of 6-methoxyflavone to 6,6″-dimethoxy-2,2″-biflavanones. J. Chin. Chem. Soc., 2004, 51(6), 1389-1394.
[http://dx.doi.org/10.1002/jccs.200400203]
[99]
Ramana Kishore, N.; Ashok, D.; Sarasija, M.; Murthy, N.Y.S. Microwave-assisted synthesis of novel spirochromanone-aurone hybrids and their antimicrobial activity. Russ. J. Gen. Chem., 2018, 88(5), 1015-1019.
[http://dx.doi.org/10.1134/S1070363218050298]
[100]
Sreenivas, P.R. Synthesis and antibacterial activity of some new spiro[pyrano[2,3-f]chromen-2,1′-cycloalkan]-4-ones and 1′-alkylspiro[pyrano[2,3-f]chromen-2,4′-piperidin]-4-ones. Indian J. Chem. Sect. B, 2011, 50B, 1484-1490.
[101]
Burits, M.; Bucar, F. Antioxidant activity of Nigella sativa essential oil. Phytother. Res., 2000, 14(5), 323-328.
[http://dx.doi.org/10.1002/1099-1573(200008)14:5<323:AID-PTR621>3.0.CO;2-Q] [PMID: 10925395]
[102]
Cuendet, M.; Hostettmann, K.; Potterat, O.; Dyatmiko, W. Iridoid Glucosides with Free Radical Scavenging Properties from Fagraea blumei. Helv. Chim. Acta, 1997, 80(4), 1144-1152.
[http://dx.doi.org/10.1002/hlca.19970800411]
[103]
Ruch, R.J.; Cheng, S.; Klaunig, J.E. Prevention of cytotoxicity and inhibition of intercellular communication by antioxidant catechins isolated from Chinese green tea. Carcinogenesis, 1989, 10(6), 1003-1008.
[http://dx.doi.org/10.1093/carcin/10.6.1003] [PMID: 2470525]
[104]
Ashok, D.; Kumar, R.S.; Gandhi, D.M.; Jayashree, A. Solvent-free microwave-assisted synthesis and biological evaluation of aurones and flavanones based on 2,2-dimethylchroman-4-one. J. Heterocycl. Chem., 2016, 52(7), 453-459.
[105]
El-Desoky, E-S.I.; Abozeid, M.A.; Abdel-Rahman, A-R.H. Quinacetophenone: A simple precursor to privileged organic motifs. Arab. J. Chem., 2019, 12(8), 3380-3405.
[http://dx.doi.org/10.1016/j.arabjc.2015.09.010]
[106]
Morales-Camilo, N.; Salas, C.O.; Sanhueza, C.; Espinosa-Bustos, C.; Sepúlveda-Boza, S.; Reyes-Parada, M.; Gonzalez-Nilo, F.; Caroli-Rezende, M.; Fierro, A. Synthesis, biological evaluation, and molecular simulation of chalcones and aurones as selective MAO-B inhibitors. Chem. Biol. Drug Des., 2015, 85(6), 685-695.
[http://dx.doi.org/10.1111/cbdd.12458] [PMID: 25346162]
[107]
Kumar, S.; Lamba, M.S.; Makrandi, J.K. An efficient green procedure for the synthesis of chalcones using C-200 as solid support under grinding conditions. Green Chem. Lett. Rev., 2008, 1(2), 123-125.
[http://dx.doi.org/10.1080/17518250802325993]
[108]
Kakade, K.; Kakade, M.S.P.; Deshmukh, M.S.Y. Synthesis and characterization of some bromo substituted chalcone by the green synthesis way (grinding method) and aurones 2-benzylidine-1-benzofuran-3-one by cyclization method. World J. Pharm. Pharm. Sci., 2015, 4, 1591-1597.
[109]
Li, J.T.; Yang, W.Z.; Wang, S.X.; Li, S.H.; Li, T.S. Improved synthesis of chalcones under ultrasound irradiation. Ultrason. Sonochem., 2002, 9(5), 237-239.
[http://dx.doi.org/10.1016/S1350-4177(02)00079-2] [PMID: 12371199]
[110]
Rullah, K.; Mohd Aluwi, M.F.F.; Yamin, B.M.; Abdul Bahari, M.N.; Wei, L.S.; Ahmad, S.; Abas, F.; Ismail, N.H.; Jantan, I.; Wai, L.K. Inhibition of prostaglandin E2 production by synthetic minor prenylated chalcones and flavonoids: Synthesis, biological activity, crystal structure, and in silico evaluation. Bioorg. Med. Chem. Lett., 2014, 24(16), 3826-3834.
[http://dx.doi.org/10.1016/j.bmcl.2014.06.061] [PMID: 25027933]
[111]
Sousa, C.M.; Berthet, J.; Delbaere, S.; Coelho, P.J. One pot synthesis of aryl substituted aurones. Dyes Pigments, 2012, 92(1), 537-541.
[http://dx.doi.org/10.1016/j.dyepig.2011.05.026]
[112]
Masesane, I. A comprehensive review of the oxidative cyclisation of 2′-hydroxychalcones to aurones and flavones. Int. J. Chem. Stud., 2015, 3, 53-59.
[113]
Thanigaimalai, P.; Yang, H.M.; Sharma, V.K.; Kim, Y.; Jung, S.H. The scope of thallium nitrate oxidative cyclization of chalcones; synthesis and evaluation of isoflavone and aurone analogs for their inhibitory activity against interleukin-5. Bioorg. Med. Chem., 2010, 18(12), 4441-4445.
[http://dx.doi.org/10.1016/j.bmc.2010.04.075] [PMID: 20472438]
[114]
Varma, R.S.; Varma, M. Oxidative cyclisation of chalcones with thallium(III)nitrate: Synthesis of (Z)-2-phenylmethylene-7-nitro-3(2H)-benzofuranones. Monatsh. Chem., 1982, 113(12), 1469-1473.
[http://dx.doi.org/10.1007/BF00808946]
[115]
Taylor, E.C.; Conley, R.A.; Johnson, D.K.; McKillop, A.; Ford, M.E. Thallium in organic synthesis. 57. Reaction of chalcones and chalcone ketals with thallium(III) trinitrate. J. Org. Chem., 1980, 45(17), 3433-3436.
[http://dx.doi.org/10.1021/jo01305a011]
[116]
Mukaiyama, T. Titanium tetrachloride in organic synthesis[new synthetic methods(21)] Angew. Chem. Int. Ed. Engl., 1977, 16(12), 817-826.
[http://dx.doi.org/10.1002/anie.197708171]
[117]
Mukaiyama, H.; Shionoya, S.; Ikezawa, T.; Kamiya, T.; Hamaguchi, M.; Saito, H. Abdominal aortic aneurysm complicated with chronic disseminated intravascular coagulopathy: A case of surgical treatment. J. Vasc. Surg., 1987, 6(6), 600-604.
[http://dx.doi.org/10.1016/0741-5214(87)90278-3] [PMID: 3121870]
[118]
Cheon, C.H.; Yamamoto, H. N-Triflylthiophosphoramide catalyzed enantioselective mukaiyama aldol reaction of aldehydes with silyl enol ethers of ketones. Org. Lett., 2010, 12(11), 2476-2479.
[http://dx.doi.org/10.1021/ol100233t]
[119]
Tsukayama, M.; Kawamura, Y.; Tamaki, H.; Kubo, T.; Horie, T. Synthesis of Pyranoisoflavones from Pyronochalcones: Synthesis of Elongatin and Its Angular Isomer. Bull. Chem. Soc. Jpn., 1989, 62(3), 826-832.
[http://dx.doi.org/10.1246/bcsj.62.826]
[120]
Ameta, K.L.; Rathore, N.S.; Kumar, B.; Malaga, M. E.S.; P, M.V.; Gilman, R.H.; Verma, B.L. Synthesis and Trypanocidal Evaluation of Some Novel 2-(Substituted Benzylidene)-5, 7-Dibromo-6-Hydroxy-1-Benzofuran-3(2H)-. Ones. Int. J. Org. Chem. (Irvine), 2012, 2(3), 295-301.
[http://dx.doi.org/10.4236/ijoc.2012.223040]
[121]
Priyadarshani, G.; Nayak, A.; Amrutkar, S.M.; Das, S.; Guchhait, S.K.; Kundu, C.N.; Banerjee, U.C. Scaffold-Hopping of Aurones: 2-Arylideneimidazo[1,2- a]pyridinones as Topoisomerase IIα-Inhibiting Anticancer Agents. ACS Med. Chem. Lett., 2016, 7(12), 1056-1061.
[http://dx.doi.org/10.1021/acsmedchemlett.6b00242] [PMID: 27994737]
[122]
Weng, Y.; Chen, Q.; Su, W. Copper-catalyzed intramolecular tandem reaction of (2-halogenphenyl)(3-phenyloxiran-2-yl)methanones: synthesis of (Z)-aurones. J. Org. Chem., 2014, 79(9), 4218-4224.
[http://dx.doi.org/10.1021/jo500483u] [PMID: 24735197]
[123]
Khan, A.T.; Choudhury, A.; Ali, S.; Musawwer Khan, M. Regioselective monobromination of (E)-1-(2′-hydroxy-4′6′-dimethoxyphenyl)-3-aryl-2-propen-1-ones using bromodimethylsulfonium bromide and synthesis of 8-bromoflavones and 7-bromoaurones. Tetrahedron Lett., 2012, 53(36), 4852-4857.
[http://dx.doi.org/10.1016/j.tetlet.2012.06.122]
[124]
Choudhury, L.H.; Parvin, T.; Khan, A.T. Recent advances in the application of bromodimethylsulfonium bromide (BDMS) in organic synthesis. Tetrahedron, 2009, 65(46), 9513-9526.
[http://dx.doi.org/10.1016/j.tet.2009.07.052]
[125]
Donnelly, J.A.; Higginbotham, C.L. O-Heterocycles by the cyclization of side-chain bromomethoxylated 2?-acetoxychalcones. Monatsh. Chem., 1991, 122(1-2), 83-87.
[http://dx.doi.org/10.1007/BF00815169]
[126]
Donnelly, J.A.; Higginbotham, C.L. Flavone formation in the wheeler aurone synthesis. Tetrahedron, 1990, 46(20), 7219-7226.
[http://dx.doi.org/10.1016/S0040-4020(01)87902-3]
[127]
Donnelly, J.A.; Fox, M.J.; Sharma, T.C. α -Halogenoketones—XI. Tetrahedron, 1979, 35(7), 875-879.
[http://dx.doi.org/10.1016/0040-4020(79)80109-X]
[128]
Moussouni, S.; Detsi, A.; Majdalani, M.; Makris, D.P.; Kefalas, P. Crude peroxidase from onion solid waste as a tool for organic synthesis. Part I: Cyclization of 2′3,4,4′6′-pentahydroxy-chalcone into aureusidin. Tetrahedron Lett., 2010, 51(31), 4076-4078.
[http://dx.doi.org/10.1016/j.tetlet.2010.05.125]
[129]
Khan, A.T.; Goswami, P. A highly efficient and environmentally benign synthesis of 6,8-dibromoflavones, 8-bromoflavones, 5,7-dibromoaurones and 7-bromoaurones. Tetrahedron Lett., 2005, 46(30), 4937-4940.
[http://dx.doi.org/10.1016/j.tetlet.2005.05.102]
[130]
Geissman, T.A.; Fukushima, D.K. Flavonones and related compounds; the oxidation of 2′-hydroxychalcones with alkaline hydrogen peroxide. J. Am. Chem. Soc., 1948, 70(5), 1686-1689.
[http://dx.doi.org/10.1021/ja01185a003] [PMID: 18861741]
[131]
Späth, E.; Gruber, W. Die Konstitution des Kellins (aus Ammi visnaga) (I. Mitteil. über natürliche Chromone). Ber. Dtsch. Chem. Ges. B, 1938, 71(1), 106-113.
[http://dx.doi.org/10.1002/cber.19380710118]
[132]
Hassan, G.S.; Abou-Seri, S.M.; Kamel, G.; Ali, M.M. Celecoxib analogs bearing benzofuran moiety as cyclooxygenase-2 inhibitors: Design, synthesis and evaluation as potential anti-inflammatory agents. Eur. J. Med. Chem., 2014, 76, 482-493.
[http://dx.doi.org/10.1016/j.ejmech.2014.02.033] [PMID: 24607877]
[133]
Ragab, F.A.; Tawfeek, H. Synthesis, inotropic, anti-arrhythmic and hypotensive activities of some new benzofuran derivatives. Eur. J. Med. Chem., 1987, 22(3), 265-267.
[http://dx.doi.org/10.1016/0223-5234(87)90060-2]
[134]
Hassan, G.S.; Abdel Rahman, D.E.; Saleh, D.O.; Abdel Jaleel, G.A.R. Benzofuran-morpholinomethyl-pyrazoline hybrids as a new class of vasorelaxant agents: synthesis and quantitative structure-activity relationship study. Chem. Pharm. Bull , 2014, 62(12), 1238-1251.
[http://dx.doi.org/10.1248/cpb.c14-00572] [PMID: 25450632]
[135]
Ragab, F.A.; El-Ansary, S.L.; Hassan, A.B. Synthesis and hypotensive activity of certain benzofuran derivatives. Egypt. J. Pharm. Sci., 1992, 33(5), 931.
[136]
Hassan, G.S.; Georgey, H.H.; George, R.F.; Mohammed, E.R. Construction of some cytotoxic agents with aurone and furoaurone scaffolds. Future Med. Chem., 2018, 10(1), 27-52.
[http://dx.doi.org/10.4155/fmc-2017-0147] [PMID: 29235893]
[137]
Schönberg, A.; Sina, A. Khellin and allied compounds. J. Am. Chem. Soc., 1950, 72(4), 1611-1616.
[http://dx.doi.org/10.1021/ja01160a051]
[138]
Domínguez, J.N.; León, C.; Rodrigues, J.; Gamboa de Domínguez, N.; Gut, J.; Rosenthal, P.J. Synthesis and evaluation of new antimalarial phenylurenyl chalcone derivatives. J. Med. Chem., 2005, 48(10), 3654-3658.
[http://dx.doi.org/10.1021/jm058208o] [PMID: 15887974]
[139]
Starkowsky, N. Addition of urea, thiourea and iodine to the natural benzopyrones of Ammi visnaga Linn. and Ammi majus linn. Egypt. J. Chem., 1959, 2, 111-117.
[140]
Schönberg, A.; Badran, N.; Starkowsky, N.A. Furo-chromones and-coumarins. VII. Degradation of visnagin, khellin and related substances; experiments with chromic acid and hydrogen peroxide; and a synthesis of eugenitin. J. Am. Chem. Soc., 1953, 75(20), 4992-4995.
[http://dx.doi.org/10.1021/ja01116a032]
[141]
El-Desoky, E.S.I. Synthesis and reactions of some new allyl furobenzopyranone derivatives. J. Heterocycl. Chem., 2007, 44(6), 1309-1315.
[http://dx.doi.org/10.1002/jhet.5570440612]
[142]
Ragab, F.A.; Yahya, T.A.A.; El-Naa, M.M.; Arafa, R.K. Design, synthesis and structure-activity relationship of novel semi-synthetic flavonoids as antiproliferative agents. Eur. J. Med. Chem., 2014, 82, 506-520.
[http://dx.doi.org/10.1016/j.ejmech.2014.06.007] [PMID: 24937184]
[143]
Yamasaki, K.; Hishiki, R.; Kato, E.; Kawabata, J. Study of kaempferol glycoside as an insulin mimic reveals glycon to be the key active structure. ACS Med. Chem. Lett., 2011, 2(1), 17-21.
[http://dx.doi.org/10.1021/ml100171x] [PMID: 24900249]
[144]
Cole, A.L.; Hossain, S.; Cole, A.M.; Phanstiel, O. IV Synthesis and bioevaluation of substituted chalcones, coumaranones and other flavonoids as anti- HIV agents. Bioorg. Med. Chem., 2016, 24(12), 2768-2776.
[http://dx.doi.org/10.1016/j.bmc.2016.04.045] [PMID: 27161874]
[145]
Hierold, J.; Baek, S.; Rieger, R.; Lim, T.G.; Zakpur, S.; Arciniega, M.; Lee, K.W.; Huber, R.; Tietze, L.F. Design, Synthesis, and Biological Evaluation of Quercetagetin Analogues as JNK1 Inhibitors. Chemistry, 2015, 21(47), 16887-16894.
[http://dx.doi.org/10.1002/chem.201502475] [PMID: 26541354]
[146]
Apeloig, Y.; Karni, M.; Rappoport, Z. Nucleophilic attacks on carbon-carbon double bonds. Part 29. Role of hyperconjugation in determining the stereochemistry of nucleophilic epoxidation and cyclopropanation of electrophilic olefins. J. Am. Chem. Soc., 1983, 105(9), 2784-2793.
[http://dx.doi.org/10.1021/ja00347a044]
[147]
Weitz, E.; Scheffer, A. Über die Einwirkung von alkalischem Wasserstoffsuperoxyd auf ungesättigte Verbindungen. Ber. Dtsch. Chem. Ges. B, 1921, 54(9), 2327-2344.
[http://dx.doi.org/10.1002/cber.19210540922]
[148]
Botta, B. Studies in cell suspension cultures of cassia didymobotrya part iii. the biotransformation of chalcones to flavones and biflavanones. Heterocycles, 1989, 29(11), 2175-2184.
[http://dx.doi.org/10.3987/COM-89-5152]
[149]
Tatsugi, J.; Ikuma, K.; Izawa, Y. Selective photo-reduction of 1-alkylisatins in degassed alcoholic solutions. Heterocycles, 1996, 43(1), 7-10.
[http://dx.doi.org/10.3987/COM-95-7272]
[150]
Zerva, A.; Koutroufini, E.; Kostopoulou, I.; Detsi, A.; Topakas, E. A novel thermophilic laccase-like multicopper oxidase from Thermothelomyces thermophila and its application in the oxidative cyclization of 2′3,4-trihydroxychalcone. N. Biotechnol., 2019, 49, 10-18.
[http://dx.doi.org/10.1016/j.nbt.2018.12.001] [PMID: 30529567]
[151]
Kaintz, C.; Molitor, C.; Thill, J.; Kampatsikas, I.; Michael, C.; Halbwirth, H.; Rompel, A. Cloning and functional expression in E. coli of a polyphenol oxidase transcript from Coreopsis grandiflora involved in aurone formation. FEBS Lett., 2014, 588(18), 3417-3426.
[http://dx.doi.org/10.1016/j.febslet.2014.07.034] [PMID: 25109778]
[152]
Kaintz, C.; Mayer, R.L.; Jirsa, F.; Halbwirth, H.; Rompel, A. Site‐directed mutagenesis around the CuA site of a polyphenol oxidase from Coreopsis grandiflora ( cg AUS1). FEBS Lett., 2015, 589(7), 789-797.
[http://dx.doi.org/10.1016/j.febslet.2015.02.009] [PMID: 25697959]
[153]
Miosic, S.; Knop, K.; Hölscher, D.; Greiner, J.; Gosch, C.; Thill, J.; Kai, M.; Shrestha, B.K.; Schneider, B.; Crecelius, A.C.; Schubert, U.S.; Svatoš, A.; Stich, K.; Halbwirth, H. 4-Deoxyaurone Formation in Bidens ferulifolia (Jacq.) DC. PLoS One, 2013, 8(5), e61766.
[http://dx.doi.org/10.1371/journal.pone.0061766] [PMID: 23667445]
[154]
Tronina, T.; Bartmańska, A.; Popłoński, J.; Huszcza, E. Transformation of xanthohumol by Aspergillus ochraceus. J. Basic Microbiol., 2014, 54(1), 66-71.
[http://dx.doi.org/10.1002/jobm.201200320] [PMID: 23463662]
[155]
Donnelly, J.A.; Emerson, G.M. Amine-effected cyclization of chalcone dihalides to aurones. Tetrahedron, 1990, 46(20), 7227-7236.
[http://dx.doi.org/10.1016/S0040-4020(01)87903-5]
[156]
Rappe, C. Preparation and geometrical configuration of some dibromo alpha beta-unsaturated acids. Ark. Kemi, 1965, 24(4), 303.
[157]
Kraus, G.A.; Gupta, V. Divergent approach to flavones and aurones via dihaloacrylic acids. Unexpected dependence on the halogen atom. Org. Lett., 2010, 12(22), 5278-5280.
[http://dx.doi.org/10.1021/ol1023294] [PMID: 20961130]
[158]
Haginiwa, J.; Higuchi, Y.; Kawashima, T.; Shinokawa, H. [Reactions concerned in tertiary amine n-oxides. VI. Reactions of 2′-hydroxychalcone derivatives with amine N-oxides (author’s transl)]. Yakugaku Zasshi, 1976, 96(2), 195-198.
[http://dx.doi.org/10.1248/yakushi1947.96.2_195] [PMID: 985866]
[159]
Yatabe, T.; Jin, X.; Mizuno, N.; Yamaguchi, K. Unusual olefinic ch functionalization of simple chalcones toward aurones enabled by the rational design of a function-integrated heterogeneous catalyst. ACS Catal., 2018, 8(6), 4969-4978.
[160]
da Silva, E.T.; Câmara, C.A.; Antunes, O.A.C.; Barreiro, E.J.; Fraga, C.A.M. Improved solvent‐free dakin oxidation protocol. Synth. Commun., 2008, 38(5), 784-788.
[http://dx.doi.org/10.1080/00397910701820673]
[161]
Zheng, H.; Youdim, M.B.H.; Fridkin, M. Selective acetylcholinesterase inhibitor activated by acetylcholinesterase releases an active chelator with neurorescuing and anti-amyloid activities. ACS Chem. Neurosci., 2010, 1(11), 737-746.
[http://dx.doi.org/10.1021/cn100069c] [PMID: 22778810]
[162]
Li, Y.; Qiang, X.; Luo, L.; Yang, X.; Xiao, G.; Liu, Q.; Ai, J.; Tan, Z.; Deng, Y. Aurone Mannich base derivatives as promising multifunctional agents with acetylcholinesterase inhibition, anti-β-amyloid aggragation and neuroprotective properties for the treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2017, 126, 762-775.
[http://dx.doi.org/10.1016/j.ejmech.2016.12.009] [PMID: 27951485]
[163]
Popova, A.V.; Frasinyuk, M.S.; Bondarenko, S.P.; Zhang, W.; Xie, Y.; Martin, Z.M.; Cai, X.; Fiandalo, M.V.; Mohler, J.L.; Liu, C.; Watt, D.S.; Sviripa, V.M. Efficient synthesis of aurone Mannich bases and evaluation of their antineoplastic activity in PC-3 prostate cancer cells. Chem. Pap., 2018, 72(10), 2443-2456.
[http://dx.doi.org/10.1007/s11696-018-0485-8] [PMID: 36238867]
[164]
Haudecoeur, R.; Carotti, M.; Gouron, A.; Maresca, M.; Buitrago, E.; Hardré, R.; Bergantino, E.; Jamet, H.; Belle, C.; Réglier, M.; Bubacco, L.; Boumendjel, A. 2-Hydroxypyridine- N -oxide-Embedded Aurones as Potent Human Tyrosinase Inhibitors. ACS Med. Chem. Lett., 2017, 8(1), 55-60.
[http://dx.doi.org/10.1021/acsmedchemlett.6b00369] [PMID: 28105275]
[165]
Dubois, C.; Haudecoeur, R.; Orio, M.; Belle, C.; Bochot, C.; Boumendjel, A.; Hardré, R.; Jamet, H.; Réglier, M. Versatile effects of aurone structure on mushroom tyrosinase activity. ChemBioChem, 2012, 13(4), 559-565.
[http://dx.doi.org/10.1002/cbic.201100716] [PMID: 22307818]
[166]
Xie, Y.; Kril, L.M.; Yu, T.; Zhang, W.; Frasinyuk, M.S.; Bondarenko, S.P.; Kondratyuk, K.M.; Hausman, E.; Martin, Z.M.; Wyrebek, P.P.; Liu, X.; Deaciuc, A.; Dwoskin, L.P.; Chen, J.; Zhu, H.; Zhan, C.G.; Sviripa, V.M.; Blackburn, J.; Watt, D.S.; Liu, C. Semisynthetic aurones inhibit tubulin polymerization at the colchicine-binding site and repress PC-3 tumor xenografts in nude mice and myc-induced T-ALL in zebrafish. Sci. Rep., 2019, 9(1), 6439.
[http://dx.doi.org/10.1038/s41598-019-42917-0] [PMID: 31015569]
[167]
Fougerousse, A.; Gonzalez, E.; Brouillard, R. A convenient method for synthesizing 2-aryl-3-hydroxy-4-oxo-4H-1-benzopyrans or flavonols. J. Org. Chem., 2000, 65(2), 583-586.
[http://dx.doi.org/10.1021/jo990735q] [PMID: 10813976]
[168]
Okombi, S.; Rival, D.; Bonnet, S.; Mariotte, A.M.; Perrier, E.; Boumendjel, A. Discovery of benzylidenebenzofuran-3(2H)-one (aurones) as inhibitors of tyrosinase derived from human melanocytes. J. Med. Chem., 2006, 49(1), 329-333.
[http://dx.doi.org/10.1021/jm050715i] [PMID: 16392817]
[169]
Meguellati, A.; Ahmed-Belkacem, A.; Yi, W.; Haudecoeur, R.; Crouillère, M.; Brillet, R.; Pawlotsky, J.M.; Boumendjel, A.; Peuchmaur, M. B-ring modified aurones as promising allosteric inhibitors of hepatitis C virus RNA-dependent RNA polymerase. Eur. J. Med. Chem., 2014, 80, 579-592.
[http://dx.doi.org/10.1016/j.ejmech.2014.04.005] [PMID: 24835816]
[170]
Baiceanu, E.; Nguyen, K.A.; Gonzalez-Lobato, L.; Nasr, R.; Baubichon-Cortay, H.; Loghin, F.; Le Borgne, M.; Chow, L.; Boumendjel, A.; Peuchmaur, M.; Falson, P. 2-Indolylmethylenebenzofuranones as first effective inhibitors of ABCC2. Eur. J. Med. Chem., 2016, 122, 408-418.
[http://dx.doi.org/10.1016/j.ejmech.2016.06.039] [PMID: 27393949]
[171]
Buechi, G.; Weinreb, S.M. Total syntheses of aflatoxins M1 and G1 and an improved synthesis of aflatoxin B1. J. Am. Chem. Soc., 1971, 93(3), 746-752.
[http://dx.doi.org/10.1021/ja00732a032] [PMID: 5545312]
[172]
Lu, C.; Guo, Y.; Li, J.; Yao, M.; Liao, Q.; Xie, Z.; Li, X. Design, synthesis, and evaluation of resveratrol derivatives as Ass((1)-(4)(2)) aggregation inhibitors, antioxidants, and neuroprotective agents. Bioorg. Med. Chem. Lett., 2012, 22(24), 7683-7687.
[http://dx.doi.org/10.1016/j.bmcl.2012.09.105] [PMID: 23127891]
[173]
Zhang, M.; Xu, X.H.; Cui, Y.; Xie, L.G.; Kong, C.H. Synthesis and herbicidal potential of substituted aurones. Pest Manag. Sci., 2012, 68(11), 1512-1522.
[http://dx.doi.org/10.1002/ps.3339] [PMID: 22718431]
[174]
Manjulatha, K.; Srinivas, S.; Mulakayala, N.; Rambabu, D.; Prabhakar, M.; Arunasree, K.M.; Alvala, M.; Basaveswara Rao, M.V.; Pal, M. Ethylenediamine diacetate (EDDA) mediated synthesis of aurones under ultrasound: Their evaluation as inhibitors of SIRT1. Bioorg. Med. Chem. Lett., 2012, 22(19), 6160-6165.
[http://dx.doi.org/10.1016/j.bmcl.2012.08.017] [PMID: 22929231]
[175]
King, T.J.; Hastings, J.S.; Heller, H.G. X-Ray analysis of (Z)-2-p-methoxyphenylmethylenebenzofuran-3(2H)-one. J. Chem. Soc., Perkin Trans. 1, 1975, (15), 1455-1457.
[http://dx.doi.org/10.1039/p19750001455]
[176]
Meguellati, A.; Ahmed-Belkacem, A.; Nurisso, A.; Yi, W.; Brillet, R.; Berqouch, N.; Chavoutier, L.; Fortuné, A.; Pawlotsky, J.M.; Boumendjel, A.; Peuchmaur, M. New pseudodimeric aurones as palm pocket inhibitors of Hepatitis C virus RNA-dependent RNA polymerase. Eur. J. Med. Chem., 2016, 115, 217-229.
[http://dx.doi.org/10.1016/j.ejmech.2016.03.005] [PMID: 27017550]
[177]
Zhao, C.; Wang, Y.; Ma, S. Recent advances on the synthesis of hepatitis C virus NS5B RNA-dependent RNA-polymerase inhibitors. Eur. J. Med. Chem., 2015, 102, 188-214.
[http://dx.doi.org/10.1016/j.ejmech.2015.07.046] [PMID: 26276434]
[178]
Zhang, M.; Chen, G.Y.; Li, T.; Liu, B.; Deng, J.Y.; Zhang, L.; Yang, L.Q.; Xu, X.H. Synthesis and Herbicidal Evaluation of 4,6-Dimethoxyaurone Derivatives. J. Heterocycl. Chem., 2015, 52(6), 1887-1892.
[http://dx.doi.org/10.1002/jhet.2298]
[179]
Chantal Beney, A,-M.M. Heterocyclic, 2001, 55(5), 976-972.
[180]
Sim, H.M.; Loh, K.Y.; Yeo, W.K.; Lee, C.Y.; Go, M.L. Aurones as modulators of ABCG2 and ABCB1: synthesis and structure-activity relationships. ChemMedChem, 2011, 6(4), 713-724.
[http://dx.doi.org/10.1002/cmdc.201000520] [PMID: 21302361]
[181]
King, L.C.; Ostrum, G.K. Selective bromination with copper(II) bromide. J. Org. Chem., 1964, 29(12), 3459-3461.
[http://dx.doi.org/10.1021/jo01035a003]
[182]
Boumendjel, A.; Beney, C.; Mariotte, A.M. An efficient synthesis of 4,6-dimethoxyaurones. Heterocycles, 2001, 55(5), 967-972.
[http://dx.doi.org/10.3987/COM-01-9182]
[183]
Sim, H.M.; Lee, C.Y.; Ee, P.L.R.; Go, M.L. Dimethoxyaurones: Potent inhibitors of ABCG2 (breast cancer resistance protein). Eur. J. Pharm. Sci., 2008, 35(4), 293-306.
[http://dx.doi.org/10.1016/j.ejps.2008.07.008] [PMID: 18725288]
[184]
Chang, Y.C.; Nair, M.G.; Santell, R.C.; Helferich, W.G. Microwave-mediated synthesis of anticarcinogenic isoflavones from soybeans. J. Agric. Food Chem., 1994, 42(9), 1869-1871.
[http://dx.doi.org/10.1021/jf00045a007]
[185]
Wähälä, K.; Hase, T.A. Expedient synthesis of polyhydroxyisoflavones. J. Chem. Soc., Perkin Trans. 1, 1991, (12), 3005-3008.
[http://dx.doi.org/10.1039/P19910003005]
[186]
Boumendjel, A.; Beney, C.; Deka, N.; Mariotte, A.M.; Lawson, M.A.; Trompier, D.; Baubichon-Cortay, H.; Pietro, A.D. 4-Hydroxy-6-methoxyaurones with high-affinity binding to cytosolic domain of P-glycoprotein. Chem. Pharm. Bull., 2002, 50(6), 854-856.
[http://dx.doi.org/10.1248/cpb.50.854] [PMID: 12045348]
[187]
Srivastava, A.S. Vilsmeier-Haack reagent: A facile synthesis of 2-chloro-3-formylquinolines from N-arylacetamides and transformation into different functionalities. Indian J. Chem., 2005, 44B, 1868-1875.
[188]
Shriner, R.L.; Grosser, F. Coumaran Derivatives. IX. Synthesis of 3,4,6,3′4′-Pentahydroxy-2-benzylcoumaran. J. Am. Chem. Soc., 1942, 64(2), 382-384.
[http://dx.doi.org/10.1021/ja01254a044]
[189]
Horning, E.C.; Reisner, D.B. Furocoumarins. synthesis of 2,3-dihydropsoralene. J. Am. Chem. Soc., 1948, 70(11), 3619-3620.
[http://dx.doi.org/10.1021/ja01191a023] [PMID: 18121881]
[190]
Jardosh, H.H.; Patel, M.P. Antimicrobial and antioxidant evaluation of new quinolone based aurone analogs. Arab. J. Chem., 2017, 10, S3781-S3791.
[http://dx.doi.org/10.1016/j.arabjc.2014.05.014]
[191]
Shubin, D.A.; Kuznetsov, D.N.; Kobrakov, K.I.; Starosotnikov, A.M.; Merkulova, N.L. Synthesis of aurone derivatives on the basis of 2,4,6-trihydroxytoluene. Chem. Heterocycl. Compd., 2019, 55(12), 1174-1178.
[http://dx.doi.org/10.1007/s10593-019-02597-0]
[192]
Chen, J.; Yang, W.; Pan, X.; Li, Y.; Tan, Z. A facile synthetic method of flavones. Acta Chimi. Sin., 1987, 45(5), 503-505.
[193]
Zheng, X.; Cao, J.G.; Meng, W.D.; Qing, F.L. Synthesis and anticancer effect of B-Ring trifluoromethylated flavonoids. Bioorg. Med. Chem. Lett., 2003, 13(20), 3423-3427.
[http://dx.doi.org/10.1016/S0960-894X(03)00752-2] [PMID: 14505641]
[194]
Zheng, X.; Wang, H.; Liu, Y.M.; Yao, X.; Tong, M.; Wang, Y.H.; Liao, D.F. Synthesis, characterization, and anticancer effect of trifluoromethylated aurone derivatives. J. Heterocycl. Chem., 2015, 52(1), 296-301.
[http://dx.doi.org/10.1002/jhet.1969]
[195]
Maya, Y.; Ono, M.; Watanabe, H.; Haratake, M.; Saji, H.; Nakayama, M. Novel radioiodinated aurones as probes for SPECT imaging of β-amyloid plaques in the brain. Bioconjug. Chem., 2009, 20(1), 95-101.
[http://dx.doi.org/10.1021/bc8003292] [PMID: 19072219]
[196]
Helmy, S.; Oh, S.; Leibfarth, F.A.; Hawker, C.J.; Read de Alaniz, J. Design and synthesis of donor-acceptor Stenhouse adducts: a visible light photoswitch derived from furfural. J. Org. Chem., 2014, 79(23), 11316-11329.
[http://dx.doi.org/10.1021/jo502206g] [PMID: 25390619]
[197]
Li, M.; Yang, S.; Liang, W.; Zhang, X.; Qu, D. A novel multiphotochromic system with orthogonal light excitations. Dyes Pigments, 2019, 166, 239-244.
[http://dx.doi.org/10.1016/j.dyepig.2019.03.043]
[198]
Watanabe, H.; Ono, M.; Kimura, H.; Kagawa, S.; Nishii, R.; Fuchigami, T.; Haratake, M.; Nakayama, M.; Saji, H. A dual fluorinated and iodinated radiotracer for PET and SPECT imaging of β-amyloid plaques in the brain. Bioorg. Med. Chem. Lett., 2011, 21(21), 6519-6522.
[http://dx.doi.org/10.1016/j.bmcl.2011.08.063] [PMID: 21920750]
[199]
Hadanau, R. A QSAR Modeling on aurone derivatives as antimalarial agents. Asian J. Chem., 2020, 32(11), 2839-2845.
[http://dx.doi.org/10.14233/ajchem.2020.22846]
[200]
Boussafi, K.; Villemin, D.; Bar, N.; Belghosi, M. Green synthesis of aurones and related compounds under solvent-free conditions. J. Chem. Res., 2016, 40(9), 567-569.
[http://dx.doi.org/10.3184/174751916X14719593488659]
[201]
Varma, R.S.; Varma, M. Alumina-mediated condensation. A simple synthesis of aurones. Tetrahedron Lett., 1992, 33(40), 5937-5940.
[http://dx.doi.org/10.1016/S0040-4039(00)61093-6]
[202]
Kröhnke, F.; Börner, E. About α‐keto‐aldonitrones and a new synthesis of α‐keto‐aldehydes. Ber. Dtsch. Chem. Ges. B, 1936, 69(8), 2006-2016.
[http://dx.doi.org/10.1002/cber.19360690842]
[203]
Zwergel, C.; Valente, S.; Salvato, A.; Xu, Z.; Talhi, O.; Mai, A.; Silva, A.; Altucci, L.; Kirsch, G. Novel benzofuran-chromone and -coumarin derivatives: synthesis and biological activity in K562 human leukemia cells. MedChemComm, 2013, 4(12), 1571-1579.
[http://dx.doi.org/10.1039/c3md00241a]
[204]
Nakabo, D.; Okano, Y.; Kandori, N.; Satahira, T.; Kataoka, N.; Akamatsu, J.; Okada, Y. Convenient synthesis and physiological activities of flavonoids in Coreopsis lanceolata l. petals and their related compounds. Molecules, 2018, 23(7), 1671.
[http://dx.doi.org/10.3390/molecules23071671] [PMID: 29987259]
[205]
Bolek, D.; Gütschow, M. Preparation of 4, 6, 3′4′-tetrasubstituted aurones via aluminium oxide-catalyzed condensation. J. Heterocycl. Chem., 2005, 42(7), 1399-1403.
[http://dx.doi.org/10.1002/jhet.5570420721]
[206]
Kim, D.; Li, Y.; Horenstein, B.A.; Nskanishi, K. Synthesis of tunichromes mm-l and mm-2, blood pigments of the iron.Assimilating tunicate, molgula manhattensis. Tetrahedron Lett., 1990, 31(49), 7119-7122.
[http://dx.doi.org/10.1016/S0040-4039(00)97256-3]
[207]
Geng, C.A.; Huang, X.Y.; Ma, Y.B.; Zhang, X.M.; Chen, J.J. Synthesis of erythrocentaurin derivatives as a new class of hepatitis B virus inhibitors. Bioorg. Med. Chem. Lett., 2015, 25(7), 1568-1571.
[http://dx.doi.org/10.1016/j.bmcl.2015.02.009] [PMID: 25737009]
[208]
Paidakula, S.; Nerella, S.; Vadde, R.; Kamal, A.; Kankala, S. Design and synthesis of 4β-Acetamidobenzofuranone-podophyllotoxin hybrids and their anti-cancer evaluation. Bioorg. Med. Chem. Lett., 2019, 29(16), 2153-2156.
[http://dx.doi.org/10.1016/j.bmcl.2019.06.060] [PMID: 31281022]
[209]
Bell, I.M.; Gallicchio, S.N.; Abrams, M.; Beese, L.S.; Beshore, D.C.; Bhimnathwala, H.; Bogusky, M.J.; Buser, C.A.; Culberson, J.C.; Davide, J.; Ellis-Hutchings, M.; Fernandes, C.; Gibbs, J.B.; Graham, S.L.; Hamilton, K.A.; Hartman, G.D.; Heimbrook, D.C.; Homnick, C.F.; Huber, H.E.; Huff, J.R.; Kassahun, K.; Koblan, K.S.; Kohl, N.E.; Lobell, R.B.; Lynch, J.J., Jr; Robinson, R.; Rodrigues, A.D.; Taylor, J.S.; Walsh, E.S.; Williams, T.M.; Zartman, C.B. 3-Aminopyrrolidinone farnesyltransferase inhibitors: design of macrocyclic compounds with improved pharmacokinetics and excellent cell potency. J. Med. Chem., 2002, 45(12), 2388-2409.
[http://dx.doi.org/10.1021/jm010531d] [PMID: 12036349]
[210]
Villemin, D.; Martin, B.; Bar, N. Application of microwave in organic synthesis. Dry synthesis of 2-arylmethylene-3 (2)-naphthofuranones. Molecules, 1998, 3(8), 88-93.
[http://dx.doi.org/10.3390/30300088]
[211]
Eaton, P.E.; Carlson, G.R.; Lee, J.T. Phosphorus pentoxide-methanesulfonic acid. Convenient alternative to polyphosphoric acid. J. Org. Chem., 1973, 38(23), 4071-4073.
[http://dx.doi.org/10.1021/jo00987a028]
[212]
Andreani, A.; Rambaldi, M.; Locatelli, A.; Bossa, R.; Galatulas, I.; Ninci, M. Synthesis and cardiotonic activity of 2-indolinones. Eur. J. Med. Chem., 1990, 25(2), 187-190.
[http://dx.doi.org/10.1016/0223-5234(90)90027-Z]
[213]
Jones, G. Knoevenagel Condensation. Org. React., 2011, 204-599.
[214]
Kadin, S.B. Antiinflammatory 2,3-dihydro-2-oxobenzofuran-3-carboxanilides. J. Med. Chem., 1972, 15(5), 551-552.
[http://dx.doi.org/10.1021/jm00275a029] [PMID: 5035282]
[215]
Lardic, M.; Patry, C.; Duflos, M.; Guillon, J.; Massip, S.; Cruzalegui, F.; Edmonds, T.; Giraudet, S.; Marini, L.; Leonce, S. Synthesis and primary cytotoxicity evaluation of arylmethylenenaphthofuranones derivatives. J. Enzyme Inhib. Med. Chem., 2006, 21(3), 313-325.
[http://dx.doi.org/10.1080/14756360600741834] [PMID: 16918079]
[216]
Han, Y.T.; Wang, Z.; Bae, E.J. Synthesis of the proposed structure of damaurone D and evaluation of its anti-inflammatory activity. Chem. Pharm. Bull., 2015, 63(11), 907-912.
[http://dx.doi.org/10.1248/cpb.c15-00528] [PMID: 26290225]
[217]
Wang, Z.; Bae, E.J.; Han, Y.T. Synthesis and anti-inflammatory activities of novel dihydropyranoaurone derivatives. Arch. Pharm. Res., 2017, 40(6), 695-703.
[http://dx.doi.org/10.1007/s12272-017-0910-5] [PMID: 28397193]
[218]
Bandaranayake, W.M.; Crombie, L.; Whiting, D.A. Pyridine-catalysed chromenylation of mono-chelated meta-dihydric phenols with mono-, sesqui- and di-terpene aldehydes: synthesis of rubranine and flemingins A-, B- and C-methyl ethers. J. Chem. Soc. C, 1971, (0), 804-810.
[http://dx.doi.org/10.1039/j39710000804]
[219]
Andersen, N.G.; Parvez, M.; McDonald, R.; Keay, B.A. Synthesis, resolution, and application of 2,2′-bis(diphenylphosphino)-3,3′-binaphtho[ b ]furan (BINAPFu). Can. J. Chem., 2004, 82(2), 145-161.
[http://dx.doi.org/10.1139/v03-173]
[220]
Ghadami, S.A.; Hossein-pour, Z.; Khodarahmi, R.; Ghobadi, S.; Adibi, H. Synthesis and in vitro characterization of some benzothiazole- and benzofuranone-derivatives for quantification of fibrillar aggregates and inhibition of amyloid-mediated peroxidase activity. Med. Chem. Res., 2013, 22(1), 115-126.
[http://dx.doi.org/10.1007/s00044-012-0012-3]
[221]
Khalil, N.S.A.M. Efficient synthesis of novel 1,2,4-triazole fused acyclic and 21-28 membered macrocyclic and/or lariat macrocyclic oxaazathia crown compounds with potential antimicrobial activity. Eur. J. Med. Chem., 2010, 45(11), 5265-5277.
[http://dx.doi.org/10.1016/j.ejmech.2010.08.046] [PMID: 20875694]
[222]
Tyrrell, E.; Tesfa, K.; Millet, J.; Muller, C. Enantioselective alkynylation reactions to aldehydes: The effects of aromatic substituents upon the enantioselectivity. Synthesis, 2006, 2006(18), 3099-3105.
[http://dx.doi.org/10.1055/s-2006-950205]
[223]
Rambabu, D.; Srinivas, S.; Manjulatha, K.; Basavoju, S.; Rao, M.V.B.; Pal, M. Synthesis and structural characterization of 2-benzylidenebenzofuran-3-(2H)-ones. Mol. Cryst. Liq. Cryst. (Phila. Pa.), 2013, 577(1), 83-94.
[http://dx.doi.org/10.1080/15421406.2013.782179]
[224]
Heidari, M.R.; Foroumadi, A.; Noroozi, H.; Samzadeh-Kermani, A.; Azimzadeh, B.S. Study of the anti-inflammatory and analgesic effects of novel rigid benzofuran-3, 4-dihydroxy chalcone by formalin, hot-plate and carrageenan tests in mice. Pak. J. Pharm. Sci., 2009, 22(4), 395-401.
[PMID: 19783518]
[225]
Abu-Hashem, A.A.; Hussein, H.A.R.; Aly, A.S.; Gouda, M.A. Synthesis of benzofuran derivatives via different methods. Synth. Commun., 2014, 44(16), 2285-2312.
[http://dx.doi.org/10.1080/00397911.2014.894528]
[226]
Wang, Y.F.; Wang, C.J.; Feng, Q.Z.; Zhai, J.J.; Qi, S.S.; Zhong, A.G.; Chu, M.M.; Xu, D.Q. Copper-catalyzed asymmetric 1,6-conjugate addition of in situ generated para -quinone methides with β -ketoesters. Chem. Commun. (Camb.), 2022, 58(46), 6653-6656.
[http://dx.doi.org/10.1039/D2CC00146B] [PMID: 35593224]
[227]
Geissman, T.A.; Mojé, W. Anthochlor Pigments. VIII. The pigments of coreopsis grandiflora, nutt. III. J. Am. Chem. Soc., 1951, 73(12), 5765-5768.
[http://dx.doi.org/10.1021/ja01156a080]
[228]
Demirayak, S.; Yurttas, L.; Gundogdu-Karaburun, N.; Karaburun, A.C.; Kayagil, I. Synthesis and anti-cancer activity evaluation of new aurone derivatives. J. Enzyme Inhib. Med. Chem., 2015, 30(5), 816-825.
[http://dx.doi.org/10.3109/14756366.2014.976568] [PMID: 25716125]
[229]
Kafle, A.; Bhattarai, S.; Miller, J.M.; Handy, S.T. Hydrogen sulfide sensing using an aurone-based fluorescent probe. RSC Advances, 2020, 10(73), 45180-45188.
[http://dx.doi.org/10.1039/D0RA08802A] [PMID: 35516280]
[230]
Kafle, A.; Bhattarai, S.; Handy, S.T. The first synthesis of peracetyl glycosyl aurone derivatives and aurone glucosides. Tetrahedron, 2020, 76(43), 131528.
[http://dx.doi.org/10.1016/j.tet.2020.131528]
[231]
Nordström, C.G.; Swain, T. The flavonoid glycosides of dahlia variabilis. II. glycosides of yellow varieties “Pius IX” and “Coton”. Arch. Biochem. Biophys., 1956, 60(2), 329-344.
[http://dx.doi.org/10.1016/0003-9861(56)90435-0] [PMID: 13292910]
[232]
El Said, M. Synthesis and pharmacological testing of some new phenothiazine derivatives. Egypt. J. Pharm. Sci., 1991, 32, 251-261.
[233]
Ebeid, M.; El-Moghazy, S.; Hanna, M.; Romeih, F.; Barsoum, F. Synthesis and anti-HIV activity of some 6, 7-dihydro-5H-pyrrolizine-3-carboxamide, 5, 6, 7, 8-tetrahydroindolizine-3-carboxamide, 1-thioxo-1, 2, 3, 5, 6, 7, 8, 9, 10, 11-decahydro-pyrimido-[1, 6-a] azonine-4-carbonitrile and 6-thioxo-1, 2, 5, 6, 8, 9, 10, 11, 12, 13, 14, 14a-dodecahydro-pyrimido [4ʹ, 5ʹ: 4, 5] pyrimido-[1, 6-a] azonine-1-one derivatives. Bull. Fac. Pharm. Cairo Univ., 1997, 35, 171-183.
[234]
Mohammed, K.O.; Nissan, Y.M. Synthesis, molecular docking, and biological evaluation of some novel hydrazones and pyrazole derivatives as anti-inflammatory agents. Chem. Biol. Drug Des., 2014, 84(4), 473-488.
[http://dx.doi.org/10.1111/cbdd.12336] [PMID: 24720475]
[235]
Ding, L.; Zhu, J.; Zheng, C.; Sheng, C.; Qi, J.; Liu, X.; Han, G.; Zhao, J.; Lv, J.; Zhou, Y. Synthesis and acrosin inhibitory activity of substituted 4-amino-N-(diaminomethylene) benzenesulfonamide derivatives. Bioorg. Med. Chem. Lett., 2011, 21(22), 6674-6677.
[http://dx.doi.org/10.1016/j.bmcl.2011.09.060] [PMID: 21983437]
[236]
Mountford, J. Pro-survival compounds. Patent DDD00033325 2016.
[237]
Chen, H.; Qi, X.D.; Qiu, P. A novel synthesis of aurones: Their in vitro anticancer activity against breast cancer cell lines and effect on cell cycle, apoptosis and mitochondrial membrane potential. Bangladesh J. Pharmacol., 2014, 9(4)
[http://dx.doi.org/10.3329/bjp.v9i4.20455]
[238]
Nadri, H.; Pirali-Hamedani, M.; Shekarchi, M.; Abdollahi, M.; Sheibani, V.; Amanlou, M.; Shafiee, A.; Foroumadi, A. Design, synthesis and anticholinesterase activity of a novel series of 1-benzyl-4-((6-alkoxy-3-oxobenzofuran-2(3H)-ylidene) methyl) pyridinium derivatives. Bioorg. Med. Chem., 2010, 18(17), 6360-6366.
[http://dx.doi.org/10.1016/j.bmc.2010.07.012] [PMID: 20673725]
[239]
Venkateswarlu, S.; Panchagnula, G.K.; Subbaraju, G.V. Synthesis and antioxidative activity of 3′,4′,6,7-tetrahydroxyaurone, a metabolite of Bidens frondosa. Biosci. Biotechnol. Biochem., 2004, 68(10), 2183-2185.
[http://dx.doi.org/10.1271/bbb.68.2183] [PMID: 15502366]
[240]
Dvornikovs, V.; Smithrud, D.B. Investigation of synthetic hosts that model cation-π sites found at protein binding domains. J. Org. Chem., 2002, 67(7), 2160-2167.
[http://dx.doi.org/10.1021/jo011124c] [PMID: 11925223]
[241]
Cha, J.S.; Kwon, S.S. Exceptionally facile reduction of carboxylic esters to aldehydes by lithium aluminum hydride in the presence of diethylamine. J. Org. Chem., 1987, 52(24), 5486-5487.
[http://dx.doi.org/10.1021/jo00233a041]
[242]
Koo, J. Studies in polyphosphoric acid cyclizations. J. Am. Chem. Soc., 1953, 75(8), 1891-1895.
[http://dx.doi.org/10.1021/ja01104a034]
[243]
Sheng, R.; Xu, Y.; Hu, C.; Zhang, J.; Lin, X.; Li, J.; Yang, B.; He, Q.; Hu, Y. Design, synthesis and AChE inhibitory activity of indanone and aurone derivatives. Eur. J. Med. Chem., 2009, 44(1), 7-17.
[http://dx.doi.org/10.1016/j.ejmech.2008.03.003] [PMID: 18436348]
[244]
Schmitt, J.; Handy, S.T. A golden opportunity: benzofuranone modifications of aurones and their influence on optical properties, toxicity, and potential as dyes. Beilstein J. Org. Chem., 2019, 15, 1781-1785.
[http://dx.doi.org/10.3762/bjoc.15.171] [PMID: 31435449]
[245]
Olleik, H.; Yahiaoui, S.; Roulier, B.; Courvoisier-Dezord, E.; Perrier, J.; Pérès, B.; Hijazi, A.; Baydoun, E.; Raymond, J.; Boumendjel, A.; Maresca, M.; Haudecoeur, R. Aurone derivatives as promising antibacterial agents against resistant Gram-positive pathogens. Eur. J. Med. Chem., 2019, 165, 133-141.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.022] [PMID: 30665143]
[246]
Wang, L.H.; Chen, X.J.; Ye, D.N.; Liu, H.; Chen, Y.; Zhong, A.G.; Li, C.Z.; Liu, S.Y. Pot- and atom-economic synthesis of oligomeric non-fullerene acceptors via C-H direct arylation. Polym. Chem., 2022, 13(16), 2351-2361.
[http://dx.doi.org/10.1039/D2PY00139J]
[247]
Muzychka, O.V.; Kobzar, O.L.; Popova, A.V.; Frasinyuk, M.S.; Vovk, A.I. Carboxylated aurone derivatives as potent inhibitors of xanthine oxidase. Bioorg. Med. Chem., 2017, 25(14), 3606-3613.
[http://dx.doi.org/10.1016/j.bmc.2017.04.048] [PMID: 28545814]
[248]
Rampa, A.; Bisi, A.; Valenti, P.; Recanatini, M.; Cavalli, A.; Andrisano, V.; Cavrini, V.; Fin, L.; Buriani, A.; Giusti, P. Acetylcholinesterase inhibitors: synthesis and structure-activity relationships of omega-[N-methyl-N-(3-alkylcarbamoyloxyphenyl)- methyl]aminoalkoxyheteroaryl derivatives. J. Med. Chem., 1998, 41(21), 3976-3986.
[http://dx.doi.org/10.1021/jm9810046] [PMID: 9767635]
[249]
Belluti, F.; Rampa, A.; Piazzi, L.; Bisi, A.; Gobbi, S.; Bartolini, M.; Andrisano, V.; Cavalli, A.; Recanatini, M.; Valenti, P. Cholinesterase inhibitors: xanthostigmine derivatives blocking the acetylcholinesterase-induced beta-amyloid aggregation. J. Med. Chem., 2005, 48(13), 4444-4456.
[http://dx.doi.org/10.1021/jm049515h] [PMID: 15974596]
[250]
Merie, C.M. Therapeutic Diphenyl Ether Ligands and Their Preparation, Pharmaceutical Compositions, and Use as Serotonin (5HT); Receptor Ligands for Treatment of Nervous System Disorders, Patent US20060058361A1, 2016.
[251]
Peter, T.; József, R.; Gábor, B.; Gyula, S. New Process for the Preparation of Racemic ([2s[2r*[r[r*]]]] and ([2r[2s*[s[s*]]]]-(±)- a,a0 -[iminobis(methylene)] bis[6-fluoro-chroman-2-methanol] and its Pure [2s[2r*[r[r*], Patent WO2004041805A1, 2004.
[252]
Zhang, N.; Ayral-Kaloustian, S.; Anderson, J.T.; Nguyen, T.; Das, S.; Venkatesan, A.M.; Brooijmans, N.; Lucas, J.; Yu, K.; Hollander, I.; Mallon, R. 5-Ureidobenzofuranone indoles as potent and efficacious inhibitors of PI3 kinase-α and mTOR for the treatment of breast cancer. Bioorg. Med. Chem. Lett., 2010, 20(12), 3526-3529.
[http://dx.doi.org/10.1016/j.bmcl.2010.04.139] [PMID: 20483602]
[253]
Luo, W.; Wang, T.; Hong, C.; Yang, Y.C.; Chen, Y.; Cen, J.; Xie, S.Q.; Wang, C.J. Design, synthesis and evaluation of 4-dimethylamine flavonoid derivatives as potential multifunctional anti-Alzheimer agents. Eur. J. Med. Chem., 2016, 122, 17-26.
[http://dx.doi.org/10.1016/j.ejmech.2016.06.022] [PMID: 27343850]
[254]
Wallez, V.; Durieux-Poissonnier, S.; Chavatte, P.; Boutin, J.A.; Audinot, V.; Nicolas, J.P.; Bennejean, C.; Delagrange, P.; Renard, P.; Lesieur, D. Synthesis and structure-affinity-activity relationships of novel benzofuran derivatives as MT(2) melatonin receptor selective ligands. J. Med. Chem., 2002, 45(13), 2788-2800.
[http://dx.doi.org/10.1021/jm0005252] [PMID: 12061881]
[255]
Wang, S.; Xu, L.; Lu, Y.T.; Liu, Y.F.; Han, B.; Liu, T.; Tang, J.; Li, J.; Wu, J.; Li, J.Y.; Yu, L.F.; Yang, F. Discovery of benzofuran-3(2 H )-one derivatives as novel DRAK2 inhibitors that protect islet β -cells from apoptosis. Eur. J. Med. Chem., 2017, 130, 195-208.
[http://dx.doi.org/10.1016/j.ejmech.2017.02.048] [PMID: 28249207]
[256]
Kodra, J.T.M. Novel glucagon antagonists., 2003.
[257]
Mansuri, M.M.M. Preparation of analogs of chromones as inhibitors of cyclin-dependent kinases. WO 9716447. Chem. Abstr., 1997, 50539.
[258]
Es, T.; Staskun, B. Inorg. Synth., 2003, 20-23.
[259]
Wolfe, J.P.; Buchwald, S.L. Improved functional group compatibility in the palladium-catalyzed amination of aryl bromides. Tetrahedron Lett., 1997, 38(36), 6359-6362.
[http://dx.doi.org/10.1016/S0040-4039(97)01463-9]
[260]
Zlatoidsky, P.; Maliar, T. Synthesis and structure-activity relationship study of the new set of trypsin-like proteinase inhibitors. Eur. J. Med. Chem., 1999, 34(12), 1023-1034.
[http://dx.doi.org/10.1016/S0223-5234(99)00123-3]
[261]
Pielichowski, J.; Popielarz, R. Trichloroethylene in organic synthesis: II. reaction of trichloroethylene with secondary amines. Tetrahedron, 1984, 40(14), 2671-2675.
[http://dx.doi.org/10.1016/S0040-4020(01)96884-X]
[262]
Patel, M.R.; Bhatt, A.; Steffen, J.D.; Chergui, A.; Murai, J.; Pommier, Y.; Pascal, J.M.; Trombetta, L.D.; Fronczek, F.R.; Talele, T.T. Discovery and structure-activity relationship of novel 2,3-dihydrobenzofuran-7-carboxamide and 2,3-dihydrobenzofuran-3(2H)-one-7-carboxamide derivatives as poly(ADP-ribose)polymerase-1 inhibitors. J. Med. Chem., 2014, 57(13), 5579-5601.
[http://dx.doi.org/10.1021/jm5002502] [PMID: 24922587]
[263]
Kadayat, T.M.; Banskota, S.; Gurung, P.; Bist, G.; Thapa Magar, T.B.; Shrestha, A.; Kim, J.A.; Lee, E.S. Discovery and structure-activity relationship studies of 2-benzylidene-2,3-dihydro-1H-inden-1-one and benzofuran-3(2H)-one derivatives as a novel class of potential therapeutics for inflammatory bowel disease. Eur. J. Med. Chem., 2017, 137, 575-597.
[http://dx.doi.org/10.1016/j.ejmech.2017.06.018] [PMID: 28646757]
[264]
Liu, Q.; Chang, J.W.; Wang, J.; Kang, S.A.; Thoreen, C.C.; Markhard, A.; Hur, W.; Zhang, J.; Sim, T.; Sabatini, D.M.; Gray, N.S. Discovery of 1-(4-(4-propionylpiperazin-1-yl)-3-(trifluoromethyl)phenyl)-9-(quinolin-3-yl)benzo[h][1,6]naphthyridin-2(1 H)-one as a highly potent, selective mammalian target of rapamycin (mTOR) inhibitor for the treatment of cancer. J. Med. Chem., 2010, 53(19), 7146-7155.
[http://dx.doi.org/10.1021/jm101144f] [PMID: 20860370]
[265]
Fitzmaurice, R.J.; Etheridge, Z.C.; Jumel, E.; Woolfson, D.N.; Caddick, S. Microwave enhanced palladium catalysed coupling reactions: A diversity-oriented synthesis approach to functionalised flavones. Chem. Commun. (Camb.), 2006, (46), 4814-4816.
[http://dx.doi.org/10.1039/b610734f] [PMID: 17345738]
[266]
Shin, S.Y.; Shin, M.C.; Shin, J.S.; Lee, K.T.; Lee, Y.S. Synthesis of aurones and their inhibitory effects on nitric oxide and PGE2 productions in LPS-induced RAW 264.7 cells. Bioorg. Med. Chem. Lett., 2011, 21(15), 4520-4523.
[http://dx.doi.org/10.1016/j.bmcl.2011.05.117] [PMID: 21723122]
[267]
Liew, K.F.; Chan, K.L.; Lee, C.Y. Blood-brain barrier permeable anticholinesterase aurones: Synthesis, structure-activity relationship, and drug-like properties. Eur. J. Med. Chem., 2015, 94, 195-210.
[http://dx.doi.org/10.1016/j.ejmech.2015.02.055] [PMID: 25768702]
[268]
Davies, J.S.H.; Deegan, T. 625. Furanochromones. Part III. The synthesis of 8-methoxy-2-methylfurano(3′ : 2′-6 : 7)chromone and its derivatives. J. Chem. Soc., 1950, 0(0), 3202-3206.
[http://dx.doi.org/10.1039/JR9500003202]
[269]
Binnemans, K.; Galyametdinov, Y.G.; Van Deun, R.; Bruce, D.W.; Collinson, S.R.; Polishchuk, A.P.; Bikchantaev, I.; Haase, W.; Prosvirin, A.V.; Tinchurina, L.; Litvinov, I.; Gubajdullin, A.; Rakhmatullin, A.; Uytterhoeven, K.; Van Meervelt, L. Rare-earth-containing magnetic liquid crystals. J. Am. Chem. Soc., 2000, 122(18), 4335-4344.
[http://dx.doi.org/10.1021/ja993351q]
[270]
Thomas, M.G.; Lawson, C.; Allanson, N.M.; Leslie, B.W.; Bottomley, J.R.; McBride, A.; Olusanya, O.A. A series of 2(Z)-2-Benzylidene-6,7-dihydroxybenzofuran-3[2H]-ones as inhibitors of chorismate synthase. Bioorg. Med. Chem. Lett., 2003, 13(3), 423-426.
[http://dx.doi.org/10.1016/S0960-894X(02)00957-5] [PMID: 12565943]
[271]
Venkateswarlu, S.; Murty, G.N.; Satyanarayana, M. “On water” synthesis of aurones: first synthesis of 4,5,3′,4′,5′-pentamethoxy-6-hydroxyaurone from Smilax riparia. ARKIVOC, 2017, 2017(4), 303-314.
[http://dx.doi.org/10.24820/ark.5550190.p009.918]
[272]
Shtro, A.A.; Zarubaev, V.V.; Luzina, O.A.; Sokolov, D.N.; Kiselev, O.I.; Salakhutdinov, N.F. Novel derivatives of usnic acid effectively inhibiting reproduction of influenza A virus. Bioorg. Med. Chem., 2014, 22(24), 6826-6836.
[http://dx.doi.org/10.1016/j.bmc.2014.10.033] [PMID: 25464881]
[273]
Luzina, O.A.; Sokolov, D.N.; Shernyukov, A.V.; Salakhutdinov, N.F. Synthesis of aurones based on usninic acid. Chem. Nat. Compd., 2012, 48(3), 385-391.
[http://dx.doi.org/10.1007/s10600-012-0258-5]
[274]
Protopopov, M.V.; Vdovin, V.S.; Starosyla, S.A.; Borysenko, I.P.; Prykhod’ko, A.O.; Lukashov, S.S.; Bilokin, Y.V.; Bdzhola, V.G.; Yarmoluk, S.M. Flavone inspired discovery of benzylidenebenzofuran-3(2H)-ones (aurones) as potent inhibitors of human protein kinase CK2. Bioorg. Chem., 2020, 102, 104062.
[http://dx.doi.org/10.1016/j.bioorg.2020.104062] [PMID: 32683178]
[275]
Taylor, K.M.; Taylor, Z.E.; Handy, S.T. Rapid synthesis of aurones under mild conditions using a combination of microwaves and deep eutectic solvents. Tetrahedron Lett., 2017, 58(3), 240-241.
[http://dx.doi.org/10.1016/j.tetlet.2016.12.015]
[276]
Khandelwal, S.; Tailor, Y.K.; Kumar, M. Deep eutectic solvents (DESs) as eco-friendly and sustainable solvent/catalyst systems in organic transformations. J. Mol. Liq., 2016, 215, 345-386.
[http://dx.doi.org/10.1016/j.molliq.2015.12.015]
[277]
Kumar, G.; Lathwal, E.; Saroha, B.; Kumar, S.; Kumar, S.; Chauhan, N.S.; Kumar, T. Synthesis and biological evaluation of quinoline‐based novel aurones. ChemistrySelect, 2020, 5(12), 3539-3543.
[http://dx.doi.org/10.1002/slct.201904912]
[278]
Kumar, S.; Lathwal, E.; Kumar, G.; Saroha, B.; Kumar, S.; Mahata, S.; Sahoo, P.K.; Nasare, V.D. Synthesis of pyrazole based novel aurone analogs and their cytotoxic activity against MCF-7 cell line. Chemical Data Collections, 2020, 30, 100559.
[http://dx.doi.org/10.1016/j.cdc.2020.100559]
[279]
Min, Y.; Guangxiang, L.; Chengyan, H.; Li, Z.; Xiaoquan, Y. One-pot synthesis of aurones through oxidation-cyclization tandem reaction catalyzed by copper nanoparticles catalyst. Lett. Org. Chem., 2018, 15(1), 70-77.
[280]
Ma, S.; Liu, J.; Xie, X. Aerobic oxidation of propargylic alcohols to α ,β-unsaturated alkynals or alkynones catalyzed by Fe(NO3)3·9H2O, TEMPO and sodium chloride in toluene. Synthesis, 2012, 44(10), 1569-1576.
[http://dx.doi.org/10.1055/s-0031-1290811]
[281]
Ma, S.; Liu, J.; Li, S.; Chen, B.; Cheng, J.; Kuang, J.; Liu, Y.; Wan, B.; Wang, Y.; Ye, J.; Yu, Q.; Yuan, W.; Yu, S. Development of a general and practical iron nitrate/TEMPO-catalyzed aerobic oxidation of alcohols to aldehydes/ketones: Catalysis with table salt. Adv. Synth. Catal., 2011, 353(6), 1005-1017.
[http://dx.doi.org/10.1002/adsc.201100033]
[282]
Li, S.; Jin, F.; Viji, M.; Jo, H.; Sim, J.; Kim, H.S.; Lee, H.; Jung, J.K. A novel cyclization/oxidation strategy for a two-step synthesis of (Z)-aurone. Tetrahedron Lett., 2017, 58(14), 1417-1420.
[http://dx.doi.org/10.1016/j.tetlet.2017.02.074] [PMID: 28479613]
[283]
Zhai, D.; Chen, L.; Jia, M.; Ma, S. One Pot Synthesis of γ-benzopyranones via iron-catalyzed aerobic oxidation and subsequent 4-dimethyl-aminopyridine catalyzed 6- endo cyclization. Adv. Synth. Catal., 2018, 360(1), 153-160.
[http://dx.doi.org/10.1002/adsc.201700993]
[284]
Lin, M.; Yu, M.; Han, C.; Li, C.J.; Yao, X. Water-promoted, silver-phosphine complex-catalyzed stereoselective cyclization of 2-(1-hydroxy-3-arylprop-2-ynyl)phenols leading to a highly efficient approach to aurones. Synth. Commun., 2011, 41(21), 3228-3236.
[http://dx.doi.org/10.1080/00397911.2010.517613]
[285]
Yu, M.; Lin, M.; Han, C.; Zhu, L.; Li, C.J.; Yao, X. Ligand-promoted reaction on silver nanoparticles: phosphine-promoted, silver nanoparticle catalyzed cyclization of 2-(1-hydroxy-3-arylprop-2-ynyl)phenols. Tetrahedron Lett., 2010, 51(51), 6722-6725.
[http://dx.doi.org/10.1016/j.tetlet.2010.10.065]
[286]
Alcaide, B.; Almendros, P.; Alonso, J.M. Gold-catalyzed cyclizations of alkynol-based compounds: synthesis of natural products and derivatives. Molecules, 2011, 16(9), 7815-7843.
[http://dx.doi.org/10.3390/molecules16097815] [PMID: 22143545]
[287]
Santín, E.P.; Khanwalkar, H.; Voegel, J.; Collette, P.; Mauvais, P.; Gronemeyer, H.; de Lera, Á.R. Highly potent naphthofuran-based retinoic acid receptor agonists. ChemMedChem, 2009, 4(5), 780-791.
[http://dx.doi.org/10.1002/cmdc.200900015] [PMID: 19350615]
[288]
Lorenzo, P.; Alvarez, R.; Ortiz, M.A.; Alvarez, S.; Piedrafita, F.J.; de Lera, Á.R. Inhibition of IkappaB kinase-β and anticancer activities of novel chalcone adamantyl arotinoids. J. Med. Chem., 2008, 51(17), 5431-5440.
[http://dx.doi.org/10.1021/jm800285f] [PMID: 18702457]
[289]
Singh, C.; Gupta, N.; Puri, S.K. Synthesis of new 6-alkylvinyl/arylalkylvinyl substituted 1,2,4-trioxanes active against multidrug-resistant malaria in mice. Bioorg. Med. Chem., 2004, 12(21), 5553-5562.
[http://dx.doi.org/10.1016/j.bmc.2004.08.005] [PMID: 15465332]
[290]
Charpentier, B.; Bernardon, J.M.; Eustache, J.; Millois, C.; Martin, B.; Michel, S.; Shroot, B. Synthesis, structure-affinity relationships, and biological activities of ligands binding to retinoic acid receptor subtypes. J. Med. Chem., 1995, 38(26), 4993-5006.
[http://dx.doi.org/10.1021/jm00026a006] [PMID: 8544175]
[291]
Lorenzo, P.; Ortiz, M.A.; Álvarez, R.; Piedrafita, F.J.; de Lera, Á.R. Adamantyl arotinoids that inhibit IκB kinase α and IκB kinase β. ChemMedChem, 2013, 8(7), 1184-1198.
[http://dx.doi.org/10.1002/cmdc.201300100] [PMID: 23653373]
[292]
An, Z.; Catellani, M.; Paolo Chiusoli, G. Palladium-catalyzed synthesis of aurone from salicyloyl chloride and phenylacetylene. J. Organomet. Chem., 1990, 397(3), 371-373.
[http://dx.doi.org/10.1016/0022-328X(90)85336-W]
[293]
Lin, C-F.; Lu, W-D.; Wang, I.W.; Wu, M-J. Synthesis of 2-(Diarylmethylene)-3-benzofuranones Promoted via Palladium-Catalyzed Reactions of Aryl iodides with 3-Aryl-1-(2- tert-butyldimethylsilyloxy)phenyl-2-propyn-1-ones. Synlett, 2003, 2003(13), 2057-2061.
[294]
Fujita, Y.; Yonehara, M.; Tetsuhashi, M.; Noguchi-Yachide, T.; Hashimoto, Y.; Ishikawa, M. β -Naphthoflavone analogs as potent and soluble aryl hydrocarbon receptor agonists: Improvement of solubility by disruption of molecular planarity. Bioorg. Med. Chem., 2010, 18(3), 1194-1203.
[http://dx.doi.org/10.1016/j.bmc.2009.12.036] [PMID: 20060304]
[295]
Saito, K.; Yoshida, M.; Doi, T. An efficient synthesis of aurone derivatives by the tributylphosphine-catalyzed regioselective cyclization of o -alkynoylphenols. Chem. Lett., 2015, 44(2), 141-143.
[http://dx.doi.org/10.1246/cl.140910]
[296]
Liu, C.; Zhang, Z.; Zhang, J.; Liu, X.; Xie, M. Regioselective synthesis of aurone derivatives via PBu3-catalyzed cyclization of 2-alkynoylphenols. Chin. J. Chem., 2014, 32(12), 1233-1237.
[http://dx.doi.org/10.1002/cjoc.201400597]
[297]
Sahoo, S.R.; Sarkar, D.; Henkel, F.; Reuter, H. Copper(I) catalyzed synthesis of selanyl methylene 4-chromanol and aurone derivatives. Org. Biomol. Chem., 2020, 18(24), 4619-4627.
[http://dx.doi.org/10.1039/D0OB00632G] [PMID: 32519714]
[298]
Kraus, G.; Wie, J.; Thite, A. Reactions of carbanions with 1,3-benzodioxin-4-ones: Facile routes to flavones, aurones, and acyl phloroglucinols. Synthesis, 2008, 2008(15), 2427-2431.
[http://dx.doi.org/10.1055/s-2008-1078597]
[299]
Garcia, H.; Iborra, S.; Primo, J.; Miranda, M.A. 6-Endo-Dig vs. 5-Exo-Dig ring closure in o-hydroxyaryl phenylethynyl ketones. A new approach to the synthesis of flavones and aurones. J. Org. Chem., 1986, 51(23), 4432-4436.
[http://dx.doi.org/10.1021/jo00373a016]
[300]
Kurzer, F.; Douraghi-Zadeh, K. Advances in the chemistry of carbodiimides. Chem. Rev., 1967, 67(2), 107-152.
[http://dx.doi.org/10.1021/cr60246a001] [PMID: 4859920]
[301]
Williams, A.; Ibrahim, I.T. Carbodiimide chemistry: Recent advances. Chem. Rev., 1981, 81(6), 589-636.
[http://dx.doi.org/10.1021/cr00046a004]
[302]
Haslam, E. Recent developments in methods for the esterification and protection of the carboxyl group. Tetrahedron, 1980, 36(17), 2409-2433.
[http://dx.doi.org/10.1016/0040-4020(80)80219-5]
[303]
Kerr, P.J.; Pyke, S.M.; Ward, A.D. Synthesis, and cyclization to aurones and flavones, of alkoxy-substituted aryl, arylalkynyl ketones. Aust. J. Chem., 2008, 61(5), 350.
[http://dx.doi.org/10.1071/CH07348]
[304]
Nakatani, K.; Okamoto, A.; Saito, I. 6-Endo- and 5-exo-digonal cyclizations of o-hydroxyphenyl ethynyl ketones: A key step for highly selective benzopyranone formation. Tetrahedron, 1996, 52(28), 9427-9446.
[http://dx.doi.org/10.1016/0040-4020(96)00480-2]
[305]
Nakatani, K.; Okamoto, A.; Yamanuki, M.; Saito, I. Highly efficient synthesis of 2-substituted 4h-chromen-4-ones by means of F--induced 6-endo-digonal cyclization of o-(silyloxy)phenyl ethynyl ketone derivatives. J. Org. Chem., 1994, 59(16), 4360-4361.
[http://dx.doi.org/10.1021/jo00095a003]
[306]
Álvarez-Corral, M.; Muñoz-Dorado, M.; Rodríguez-García, I. Silver-mediated synthesis of heterocycles. Chem. Rev., 2008, 108(8), 3174-3198.
[http://dx.doi.org/10.1021/cr078361l] [PMID: 18630971]
[307]
Jong, T.T.; Leu, S.J. Intramolecular cyclisation catalysed by silver(I) ion; a convenient synthesis of aurones. J. Chem. Soc., Perkin Trans. 1, 1990, (2), 423-424.
[http://dx.doi.org/10.1039/p19900000423]
[308]
Corey, E.J.; Cimprich, K.A. Highly enantioselective alkynylation of aldehydes promoted by chiral oxazaborolidines. J. Am. Chem. Soc., 1994, 116(7), 3151-3152.
[http://dx.doi.org/10.1021/ja00086a066]
[309]
Taylor, C.; Bolshan, Y. Metal-free methodology for the preparation of sterically hindered alkynoylphenols and its application to the synthesis of flavones and aurones. Tetrahedron Lett., 2015, 56(29), 4392-4396.
[http://dx.doi.org/10.1016/j.tetlet.2015.05.097]
[310]
Xu, S.; Sun, H.; Zhuang, M.; Zheng, S.; Jian, Y.; Zhang, W.; Gao, Z. Divergent synthesis of flavones and auronesvia base-controlled regioselective palladium catalyzed carbonylative cyclization. Molecular Catalysis, 2018, 452, 264-270.
[http://dx.doi.org/10.1016/j.mcat.2018.03.021]
[311]
Qi, X.; Li, R.; Wu, X.F. Selective palladium-catalyzed carbonylative synthesis of aurones with formic acid as the CO source. RSC Advances, 2016, 6(67), 62810-62813.
[http://dx.doi.org/10.1039/C6RA13615J]
[312]
Wang, Y.; Liu, J.; Xia, C. Cross-linked polymer supported palladium catalyzed carbonylative Sonogashira coupling reaction in water. Tetrahedron Lett., 2011, 52(14), 1587-1591.
[http://dx.doi.org/10.1016/j.tetlet.2011.01.095]
[313]
Friedlaender, P.; Neudörfer, J. Ueber das Ketocumaran und einige Condensationsproducte desselben. Ber. Dtsch. Chem. Ges., 1897, 30(1), 1077-1083.
[http://dx.doi.org/10.1002/cber.189703001206]
[314]
Adv. Res; Chapman and Hall: London, 1982.
[315]
Jackson, R.F.W.; Palmer, N.J.; Wythes, M.J. Stereoselective syntheses of protected D-threonine and L-allo-threonine. Tetrahedron Lett., 1994, 35(40), 7433-7434.
[http://dx.doi.org/10.1016/0040-4039(94)85334-7]
[316]
An, Z.; Catellani, M.; Chiusoli, G.P. Palladium-catalyzed synthesis of coumarin. J. Organomet. Chem., 1989, 371(3), C51-C52.
[http://dx.doi.org/10.1016/0022-328X(89)85241-6]
[317]
Catellani, M.; Chiusoli, G.P.; Fagnola, M.C.; Solari, G. A new palladium-catalyzed synthesis of 3,4-disubstituted coumarins from 3-alkenoates of ortho-iodophenol, phenylacetylene and carbon monoxide. Tetrahedron Lett., 1994, 35(32), 5923-5926.
[http://dx.doi.org/10.1016/S0040-4039(00)78220-7]
[318]
Ciattini, P.G.; Morera, E.; Ortar, G.; Rossi, S.S. Preparative and regiochemical aspects of the palladium-catalyzed carbonylative coupling of 2-hydroxyaryl lodides with ethynylarenes. Tetrahedron, 1991, 47(32), 6449-6456.
[http://dx.doi.org/10.1016/S0040-4020(01)86572-8]
[319]
Liu, J.; Liu, M.; Yue, Y.; Zhang, N.; Zhang, Y.; Zhuo, K. Construction of the flavones and aurones through regioselective carbonylative annulation of 2-bromophenols and terminal alkynes. Tetrahedron Lett., 2013, 54(14), 1802-1807.
[http://dx.doi.org/10.1016/j.tetlet.2013.01.043]
[320]
Yu, M.; Skouta, R.; Zhou, L.; Jiang, H.; Yao, X.; Li, C.J. Water-triggered, counter-anion-controlled, and silver-phosphines complex-catalyzed stereoselective cascade alkynylation/cyclization of terminal alkynes with salicylaldehydes. J. Org. Chem., 2009, 74(9), 3378-3383.
[http://dx.doi.org/10.1021/jo900079u] [PMID: 19344129]
[321]
Chang, M.Y.; Chen, H.Y.; Tsai, Y.L. Temperature-Controlled Desulfonylative Condensation of α-Sulfonyl o -Hydroxyacetophenones and 2-Formyl Azaarenes: Synthesis of azaaryl aurones and flavones. J. Org. Chem., 2019, 84(1), 326-337.
[http://dx.doi.org/10.1021/acs.joc.8b02857] [PMID: 30537830]
[322]
Takao, K.; U, S.; Kamauchi, H.; Sugita, Y. Design, synthesis and evaluation of 2-(indolylmethylidene)-2,3-dihydro-1-benzofuran-3-one and 2-(indolyl)-4H-chromen-4-one derivatives as novel monoamine oxidases inhibitors. Bioorg. Chem., 2019, 87, 594-600.
[http://dx.doi.org/10.1016/j.bioorg.2019.03.042] [PMID: 30933784]
[323]
Mahesh, A.R.; Murugan, V. Synthesis of 2-(bis(2-chloroethyl)amino)-N-(4-((3-oxobenzofuran2(3H)-ylidene)methyl)phenyl)acetamide derivatives on basis of benzaldehydes and acetophenones as possible alkylating anticancer agents. Am. J. PharmTech Res., 2020, 10(3), 125-134.
[324]
Iwamoto, H. Photoinduced reductive addition reactions of 2-alkenoyl-1,4-benzoquinones with alcohols. J. Org. Chem., 1988, 53(7), 1507-1515.
[http://dx.doi.org/10.1021/jo00242a031]
[325]
Moriarty, R.M.; Prakash, O.; Prakash, I.; Musallam, H.A. Intramolecular participation in hypervalent iodine oxidation. The synthesis of coumaran-3-ones, aurone, and isoaurone. J. Chem. Soc. Chem. Commun., 1984, (20), 1342-1343.
[http://dx.doi.org/10.1039/c39840001342]
[326]
Popova, A.V.; Bondarenko, S.P.; Vinogradova, V.I.; Frasinyuk, M.S. Synthesis of anabasine-containing aminomethyl derivatives of 6-hydroxyaurones. Chem. Heterocycl. Compd., 2019, 55(3), 212-216.
[http://dx.doi.org/10.1007/s10593-019-02444-2]
[327]
Popova, A.V.; Bondarenko, S.P.; Podobii, E.V.; Frasinyuk, M.S.; Vinogradova, V.I. Synthesis of flavonoid derivatives of cytisine. 5. aminomethylation of 6-hydroxyaurones. Chem. Nat. Compd., 2017, 53(4), 708-713.
[http://dx.doi.org/10.1007/s10600-017-2096-y]
[328]
Liu, Z.; Robinson, J.T.; Sun, X.; Dai, H. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J. Am. Chem. Soc., 2008, 130(33), 10876-10877.
[http://dx.doi.org/10.1021/ja803688x] [PMID: 18661992]
[329]
Xu, Y.; Yang, Q.; Cao, D.; Liu, Z.; Zhao, S.; Guan, R.; Wang, Y.; Wu, Q.; Yu, X. A novel silicon-oxygen aurone derivative assisted by graphene oxide as fluorescence chemosensor for fluoride anions. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2017, 182, 37-41.
[http://dx.doi.org/10.1016/j.saa.2017.03.073] [PMID: 28391072]
[330]
Xu, Y.; Wang, Y.; Zhao, S.; Guan, R.; Cao, D.; Wu, Q.; Yu, X.; Sun, Y. A novel fluorescence chemodosimeter for fluoride anions in aqueous solution based on siloxane-aurone moiety. Inorg. Chem. Commun., 2017, 78, 52-55.
[http://dx.doi.org/10.1016/j.inoche.2017.03.003]
[331]
Kharchenko, O.; Smokal, V.; Krupka, O. Synthesis of monomers based on 6-hydroxyaurone and investigation its photochemical properties. Ukrainian Chemistry Journal, 2020, 86(4), 118-125.
[http://dx.doi.org/10.33609/2708-129X.86.4.2020.118-125]
[332]
Waszkowska, K.; Krupka, O.; Kharchenko, O.; Figà, V.; Smokal, V.; Kutsevol, N.; Sahraoui, B. Influence of ZnO nanoparticles on nonlinear optical properties. Appl. Nanosci., 2020, 10(12), 4977-4982.
[http://dx.doi.org/10.1007/s13204-020-01373-3]
[333]
Popova, A.V.; Mrug, G.P.; Kondratyuk, K.M.; Bondarenko, S.P.; Frasinyuk, M.S. New heterocyclic pyrano[2′,3′:5,6]chromeno[3,2-c]pyridin-4-ones and furo[2′,3′:5,6]chromeno[3,2-c]pyridin-3(2H)-ones synthesized via a hetero-diels-alder reaction. chem. Nat. Compd., 2016, 52(6), 1000-1004.
[http://dx.doi.org/10.1007/s10600-016-1846-6]
[334]
Yao, W.; He, L.; Han, D.; Zhong, A. Sodium triethylborohydride-catalyzed controlled reduction of unactivated amides to secondary or tertiary amines. J. Org. Chem., 2019, 84(22), 14627-14635.
[http://dx.doi.org/10.1021/acs.joc.9b02211] [PMID: 31663738]
[335]
Yao, W.; Wang, J.; Zhong, A.; Wang, S.; Shao, Y. Transition-metal-free catalytic hydroboration reduction of amides to amines. Org. Chem. Front., 2020, 7(21), 3515-3520.
[http://dx.doi.org/10.1039/D0QO01092H]
[336]
Popova, A.V.; Bondarenko, S.P.; Frasinyuk, M.S. Synthesis and properties of 2-benzylidene-8,9-dihydro-7H-furo[2,3-f][1,3]benzoxazin-3(2H)-one derivatives. Chem. Heterocycl. Compd., 2016, 52(8), 592-600.
[http://dx.doi.org/10.1007/s10593-016-1937-0]
[337]
Hastings, J.S.; Heller, H.G. The stereochemistry of aurones. [2-substituted benzylidenebenzofuran-3(2H)-ones] J. Chem. Soc., Perkin Trans. 1, 1972, (0), 2128-2132.
[http://dx.doi.org/10.1039/p19720002128]
[338]
Levai, A. Synthesis of exocyclic α,β-unsaturated ketones. ChemInform, 2004, 35(46), 15-33.
[http://dx.doi.org/10.1002/chin.200446276]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy