Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Advancing Tissue Factor-targeted Therapy for Osteosarcoma via Understanding its Role in the Tumor Microenvironment

Author(s): Jiro Ichikawa*, Jonathan G. Schoenecker, Rikito Tatsuno, Tomonori Kawasaki, Katsue Suzuki-Inoue and Hirotaka Haro

Volume 29, Issue 13, 2023

Published on: 27 April, 2023

Page: [1009 - 1012] Pages: 4

DOI: 10.2174/1381612829666230413094242

Price: $65

Open Access Journals Promotions 2
Abstract

Coagulation activation is associated with cancer progression and morbidity. Recently, mechanisms through which coagulation proteases drive the tumor microenvironment (TME) have been elucidated. This review aims to develop a new strategy dependent on the coagulation system for treating osteosarcoma (OS). We focused on tissue factor (TF), the main initiator of the extrinsic coagulant pathway, as a target for OS treatment. It was found that cell surface-TF, TF-positive extracellular vesicles, and TF-positive circulating tumor cells could drive progression, metastasis, and TME in carcinomas, including OS. Thus, targeting tumor-associated coagulation by focusing on TF, the principle catalyst of the extrinsic pathway, TF is a promising target for OS.

Keywords: Osteosarcoma, tissue factor, tumor microenvironment, chemotherapy, antibody-drug-conjugate, heparin, low molecular weight heparin.

[1]
Yu L, Zhang J, Li Y. Effects of microenvironment in osteosarcoma on chemoresistance and the promise of immunotherapy as an osteosarcoma therapeutic modality. Front Immunol 2022; 13: 871076.
[http://dx.doi.org/10.3389/fimmu.2022.871076] [PMID: 36311748]
[2]
Mirabello L, Troisi RJ, Savage SA. Osteosarcoma incidence and survival rates from 1973 to 2004. Cancer 2009; 115(7): 1531-43.
[http://dx.doi.org/10.1002/cncr.24121] [PMID: 19197972]
[3]
Whelan JS, Davis LE. Osteosarcoma, chondrosarcoma, and chordoma. J Clin Oncol 2018; 36(2): 188-93.
[http://dx.doi.org/10.1200/JCO.2017.75.1743] [PMID: 29220289]
[4]
Ichikawa J, Ando T, Kawasaki T, et al. Role of platelet C-type lectin-like receptor 2 in promoting lung metastasis in osteosarcoma. J Bone Miner Res 2020; 35(9): 1738-50.
[http://dx.doi.org/10.1002/jbmr.4045] [PMID: 32479683]
[5]
Ando T, Ichikawa J, Fujimaki T, Taniguchi N, Takayama Y, Haro H. Gemcitabine and rapamycin exhibit additive effect against osteosarcoma by targeting autophagy and apoptosis. Cancers 2020; 12(11): 3097.
[http://dx.doi.org/10.3390/cancers12113097] [PMID: 33114161]
[6]
Ichikawa J, Cole HA, Magnussen RA, et al. Thrombin induces osteosarcoma growth, a function inhibited by low molecular weight heparin in vitro and in vivo. Cancer 2012; 118(9): 2494-506.
[http://dx.doi.org/10.1002/cncr.26518] [PMID: 21953059]
[7]
Wu T, Dai Y. Tumor microenvironment and therapeutic response. Cancer Lett 2017; 387: 61-8.
[http://dx.doi.org/10.1016/j.canlet.2016.01.043] [PMID: 26845449]
[8]
Deyell M, Garris CS, Laughney AM. Cancer metastasis as a non-healing wound. Br J Cancer 2021; 124(9): 1491-502.
[http://dx.doi.org/10.1038/s41416-021-01309-w] [PMID: 33731858]
[9]
Baker CE, Moore-Lotridge SN, Hysong AA, et al. Bone fracture acute phase response-a unifying theory of fracture repair: Clinical and scientific implications. Clin Rev Bone Miner Metab 2018; 16(4): 142-58.
[http://dx.doi.org/10.1007/s12018-018-9256-x] [PMID: 30930699]
[10]
Luyendyk JP, Schoenecker JG, Flick MJ. The multifaceted role of fibrinogen in tissue injury and inflammation. Blood 2019; 133(6): 511-20.
[http://dx.doi.org/10.1182/blood-2018-07-818211] [PMID: 30523120]
[11]
Galmiche A, Rak J, Roumenina LT, Saidak Z. Coagulome and the tumor microenvironment: An actionable interplay. Trends Cancer 2022; 8(5): 369-83.
[http://dx.doi.org/10.1016/j.trecan.2021.12.008] [PMID: 35027336]
[12]
Farge D, Frere C, Connors JM, et al. 2019 international clinical practice guidelines for the treatment and prophylaxis of venous thromboembolism in patients with cancer. Lancet Oncol 2019; 20(10): e566-81.
[http://dx.doi.org/10.1016/S1470-2045(19)30336-5] [PMID: 31492632]
[13]
Unruh D, Horbinski C. Beyond thrombosis: The impact of tissue factor signaling in cancer. J Hematol Oncol 2020; 13(1): 93.
[http://dx.doi.org/10.1186/s13045-020-00932-z] [PMID: 32665005]
[14]
Li H, Yu Y, Gao L, Zheng P, Liu X, Chen H. Tissue factor: A neglected role in cancer biology. J Thromb Thrombolysis 2022; 54(1): 97-108.
[http://dx.doi.org/10.1007/s11239-022-02662-0] [PMID: 35763169]
[15]
Isakoff MS, Bielack SS, Meltzer P, Gorlick R. Osteosarcoma: Current treatment and a collaborative pathway to success. J Clin Oncol 2015; 33(27): 3029-35.
[http://dx.doi.org/10.1200/JCO.2014.59.4895] [PMID: 26304877]
[16]
Martins-Neves SR, Sampaio-Ribeiro G, Gomes CMF. Chemoresistance-related stem cell signaling in osteosarcoma and its plausible contribution to poor therapeutic response: A discussion that still matters. Int J Mol Sci 2022; 23(19): 11416.
[http://dx.doi.org/10.3390/ijms231911416] [PMID: 36232719]
[17]
Tsuchiya H, Kanazawa Y, Abdel-Wanis ME, et al. Effect of timing of pulmonary metastases identification on prognosis of patients with osteosarcoma: The Japanese Musculoskeletal Oncology Group study. J Clin Oncol 2002; 20(16): 3470-7.
[http://dx.doi.org/10.1200/JCO.2002.11.028] [PMID: 12177108]
[18]
Gao X, Gao B, Li S. Extracellular vesicles: A new diagnostic biomarker and targeted drug in osteosarcoma. Front Immunol 2022; 13: 1002742.
[http://dx.doi.org/10.3389/fimmu.2022.1002742] [PMID: 36211364]
[19]
Wen Y, Tang F, Tu C, Hornicek F, Duan Z, Min L. Immune checkpoints in osteosarcoma: Recent advances and therapeutic potential. Cancer Lett 2022; 547: 215887.
[http://dx.doi.org/10.1016/j.canlet.2022.215887] [PMID: 35995141]
[20]
Hu Z, Wen S, Huo Z, et al. Current status and prospects of targeted therapy for osteosarcoma. Cells 2022; 11(21): 3507.
[http://dx.doi.org/10.3390/cells11213507] [PMID: 36359903]
[21]
Grover SP, Mackman N. Tissue factor. Arterioscler Thromb Vasc Biol 2018; 38(4): 709-25.
[http://dx.doi.org/10.1161/ATVBAHA.117.309846] [PMID: 29437578]
[22]
Arakaki A, Pan WA, Trejo J. GPCRs in Cancer: Protease-activated receptors, endocytic adaptors and signaling. Int J Mol Sci 2018; 19(7): 1886.
[http://dx.doi.org/10.3390/ijms19071886] [PMID: 29954076]
[23]
Covic L, Kuliopulos A. Protease-activated receptor 1 as therapeutic target in breast, lung, and ovarian cancer: Pepducin approach. Int J Mol Sci 2018; 19(8): 2237.
[http://dx.doi.org/10.3390/ijms19082237] [PMID: 30065181]
[24]
Radjabi AR, Sawada K, Jagadeeswaran S, et al. Thrombin induces tumor invasion through the induction and association of matrix metalloproteinase-9 and beta1-integrin on the cell surface. J Biol Chem 2008; 283(5): 2822-34.
[http://dx.doi.org/10.1074/jbc.M704855200] [PMID: 18048360]
[25]
McAuley JR, Bailey KM, Ekambaram P, et al. MALT1 is a critical mediator of PAR1-driven NF-κB activation and metastasis in multiple tumor types. Oncogene 2019; 38(49): 7384-98.
[http://dx.doi.org/10.1038/s41388-019-0958-4] [PMID: 31420608]
[26]
Tieken C, Verboom MC, Ruf W, et al. Tissue factor associates with survival and regulates tumour progression in osteosarcoma. Thromb Haemost 2016; 115(5): 1025-33.
[http://dx.doi.org/10.1160/TH15-07-0541] [PMID: 26763081]
[27]
Jacobsen C, Oechsle K, Hauschild J, et al. Regulation of tissue factor in NT2 germ cell tumor cells by cisplatin chemotherapy. Thromb Res 2015; 136(3): 673-81.
[http://dx.doi.org/10.1016/j.thromres.2015.07.002] [PMID: 26205155]
[28]
Saito M, Ichikawa J, Ando T, et al. Platelet-derived TGF-β induces tissue factor expression via the Smad3 pathway in osteosarcoma cells. J Bone Miner Res 2018; 33(11): 2048-58.
[http://dx.doi.org/10.1002/jbmr.3537] [PMID: 29949655]
[29]
Stegner D, Dütting S, Nieswandt B. Mechanistic explanation for platelet contribution to cancer metastasis. Thromb Res 2014; 133(Suppl. 2): S149-57.
[http://dx.doi.org/10.1016/S0049-3848(14)50025-4] [PMID: 24862136]
[30]
Lacroix R, Vallier L, Bonifay A, et al. Microvesicles and cancer associated thrombosis. Semin Thromb Hemost 2019; 45(6): 593-603.
[http://dx.doi.org/10.1055/s-0039-1693476] [PMID: 31430786]
[31]
Wojtukiewicz MZ, Mysliwiec M, Sierko E, et al. Elevated microparticles, thrombin-antithrombin and VEGF levels in colorectal cancer patients undergoing chemotherapy. Pathol Oncol Res 2020; 26(4): 2499-507.
[http://dx.doi.org/10.1007/s12253-020-00854-8] [PMID: 32583332]
[32]
Hisada Y, Mackman N. Cancer-associated pathways and biomarkers of venous thrombosis. Blood 2017; 130(13): 1499-506.
[http://dx.doi.org/10.1182/blood-2017-03-743211] [PMID: 28807983]
[33]
Thaler J, Ay C, MacKman N, et al. Microparticle-associated tissue factor activity, venous thromboembolism and mortality in pancreatic, gastric, colorectal and brain cancer patients. J Thromb Haemost 2012; 10(7): 1363-70.
[http://dx.doi.org/10.1111/j.1538-7836.2012.04754.x] [PMID: 22520016]
[34]
Jerez S, Araya H, Hevia D, et al. Extracellular vesicles from osteosarcoma cell lines contain miRNAs associated with cell adhesion and apoptosis. Gene 2019; 710: 246-57.
[http://dx.doi.org/10.1016/j.gene.2019.06.005] [PMID: 31176732]
[35]
Pan Y, Lin Y, Mi C. Cisplatin-resistant osteosarcoma cell-derived exosomes confer cisplatin resistance to recipient cells in an exosomal circ_103801-dependent manner. Cell Biol Int 2021; 45(4): 858-68.
[http://dx.doi.org/10.1002/cbin.11532] [PMID: 33325136]
[36]
Ahlbrecht J, Dickmann B, Ay C, et al. Tumor grade is associated with venous thromboembolism in patients with cancer: Results from the Vienna Cancer and Thrombosis Study. J Clin Oncol 2012; 30(31): 3870-5.
[http://dx.doi.org/10.1200/JCO.2011.40.1810] [PMID: 23008313]
[37]
Iwata S, Kawai A, Ueda T, et al. Symptomatic venous thromboembolism in patients with malignant bone and soft tissue tumors: A prospective multicenter cohort study. Ann Surg Oncol 2021; 28(7): 3919-27.
[http://dx.doi.org/10.1245/s10434-020-09308-6] [PMID: 33165723]
[38]
Liu Z, Li Y, Zhao X, et al. Renal cell carcinoma with tumor thrombus growing against the direction of venous return: An indicator of complicated surgery and poor prognosis. BMC Surg 2021; 21(1): 443.
[http://dx.doi.org/10.1186/s12893-021-01448-0] [PMID: 34963464]
[39]
Yin J, Bo WT, Sun J, et al. New evidence and perspectives on the management of hepatocellular carcinoma with portal vein tumor thrombus. J Clin Transl Hepatol 2017; 5(2): 169-76.
[PMID: 28660155]
[40]
Kawasaki T, Bussolati G, Marchiò C, et al. Well-differentiated neuroendocrine tumour of the breast showing peculiar endovascular spread. Histopathology 2014; 64(4): 597-600.
[http://dx.doi.org/10.1111/his.12276] [PMID: 24215290]
[41]
Chauhan A, Garg N, Menias CO, Devine CE, Bhosale PR, Balachandran A. Tumor thrombus as a rare presentation of lymphoma: A case series of 14 patients. AJR Am J Roentgenol 2015; 204(4): W398-404.
[http://dx.doi.org/10.2214/AJR.14.12782] [PMID: 25794089]
[42]
Navalkele P, Jones SM, Jones JK, et al. Osteosarcoma tumor thrombus: A case report with a review of the literature. Tex Heart Inst J 2013; 40(1): 75-8.
[PMID: 23466623]
[43]
Liang H, Guo W, Tang X, et al. Venous tumor thrombus in primary bone sarcomas in the pelvis. J Bone Joint Surg Am 2021; 103(16): 1510-20.
[http://dx.doi.org/10.2106/JBJS.20.00569] [PMID: 33857031]
[44]
Versteeg HH, Schaffner F, Kerver M, et al. Inhibition of tissue factor signaling suppresses tumor growth. Blood 2008; 111(1): 190-9.
[http://dx.doi.org/10.1182/blood-2007-07-101048] [PMID: 17901245]
[45]
Hong DS, Concin N, Vergote I, et al. Tisotumab vedotin in previously treated recurrent or metastatic cervical cancer. Clin Cancer Res 2020; 26(6): 1220-8.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-2962] [PMID: 31796521]
[46]
Tsumura R, Anzai T, Manabe S, et al. Antitumor effect of humanized anti-tissue factor antibody-drug conjugate in a model of peritoneal disseminated pancreatic cancer. Oncol Rep 2020; 45(1): 329-36.
[http://dx.doi.org/10.3892/or.2020.7850] [PMID: 33200231]
[47]
Theunissen JW, Cai AG, Bhatti MM, et al. Treating tissue factor- positive cancers with antibody-drug conjugates that do not affect blood clotting. Mol Cancer Ther 2018; 17(11): 2412-26.
[http://dx.doi.org/10.1158/1535-7163.MCT-18-0471] [PMID: 30126944]
[48]
Franchini M, Mannucci PM. Low-molecular-weight heparins and cancer: Focus on antitumoral effect. Ann Med 2015; 47(2): 116-21.
[http://dx.doi.org/10.3109/07853890.2015.1004361] [PMID: 25766973]
[49]
Alturkistani A, Ghonem N, Power-Charnitsky VA, Pino-Figueroa A, Migliore MM. Inhibition of PAR-1 receptor signaling by enoxaparin reduces cell proliferation and migration in A549 Cells. Anticancer Res 2019; 39(10): 5297-310.
[http://dx.doi.org/10.21873/anticanres.13723] [PMID: 31570424]
[50]
Ma L, Qiao H, He C, et al. Modulating the interaction of CXCR4 and CXCL12 by low-molecular-weight heparin inhibits hepatic metastasis of colon cancer. Invest New Drugs 2012; 30(2): 508-17.
[http://dx.doi.org/10.1007/s10637-010-9578-0] [PMID: 21080209]
[51]
Dhami SPS, Patmore S, Comerford C, et al. Breast cancer cells mediate endothelial cell activation, promoting von Willebrand factor release, tumor adhesion, and transendothelial migration. J Thromb Haemost 2022; 20(10): 2350-65.
[http://dx.doi.org/10.1111/jth.15794] [PMID: 35722954]
[52]
Ettelaie C, Fountain D, Collier MEW, ElKeeb AM, Xiao YP, Maraveyas A. Low molecular weight heparin downregulates tissue factor expression and activity by modulating growth factor receptor- mediated induction of nuclear factor-κB. Biochim Biophys Acta Mol Basis Dis 2011; 1812(12): 1591-600.
[http://dx.doi.org/10.1016/j.bbadis.2011.09.007] [PMID: 21946214]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy