Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Restraint of Starch-hydrolyzing Enzyme in the Management of Postprandial Blood Glucose Level: An Alternative Approach

Author(s): Deedarul Hyder Sani, Parth Sarker and Md. Jahangir Alam*

Volume 21, Issue 10, 2024

Published on: 12 May, 2023

Page: [1784 - 1792] Pages: 9

DOI: 10.2174/1570180820666230417083840

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Diabetes is a multifaceted metabolic condition defined by postprandial hyperglycemia with perturbances in the majority of the metabolic systems in the human body. α-amylase is a key enzyme present in pancreatic juice and saliva that converts one of the common food sources i.e., starch molecules into absorbable molecules and raises plasma glucose levels. Reducing starch digestion by the inhibitors of starch hydrolyzing enzymes could be an intriguing strategy for improved postprandial hyperglycemia management.

Objective: The present research work was undertaken to evaluate the inhibition potential of natural inhibitors of α-amylase from Trichosanthes dioica (pointed gourd) and Moringa oleifera (moringa leaves) extracts in vitro. Furthermore, in vivo cytotoxicity assessment was also conducted through brine shrimp lethality bioassay.

Methods: Different organic solvents (namely acetone, ethanol, and methanol) were used to isolate plant extracts. DNS (3,5-dinitrosalicylic acid) was used to conduct the α-amylase inhibition assay. The safety of the natural inhibitors was determined by the most common technique i.e, brine shrimp lethality bioassay.

Results: Among all the different organic solvent extracts, pointed gourd and its peel exhibited the highest α-amylase inhibition activity (64.03 ± 7.33–69.40 ± 9.38%) which is very close to standard α-amylase inhibitor acarbose (72.34 ± 4.23%) whereas moringa leaves showed moderate inhibition activities (59.10 ± 5.25–62.03 ± 1.77%). The cytotoxicity of pointed gourd and its peel was higher while moringa leaves demonstrated lower toxicity.

Conclusion: Considering the inhibition rate and cytotoxicity, pointed gourd ethanol extract (Inhibition: 67.43 ± 11.80%; Cytotoxicity: 209.98 μg/mL) would be the best candidate for managing postprandial hyperglycemia.

Keywords: Diabetes mellitus, α-amylase, toxicology, acarbose, brine shrimp lethality bioassay, Trichosanthes dioica, Moringa oleifera.

Graphical Abstract
[1]
Chauhan, A.; Sharma, P.K.; Srivastava, P.; Kumar, N.; Dudhe, R. Plants having potential antidiabetic activity: A review. Pharm. Lett., 2010, 2(3), 369-387.
[2]
Burke, J.P.; Williams, K.; Narayan, K.M.V.; Leibson, C.; Haffner, S.M.; Stern, M.P. A population perspective on diabetes prevention: Whom should we target for preventing weight gain? Diabetes Care, 2003, 26(7), 1999-2004.
[http://dx.doi.org/10.2337/diacare.26.7.1999] [PMID: 12832302]
[3]
Meenakshi, P.; Bhuvaneshwari, R.; Rathi, M.A.; Thirumoorthi, L.; Guravaiah, D.C.; Jiji, M.J.; Gopalakrishnan, V.K. Antidiabetic activity of ethanolic extract of Zaleya decandra in alloxan-induced diabetic rats. Appl. Biochem. Biotechnol., 2010, 162(4), 1153-1159.
[http://dx.doi.org/10.1007/s12010-009-8871-x] [PMID: 19957208]
[4]
Ozougwu, O.; Obimba, K.C.; Belonwu, C.D.; Unakalamba, C.B. The pathogenesis and pathophysiology of type 1 and type 2 diabetes mellitus. J. Physiol. Pathophysiol., 2013, 4(4), 46-57.
[http://dx.doi.org/10.5897/JPAP2013.0001]
[5]
Huang, T.; Peng, G.; Kota, B.; Li, G.; Yamahara, J.; Roufogalis, B.; Li, Y. Anti-diabetic action of flower extract: Activation of PPAR-γ and identification of an active component. Toxicol. Appl. Pharmacol., 2005, 207(2), 160-169.
[http://dx.doi.org/10.1016/j.taap.2004.12.009] [PMID: 16102567]
[6]
Cooke, D.W.; Plotnick, L. Type 1 diabetes mellitus in pediatrics. Pediatr. Rev., 2008, 29(11), 374-385.
[http://dx.doi.org/10.1542/pir.29.11.374] [PMID: 18977856]
[7]
Malviya, N.; Jain, S.; Malviya, S. Antidiabetic potential of medicinal plants. Acta Pol. Pharm., 2010, 67(2), 113-118.
[PMID: 20369787]
[8]
Klil-Drori, A.J.; Azoulay, L.; Pollak, M.N. Cancer, obesity, diabetes, and antidiabetic drugs: Is the fog clearing? Nat. Rev. Clin. Oncol., 2017, 14(2), 85-99.
[http://dx.doi.org/10.1038/nrclinonc.2016.120] [PMID: 27502359]
[9]
Mamun-or-Rashid, A. N. M.; Hossain, M.S.; Hassan, N.; Dash, B.K.; Sapon, M.A.; Sen, M.K. A review on medicinal plants with antidiabetic activity. J. Pharmacogn. Phytochem., 2014, 3(4), 149-159.
[10]
Jung, M.; Park, M.; Lee, H.; Kang, Y.H.; Kang, E.; Kim, S. Antidiabetic agents from medicinal plants. Curr. Med. Chem., 2006, 13(10), 1203-1218.
[http://dx.doi.org/10.2174/092986706776360860] [PMID: 16719780]
[11]
Rajalakshmi, M.; Eliza, J.; Priya, C.E.; Nirmala, A.; Daisy, P. Anti-diabetic properties of Tinospora cordifolia stem extracts on streptozotocin-induced diabetic rats. Afr. J. Pharm. Pharmacol., 2009, 3(5), 171-180.
[12]
Etxeberria, U.; de la Garza, A.L.; Campión, J.; Martínez, J.A.; Milagro, F.I. Antidiabetic effects of natural plant extracts via inhibition of carbohydrate hydrolysis enzymes with emphasis on pancreatic alpha amylase. Expert Opin. Ther. Targets, 2012, 16(3), 269-297.
[http://dx.doi.org/10.1517/14728222.2012.664134] [PMID: 22360606]
[13]
Inzucchi, S.E.; Bergenstal, R.M.; Buse, J.B.; Diamant, M.; Ferrannini, E.; Nauck, M.; Peters, A.L.; Tsapas, A.; Wender, R.; Matthews, D.R. Management of hyperglycemia in type 2 diabetes: A patient-centered approach: Position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care, 2012, 35(6), 1364-1379.
[http://dx.doi.org/10.2337/dc12-0413] [PMID: 22517736]
[14]
Eliasson, A.C.; Gudmundsson, M. Starch: Physicochemical and functional aspects; Food Sci; Technol. York-Marcel Dekker, 1996, pp. 431-504.
[15]
Uddin, N.; Hasan, M.R.; Hossain, M.M.; Sarker, A.; Hasan, A.H.M.N.; Islam, A.F.M.M.; Chowdhury, M.M.H.; Rana, M.S. In vitro α–amylase inhibitory activity and in vivo hypoglycemic effect of methanol extract of Citrus macroptera Montr. fruit. Asian Pac. J. Trop. Biomed., 2014, 4(6), 473-479.
[http://dx.doi.org/10.12980/APJTB.4.2014C1173] [PMID: 25182949]
[16]
Bhutkar, M.A.; Bhise, S.B. In vitro assay of alpha amylase inhibitory activity of some indigenous plants. Int. J. Chem. Sci., 2012, 10(1), 457-462.
[17]
Preethi, R.; Devanathan, V.V.; Loganathan, M. Antimicrobial and antioxidant efficacy of some medicinal plants against food borne pathogens. Adv. Biol. Res., 2010, 4(2), 122-125.
[18]
Guariguata, L.; Whiting, D.R.; Hambleton, I.; Beagley, J.; Linnenkamp, U.; Shaw, J.E. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res. Clin. Pract., 2014, 103(2), 137-149.
[http://dx.doi.org/10.1016/j.diabres.2013.11.002] [PMID: 24630390]
[19]
Liu, J.P.; Zhang, M.; Wang, W.; Grimsgaard, S. Chinese herbal medicines for type 2 diabetes mellitus. Cochrane Libr., 2002, 2009(1)CD003642
[http://dx.doi.org/10.1002/14651858.CD003642.pub2] [PMID: 15266492]
[20]
Vuksan, V.; Sievenpiper, J.L. Herbal remedies in the management of diabetes: Lessons learned from the study of ginseng. Nutr. Metab. Cardiovasc. Dis., 2005, 15(3), 149-160.
[http://dx.doi.org/10.1016/j.numecd.2005.05.001] [PMID: 15955462]
[21]
Johnson, L.; Strich, H.; Taylor, A.; Timmermann, B.; Malone, D.; Teufel-Shone, N.; Drummond, R.; Woosley, R.; Pereira, E.; Martinez, A. Use of herbal remedies by diabetic Hispanic women in the southwestern United States. Phytother. Res., 2006, 20(4), 250-255.
[http://dx.doi.org/10.1002/ptr.1820] [PMID: 16557605]
[22]
Gadano, A.B.; Gurni, A.A.; Carballo, M.A. Argentine folk medicine: Genotoxic effects of Chenopodiaceae family. J. Ethnopharmacol., 2006, 103(2), 246-251.
[http://dx.doi.org/10.1016/j.jep.2005.08.043] [PMID: 16219440]
[23]
Verschaeve, L.; Kestens, V.; Taylor, J.L.S.; Elgorashi, E.E.; Maes, A.; Van Puyvelde, L.; De Kimpe, N.; Van Staden, J. Investigation of the antimutagenic effects of selected South African medicinal plant extracts. Toxicol. In Vitro, 2004, 18(1), 29-35.
[http://dx.doi.org/10.1016/S0887-2333(03)00131-0] [PMID: 14630059]
[24]
Simaan, J.A. Herbal medicine, what physicians need to know. J. Med. Liban., 2009, 57(4), 215-217.
[PMID: 20027796]
[25]
a) Meyer, B.; Ferrigni, N.; Putnam, J.; Jacobsen, L.; Nichols, D.; McLaughlin, J. Brine shrimp: A convenient general bioassay for active plant constituents. Planta Med., 1982, 45(5), 31-34.
[http://dx.doi.org/10.1055/s-2007-971236];
(b) A. S., Michael; C. G., Thompson; and M., Abramovitz "Artemia salina as a test organism for bioassay". Science (80-. ), vol. 123, no. 3194, p. 464, 1956.
[26]
Kritikara, K.R.; Basu, B.D. Indian Medicinal Plants; Int. B. Distrib, 1918, pp. 1038-1063.
[http://dx.doi.org/10.5962/bhl.title.137025]
[27]
Shah, B.N.; Seth, A.K. Pharmacological potential of Trichosanthes dioica-an edible plant. Rev. Hygenia, 2010, 2, 1-7.
[28]
Fahey, J.W. Moringa oleifera: A review of the medical evidence for its nutritional, therapeutic, and prophylactic properties. Part 1. Trees Life J., 2005, 1(5), 1-15.
[29]
Hsu, R.; Midcap, S.; Arbainsyah, D.W.L. Moringa oleifera medicinal and Economic uses, Int. course Econ; Bot; Natl. Herb: Leiden, Netherlands, 2006.
[30]
Kasolo, J.N.; Bimenya, G.S.; Ojok, L.; Ochieng, J.; Ogwal-Okeng, J.W. Phytochemicals and uses of Moringa oleifera leaves in Ugandan rural communities. J. Med. Plants Res., 2010, 4(9), 753-757.
[31]
Paliwal, R.; Sharma, V.; Sharma, S. Elucidation of free radical scavenging and antioxidant activity of aqueous and hydro-ethanolic extracts of Moringa oleifera pods. Res. J. Pharm. Technol., 2011, 4(4), 566-571.
[32]
Sharma, V.; Paliwal, R.; Janmeda, P.; Sharma, S. Chemopreventive efficacy of Moringa oleifera pods against 7, 12-dimethylbenz[a]anthracene induced hepatic carcinogenesis in mice. Asian Pac. J. Cancer Prev., 2012, 13(6), 2563-2569.
[http://dx.doi.org/10.7314/APJCP.2012.13.6.2563] [PMID: 22938421]
[33]
Lai, T.Y.; Weng, Y.J.; Kuo, W.W.; Chen, L.M.; Chung, Y.T.; Lin, Y.M.; Tsai, F.J.; Lee, C.H.; Choong, Y.M.; Lai, E.Y.; Huang, C.Y.; Yeh, Y.L. Taohe Chengqi Tang ameliorates acute liver injury induced by carbon tetrachloride in rats. J. Chin. Integr. Med., 2010, 8(1), 49-55.
[http://dx.doi.org/10.3736/jcim20100110] [PMID: 20082759]
[34]
Huang, G.J.; Deng, J.S.; Huang, S.S.; Shao, Y.Y.; Chen, C.C.; Kuo, Y.H. Protective effect of antrosterol from Antrodia camphorata submerged whole broth against carbon tetrachloride-induced acute liver injury in mice. Food Chem., 2012, 132(2), 709-716.
[http://dx.doi.org/10.1016/j.foodchem.2011.11.004]
[35]
Rai, P.K.; Jaiswal, D.; Singh, R.K.; Gupta, R.K.; Watal, G. Glycemic properties of Trichosanthes dioica leaves. Pharm. Biol., 2008, 46(12), 894-899.
[http://dx.doi.org/10.1080/13880200802370167]
[36]
Divi, S.M.; Bellamkonda, R.; Dasireddy, S.K. Evaluation of antidiabetic and antihyperlipedemic potential of aqueous extract of Moringa oleifera in fructose fed insulin resistant and STZ induced diabetic wistar rats: A comparative study. Asian J. Pharm. Clin. Res., 2012, 5(1), 67-72.
[37]
Zhou, L.; Yang, L.; Tilton, S.; Wang, J. Development of a high throughput equilibrium solubility assay using miniaturized shake‐flask method in early drug discovery. J. Pharm. Sci., 2007, 96(11), 3052-3071.
[http://dx.doi.org/10.1002/jps.20913] [PMID: 17722003]
[38]
Sani, D.H.; Munna, A.N.; Alam, M.J.; Salim, M.; Alam, M.J. Evaluation of α-amylase inhibition and cytotoxic activities of the Arachis hypogaea and Cinnamomum tamala. Curr. Nutr. Food Sci., 2021, 17(3), 328-336.
[http://dx.doi.org/10.2174/1573401316999200728183434]
[39]
Apostolidis, E.; Lee, C.M. In vitro potential of Ascophyllum nodosum phenolic antioxidant-mediated α-glucosidase and α-amylase inhibition. J. Food Sci., 2010, 75(3), H97-H102.
[http://dx.doi.org/10.1111/j.1750-3841.2010.01544.x] [PMID: 20492300]
[40]
Gopa, P.; Ragunath, C.; Vyas, V.; Shanmugam, M.; Ramasubbu, N. Pub: Probing the interaction of human salivary alpha-amylase and amylase binding Protein A (ABPA) of streptococcus gordonii. Mol. Biol., 2013, 10, 2168-9547.
[41]
J.B., Harborne Phytochemical Methods: A Guide to Modern Techniques of Plant Analysis, 2nd ed; Chapman and Hall: New York, 1973.
[42]
Thouri, A.; Chahdoura, H.; El Arem, A.; Omri Hichri, A.; Ben Hassin, R.; Achour, L. Effect of solvents extraction on phytochemical components and biological activities of Tunisian date seeds (var. Korkobbi and Arechti). BMC Complement. Altern. Med., 2017, 17(1), 248.
[http://dx.doi.org/10.1186/s12906-017-1751-y] [PMID: 28472941]
[43]
Sales, P.M.; Souza, P.M.; Simeoni, L.A.; Magalhães, P.O.; Silveira, D. α-Amylase inhibitors: A review of raw material and isolated compounds from plant source. J. Pharm. Pharm. Sci., 2012, 15(1), 141-183.
[http://dx.doi.org/10.18433/J35S3K] [PMID: 22365095]
[44]
Brahmachari, G. Bio-flavonoids with promising antidiabetic potentials: A critical survey. Res. signpost, 2011, 661(2), 187-212.
[45]
Tundis, R.; Loizzo, M.R.; Menichini, F. Natural products as α-amylase and α-glucosidase inhibitors and their hypoglycaemic potential in the treatment of diabetes: An update. Mini Rev. Med. Chem., 2010, 10(4), 315-331.
[http://dx.doi.org/10.2174/138955710791331007] [PMID: 20470247]
[46]
Sharmila, B.G.; Kumar, G.; Rajasekara, P.M. Cholesterol lowering activity of the aqueous fruit extract of Trichosanthes dioica Roxb. in normal and streptozotocin diabetic rats. J. Clin. Diagn. Res., 2007, 1(6), 561-569.
[47]
Cazarolli, L.; Zanatta, L.; Alberton, E.; Bonorino Figueiredo, M.S.; Folador, P.; Damazio, R.; Pizzolatti, M.; Barreto Silva, F.R. Flavonoids: Prospective drug candidates. Mini Rev. Med. Chem., 2008, 8(13), 1429-1440.
[http://dx.doi.org/10.2174/138955708786369564] [PMID: 18991758]
[48]
Kim, J.S.; Kwon, C.S.; Son, K.H. Inhibition of alpha-glucosidase and amylase by luteolin, a flavonoid. Biosci. Biotechnol. Biochem., 2000, 64(11), 2458-2461.
[http://dx.doi.org/10.1271/bbb.64.2458] [PMID: 11193416]
[49]
P.K., Rai; S. K., Gupta; A. K., Srivastava; R. K., Gupta; G., Watal A scientific validation of antihyperglycemic and antihyperlipidemic attributes of Trichosanthes dioica. Int. Sch. Res. Notices, 2013, (2)473059
[50]
K., Ruttarattanamongkol ; A., Petrasch Antimicrobial activities of Moringa oleifera seed and seed oil residue and oxidative stability of its cold pressed oil compared with extra virgin olive oil. Songklanakarin J. Sci. Technol., 2015, 37(5), 587-594.
[51]
Basuny, A.M.; Al-Marzouq, M.A. Biochemical studies on Moringa oleifera seed oil. MOJ Food Process.Technol., 2016, 2(2), 40-46.
[http://dx.doi.org/10.15406/mojfpt.2016.02.00030]
[52]
K., Raafat; and F., Hdaib Neuroprotective effects of Moringa oleifera: Bio-guided GC-MS identification of active compounds in diabetic neuropathic pain model. Chin. J. Integr. Med., 2017, pp. 1-10.
[http://dx.doi.org/10.1007/s11655-017-2758-4] [PMID: 29234979]
[53]
Siddhuraju, P.; Becker, K. Antioxidant properties of various solvent extracts of total phenolic constituents from three different agroclimatic origins of drumstick tree (Moringa oleifera Lam.) leaves. J. Agric. Food Chem., 2003, 51(8), 2144-2155.
[http://dx.doi.org/10.1021/jf020444+] [PMID: 12670148]
[54]
Tan, W.S.; Arulselvan, P.; Karthivashan, G.; Fakurazi, S.; Moringa, W.S. Tan, P. Arulselvan, G. Karthivashan, and S. Fakurazi, Moringa oleifera flower extract suppresses the activation of inflammatory mediators in lipopolysaccharide-stimulated RAW 264.7 macrophages via NF-κB pathway. Mediators Inflamm., 2015.720171
[55]
Abiodun, O.A.; Adegbite, J.A.; Omolola, A.O. Chemical and physicochemical properties of Moringa flours and oil. Glob. J. Sci. Front. Res. Biol. Sci., 2012, 12(5), 1-7.
[56]
Ijarotimi, O.S.; Adeoti, O.A.; Ariyo, O. Comparative study on nutrient composition, phytochemical, and functional characteristics of raw, germinated, and fermented Moringa oleifera seed flour. Food Sci. Nutr., 2013, 1(6), 452-463.
[http://dx.doi.org/10.1002/fsn3.70] [PMID: 24804056]
[57]
Aja, P.M.; Nwachukwu, N.; Ibiam, U.A.; Igwenyi, I.O.; Offor, C.E.; Orji, U.O. Chemical constituents of Moringa oleifera leaves and seeds from Abakaliki, Nigeria. Am. J. Phytomed. Clin. Ther., 2014, 2(3), 310-321.
[58]
Rohn, S.; Rawel, H.M.; Kroll, J. Inhibitory effects of plant phenols on the activity of selected enzymes. J. Agric. Food Chem., 2002, 50(12), 3566-3571.
[http://dx.doi.org/10.1021/jf011714b] [PMID: 12033830]
[59]
Bhattacharya, S.; Haldar, P. Evaluation of in vitro cytotoxic effect of Trichosanthes dioica root. Pharmacognosy Res., 2010, 2(6), 355-358.
[http://dx.doi.org/10.4103/0974-8490.75454] [PMID: 21713138]
[60]
Harborne, J.B.; Williams, C.A. Advances in flavonoid research since 1992. Phytochemistry, 2000, 55(6), 481-504.
[http://dx.doi.org/10.1016/S0031-9422(00)00235-1] [PMID: 11130659]
[61]
Lee, E.R.; Kang, G.H.; Cho, S.G. Effect of flavonoids on human health: Old subjects but new challenges. Recent Pat. Biotechnol., 2007, 1(2), 139-150.
[http://dx.doi.org/10.2174/187220807780809445] [PMID: 19075837]

© 2024 Bentham Science Publishers | Privacy Policy