Review Article

药物应用的肽类两亲分子

卷 31, 期 11, 2024

发表于: 23 May, 2023

页: [1332 - 1347] 页: 16

弟呕挨: 10.2174/0929867330666230408203820

价格: $65

Open Access Journals Promotions 2
摘要

在过去的几十年里,人们为开发生物相容性材料做出了一些努力。其中,肽类两亲体(PAs)具有组织特异性结合和定位功能,是生物医学领域应用的一种新型纳米技术策略。PAs具有几个结合疏水和亲水区域的区域,这些区域能够在水介质中自组装,形成能够与细胞膜相互作用的不同三级纳米结构。此外,这些分子可以通过加入胶原蛋白、脂质或荧光标记物来调节。此外,它们还可以作为载体,以包封活性化合物用于药物递送,在这一领域显示出很好的特点。本文就PAs的自组装结构及其药理应用作一综述。此外,还强调了它们作为药物输送系统的用途,并对该领域的最新进展进行了综述。

关键词: 肽两亲体,纳米技术,药物传递,抗菌,抗癌,超分子自组装,纳米结构。

[1]
Kassam, H.A.; Bahnson, E.M.; Cartaya, A.; Jiang, W.; Avram, M.J.; Tsihlis, N.D.; Stupp, S.I.; Kibbe, M.R. Pharmacokinetics and biodistribution of a collagen-targeted peptide amphiphile for cardiovascular applications. Pharmacol. Res. Perspect., 2020, 8(6), e00672.
[http://dx.doi.org/10.1002/prp2.672] [PMID: 33090704]
[2]
Chung, E.J.; Mlinar, L.B.; Sugimoto, M.J.; Nord, K.; Roman, B.B.; Tirrell, M. in vivo biodistribution and clearance of peptide amphiphile micelles. Nanomedicine, 2015, 11(2), 479-487.
[http://dx.doi.org/10.1016/j.nano.2014.08.006] [PMID: 25194999]
[3]
Zhao, X.; Pan, F.; Xu, H.; Yaseen, M.; Shan, H.; Hauser, C.A.E.; Zhang, S.; Lu, J.R. Molecular self-assembly and applications of designer peptide amphiphiles. Chem. Soc. Rev., 2010, 39(9), 3480-3498.
[http://dx.doi.org/10.1039/b915923c] [PMID: 20498896]
[4]
Meng, Q.; Kou, Y.; Ma, X.; Liang, Y.; Guo, L.; Ni, C.; Liu, K. Tunable self-assembled peptide amphiphile nanostructures. Langmuir, 2012, 28(11), 5017-5022.
[http://dx.doi.org/10.1021/la3003355] [PMID: 22352406]
[5]
Xing, H.; Chin, S.M.; Udumula, V.R.; Krishnaiah, M.; Rodrigues de Almeida, N.; Huck-Iriart, C.; Picco, A.S.; Lee, S.R.; Zaldivar, G.; Jackson, K.A.; Tagliazucchi, M.; Stupp, S.I.; Conda-Sheridan, M. Control of peptide amphiphile supramolecular nanostructures by isosteric replacements. Biomacromolecules, 2021, 22(8), 3274-3283.
[http://dx.doi.org/10.1021/acs.biomac.1c00379] [PMID: 34291897]
[6]
Bröer, S.; Bröer, A. Amino acid homeostasis and signalling in mammalian cells and organisms. Biochem. J., 2017, 474(12), 1935-1963.
[http://dx.doi.org/10.1042/BCJ20160822] [PMID: 28546457]
[7]
Hiraoka, K.; Rankin-Turner, S.; Ninomiya, S. Positive and negative cluster ions of amino acids formed by electrospray droplet impact/secondary ion mass spectrometry (EDI/SIMS). Int. J. Mass Spectrom., 2022, 480, 116895.
[http://dx.doi.org/10.1016/j.ijms.2022.116895]
[8]
Wang, S.; Li, Y.; Xu, H.; Sun, Y.; Xu, S. Design, structure of amphiphilic peptide and its application from single molecule to nanoparticle. Results in Engineering, 2022, 16(November), 100747.
[http://dx.doi.org/10.1016/j.rineng.2022.100747]
[9]
Chen, H.; Chen, X.; Chen, X.; Lin, S.; Cheng, J.; You, L.; Xiong, C.; Cai, X.; Wang, S. New perspectives on fabrication of peptide-based nanomaterials in food industry: A review. Trends Food Sci. Technol., 2022, 129, 49-60.
[http://dx.doi.org/10.1016/j.tifs.2022.09.004]
[10]
Chen, C.; Chen, Y.; Yang, C.; Zeng, P.; Xu, H.; Pan, F.; Lu, J.R. High selective performance of designed antibacterial and anticancer peptide amphiphiles. ACS Appl. Mater. Interfaces, 2015, 7(31), 17346-17355.
[http://dx.doi.org/10.1021/acsami.5b04547] [PMID: 26204061]
[11]
Zhang, Q.; Liu, Y.; Xie, T.; Shang-guan, Y.; Tian, M.; Zhang, Q. Sulfate ion-triggered self-assembly transitions of amphiphilic short peptides by force balance adjustment. Colloids Surfaces A Physicochem Eng Asp, 2022, 637, 128252.
[http://dx.doi.org/10.1016/j.colsurfa.2022.128252]
[12]
Zhao, C.; Chen, H.; Wang, F.; Zhang, X. Amphiphilic self-assembly peptides: Rational strategies to design and delivery for drugs in biomedical applications. Colloids Surf. B Biointerfaces, 2021, 208(August), 112040.
[http://dx.doi.org/10.1016/j.colsurfb.2021.112040] [PMID: 34425532]
[13]
Hendricks, M.P.; Sato, K.; Palmer, L.C.; Stupp, S.I. Supramolecular assembly of peptide amphiphiles. Acc. Chem. Res., 2017, 50(10), 2440-2448.
[http://dx.doi.org/10.1021/acs.accounts.7b00297] [PMID: 28876055]
[14]
Schweizer, F. Cationic amphiphilic peptides with cancer-selective toxicity. Eur. J. Pharmacol., 2009, 625(1-3), 190-194.
[http://dx.doi.org/10.1016/j.ejphar.2009.08.043] [PMID: 19835863]
[15]
Czupiel, P.P.; Delplace, V.; Shoichet, M.S. Cationic block amphiphiles show anti-mitochondrial activity in multi-drug resistant breast cancer cells. J. Control. Release, 2019, 305(305), 210-219.
[http://dx.doi.org/10.1016/j.jconrel.2019.04.045] [PMID: 31071370]
[16]
Peters, D.; Kastantin, M.; Kotamraju, V.R.; Karmali, P.P.; Gujraty, K.; Tirrell, M.; Ruoslahti, E. Targeting atherosclerosis by using modular, multifunctional micelles. Proc. Natl. Acad. Sci., 2009, 106(24), 9815-9819.
[http://dx.doi.org/10.1073/pnas.0903369106] [PMID: 19487682]
[17]
Tarvirdipour, S.; Huang, X.; Mihali, V.; Schoenenberger, C.A.; Palivan, C.G. Peptide-based nanoassemblies in gene therapy and diagnosis: Paving the way for clinical application. Molecules, 2020, 25(15), 3482.
[http://dx.doi.org/10.3390/molecules25153482] [PMID: 32751865]
[18]
Characterization, P; Protocols, A. Peptide characterization and application protocols. In: Methods in Molecular Biology; Gregg, B.F. Humana Press: Totowa, NJ, 2007; p. 342.
[19]
Zhang, R.; Leeper, C.N.; Wang, X.; White, T.A.; Ulery, B.D. Immunomodulatory vasoactive intestinal peptide amphiphile micelles. Biomater. Sci., 2018, 6(7), 1717-1722.
[http://dx.doi.org/10.1039/C8BM00466H] [PMID: 29896593]
[20]
Wang, C.; Guo, Y.; Wang, Y.; Xu, H.; Zhang, X. Redox responsive supramolecular amphiphiles based on reversible charge transfer interactions. Chem. Commun., 2009, (36), 5380-5382.
[http://dx.doi.org/10.1039/b912502g] [PMID: 19724791]
[21]
Kang, Y.; Wang, C.; Liu, K.; Wang, Z.; Zhang, X. Enzyme-responsive polymeric supra-amphiphiles formed by the complexation of chitosan and ATP. Langmuir, 2012, 28(41), 14562-14566.
[http://dx.doi.org/10.1021/la303271f] [PMID: 23025557]
[22]
Xu, X.; Li, Y.; Li, H.; Liu, R.; Sheng, M.; He, B.; Gu, Z. Smart nanovehicles based on pH-triggered disassembly of supramolecular peptide-amphiphiles for efficient intracellular drug delivery. Small, 2014, 10(6), 1133-1140.
[http://dx.doi.org/10.1002/smll.201301885] [PMID: 24155260]
[23]
Eskandari, S.; Guerin, T.; Toth, I.; Stephenson, R.J. Recent advances in self-assembled peptides: Implications for targeted drug delivery and vaccine engineering. Adv. Drug Deliv. Rev., 2017, 110-111, 169-187.
[http://dx.doi.org/10.1016/j.addr.2016.06.013] [PMID: 27356149]
[24]
Sakurai, Y.; Inada, A.; Hitotsumatsu, M.; Oshima, T. Development of amphiphilic metal-binding short peptides that change the dispersibility of paclitaxel upon complexation with intermediate metal(II) ions. J. Drug Deliv. Sci. Technol., 2020, 59(April), 101882.
[http://dx.doi.org/10.1016/j.jddst.2020.101882]
[25]
Zhang, J.; Zhao, Y.; Han, S.; Chen, C.; Xu, H. Self-assembly of surfactant-like peptides and their applications. Sci. China Chem., 2014, 57(12), 1634-1645.
[http://dx.doi.org/10.1007/s11426-014-5234-4]
[26]
Li, J.; Wang, J.; Zhao, Y.; Zhou, P.; Carter, J.; Li, Z.; Waigh, T.A.; Lu, J.R.; Xu, H. Surfactant-like peptides: From molecular design to controllable self-assembly with applications. Coord. Chem. Rev., 2020, 421, 213418.
[http://dx.doi.org/10.1016/j.ccr.2020.213418]
[27]
Tang, C; Qiu, F; Zhao, X Molecular design and applications of self-assembling surfactant-like peptides. J Nanomater, 2013, 469261
[http://dx.doi.org/10.1155/2013/469261]
[28]
Sun, Y.; Qian, Z.; Guo, C.; Wei, G. Amphiphilic peptides A 6 K and V 6 K display distinct oligomeric structures and self-assembly dynamics: A combined all-atom and coarse-grained simulation study. Biomacromolecules, 2015, 16(9), 2940-2949.
[http://dx.doi.org/10.1021/acs.biomac.5b00850] [PMID: 26301845]
[29]
von Maltzahn, G.; Vauthey, S.; Santoso, S.; Zhang, S. Positively charged surfactant-like peptides self-assemble into nanostructures. Langmuir, 2003, 19(10), 4332-4337.
[http://dx.doi.org/10.1021/la026526+]
[30]
Zhang, P.; Wang, F.; Wang, Y.; Li, S.; Wen, S.; Wen, S. Self-assembling behavior of ph-responsive peptide A6K without end-capping. Molecules, 2020, 25(9), 2017.
[http://dx.doi.org/10.3390/molecules25092017] [PMID: 32357459]
[31]
Mello, L.R.; Aguiar, R.B.; Yamada, R.Y.; Moraes, J.Z.; Hamley, I.W.; Alves, W.A.; Reza, M.; Ruokolainen, J.; Silva, E.R. Amphipathic design dictates self-assembly, cytotoxicity and cell uptake of arginine-rich surfactant-like peptides. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(12), 2495-2507.
[http://dx.doi.org/10.1039/C9TB02219H] [PMID: 32108843]
[32]
Peng, F.; Chen, Y.; Liu, J.; Xing, Z.; Fan, J.; Zhang, W.; Qiu, F. Facile design of gemini surfactant-like peptide for hydrophobic drug delivery and antimicrobial activity. J. Colloid Interface Sci., 2021, 591, 314-325.
[http://dx.doi.org/10.1016/j.jcis.2021.02.019] [PMID: 33621783]
[33]
da Silva, E.R.; Alves, W.A.; Castelletto, V.; Reza, M.; Ruokolainen, J.; Hussain, R.; Hamley, I.W. Self-assembly pathway of peptide nanotubes formed by a glutamatic acid-based bolaamphiphile. Chem. Commun., 2015, 51(58), 11634-11637.
[http://dx.doi.org/10.1039/C5CC03640B] [PMID: 26094619]
[34]
Jürgen-Hinrich, F.; Tianyu, W. Bolaamphiphiles. Chem. Rev., 2004, 104, 2901-2937.
[http://dx.doi.org/10.1021/cr030602b] [PMID: 15186184]
[35]
Zhao, Y.; Hu, X.; Zhang, L.; Wang, D.; King, S.M.; Rogers, S.E.; Wang, J.; Lu, J.R.; Xu, H. Monolayer wall nanotubes self-assembled from short peptide bolaamphiphiles. J. Colloid Interface Sci., 2021, 583, 553-562.
[http://dx.doi.org/10.1016/j.jcis.2020.09.023] [PMID: 33038605]
[36]
Pérez, L.; Pinazo, A.; Pons, R.; Infante, M.R. Gemini surfactants from natural amino acids. Adv. Colloid Interface Sci., 2014, 205, 134-155.
[http://dx.doi.org/10.1016/j.cis.2013.10.020] [PMID: 24238395]
[37]
Zhao, W.; Wang, Y. Coacervation with surfactants: From single-chain surfactants to gemini surfactants. Adv. Colloid Interface Sci., 2017, 239, 199-212.
[http://dx.doi.org/10.1016/j.cis.2016.04.005] [PMID: 27260407]
[38]
Parikh, K.; Mistry, B.; Jana, S.; Gupta, S.; Devkar, R.V.; Kumar, S. Physico-biochemical studies on cationic gemini surfactants: Role of spacer. J. Mol. Liq., 2015, 206, 19-28.
[http://dx.doi.org/10.1016/j.molliq.2015.01.055]
[39]
Hutchinson, J.A.; Burholt, S.; Hamley, I.W. Peptide hormones and lipopeptides: from self-assembly to therapeutic applications. J. Pept. Sci., 2017, 23(2), 82-94.
[http://dx.doi.org/10.1002/psc.2954] [PMID: 28127868]
[40]
Castelletto, V.; Kaur, A.; Kowalczyk, R.M.; Hamley, I.W.; Reza, M.; Ruokolainen, J. Supramolecular hydrogel formation in a series of self-assembling lipopeptides with varying lipid chain length. Biomacromolecules, 2017, 18(7), 2013-2023.
[http://dx.doi.org/10.1021/acs.biomac.7b00057] [PMID: 28535062]
[41]
Ben Ayed, H.; Hmidet, N.; Béchet, M.; Chollet, M.; Chataigné, G.; Leclère, V.; Jacques, P.; Nasri, M. Identification and biochemical characteristics of lipopeptides from Bacillus mojavensis A21. Process Biochem., 2014, 49(10), 1699-1707.
[http://dx.doi.org/10.1016/j.procbio.2014.07.001]
[42]
Fa, K.; Liu, H.; Li, Z.; Gong, H.; Petkov, J.; Lu, J.R. Acyl chain length tuning improves antimicrobial potency and biocompatibility of short designed lipopeptides. J. Colloid Interface Sci., 2023, 630(Pt B), 911-923.
[http://dx.doi.org/10.1016/j.jcis.2022.10.114] [PMID: 36368131]
[43]
Chen, C.; Yang, C.; Chen, Y.; Wang, F.; Mu, Q.; Zhang, J.; Li, Z.; Pan, F.; Xu, H.; Lu, J.R. Surface physical activity and hydrophobicity of designed helical peptide amphiphiles control their bioactivity and cell selectivity. ACS Appl. Mater. Interfaces, 2016, 8(40), 26501-26510.
[http://dx.doi.org/10.1021/acsami.6b08297] [PMID: 27644109]
[44]
Qiu, F.; Chen, Y.; Tang, C.; Zhao, X. Amphiphilic peptides as novel nanomaterials: Design, self-assembly and application. Int. J. Nanomedicine, 2018, 13, 5003-5022.
[http://dx.doi.org/10.2147/IJN.S166403] [PMID: 30214203]
[45]
Hamley, I.W.; Castelletto, V. Self-assembly of peptide bioconjugates: Selected recent research highlights. Bioconjug. Chem., 2017, 28(3), 731-739.
[http://dx.doi.org/10.1021/acs.bioconjchem.6b00284] [PMID: 27348697]
[46]
Taylor, P.A.; Jayaraman, A. Molecular modeling and simulations of peptide–polymer conjugates. Annu. Rev. Chem. Biomol. Eng., 2020, 11(1), 257-276.
[http://dx.doi.org/10.1146/annurev-chembioeng-092319-083243] [PMID: 32513082]
[47]
Messina, M.S.; Messina, K.M.M.; Bhattacharya, A.; Montgomery, H.R.; Maynard, H.D. Preparation of biomolecule-polymer conjugates by grafting-from using ATRP, RAFT, or ROMP. Prog. Polym. Sci., 2020, 100, 101186.
[http://dx.doi.org/10.1016/j.progpolymsci.2019.101186] [PMID: 32863465]
[48]
Gómara, M.J.; Pons, R.; Herrera, C.; Ziprin, P.; Haro, I. Peptide amphiphilic-based supramolecular structures with anti-hiv-1 activity. Bioconjug. Chem., 2021, 32(9), 1999-2013.
[http://dx.doi.org/10.1021/acs.bioconjchem.1c00292] [PMID: 34254794]
[49]
Otter, R.; Berac, C.M.; Seiffert, S.; Besenius, P. Tuning the life-time of supramolecular hydrogels using ROS-responsive telechelic peptide-polymer conjugates. Eur. Polym. J., 2018, 2019(110), 90-96.
[50]
Castelletto, V.; Seitsonen, J.; Ruokolainen, J.; Piras, C.; Cramer, R.; Edwards-Gayle, C.J.C.; Hamley, I.W. Peptide nanotubes self-assembled from leucine-rich alpha helical surfactant-like peptides. Chem. Commun., 2020, 56(80), 11977-11980.
[http://dx.doi.org/10.1039/D0CC04299D] [PMID: 33033814]
[51]
Li, T.; Lu, X.M.; Zhang, M.R.; Hu, K.; Li, Z. Peptide-based nanomaterials: Self-assembly, properties and applications. Bioact. Mater., 2021, 11(11), 268-282.
[PMID: 34977431]
[52]
Ma, Z.; Wei, D.; Yan, P.; Zhu, X.; Shan, A.; Bi, Z. Characterization of cell selectivity, physiological stability and endotoxin neutralization capabilities of α-helix-based peptide amphiphiles. Biomaterials, 2015, 52(1), 517-530.
[http://dx.doi.org/10.1016/j.biomaterials.2015.02.063] [PMID: 25818457]
[53]
Khakshoor, O.; Nowick, J.S. Artificial β-sheets: Chemical models of β-sheets. Curr. Opin. Chem. Biol., 2008, 12(6), 722-729.
[http://dx.doi.org/10.1016/j.cbpa.2008.08.009] [PMID: 18775794]
[54]
Ling Tan, H.; Shamsudeen, H.; Sufian So’aib, M. Effects of electric filed on β-sheet propensity self-assembled amphiphile peptides. Mater. Today Proc., 2018, 5, S143-S148.
[http://dx.doi.org/10.1016/j.matpr.2018.08.056]
[55]
Hadianamrei, R.; Tomeh, M.A.; Brown, S.; Wang, J.; Zhao, X. Correlation between the secondary structure and surface activity of β-sheet forming cationic amphiphilic peptides and their anticancer activity. Colloids Surf. B Biointerfaces, 2022, 209(Pt 2), 112165.
[http://dx.doi.org/10.1016/j.colsurfb.2021.112165] [PMID: 34715505]
[56]
Ong, Z.Y.; Gao, S.J.; Yang, Y.Y. Short synthetic β-sheet forming peptide amphiphiles as broad spectrum antimicrobials with antibiofilm and endotoxin neutralizing capabilities. Adv. Funct. Mater., 2013, 23(29), 3682-3692.
[http://dx.doi.org/10.1002/adfm.201202850]
[57]
Wu, H.; Ong, Z.Y.; Liu, S.; Li, Y.; Wiradharma, N.; Yang, Y.Y.; Ying, J.Y. Synthetic β-sheet forming peptide amphiphiles for treatment of fungal keratitis. Biomaterials, 2015, 43(1), 44-49.
[http://dx.doi.org/10.1016/j.biomaterials.2014.11.052] [PMID: 25591960]
[58]
Gunasekaran, K.; Gomathi, L.; Ramakrishnan, C.; Chandrasekhar, J.; Balaram, P. Conformational interconversions in peptide β-turns: Analysis of turns in proteins and computational estimates of barriers 1 1Edited by J. Thornton. J. Mol. Biol., 1998, 284(5), 1505-1516.
[http://dx.doi.org/10.1006/jmbi.1998.2154] [PMID: 9878367]
[59]
Bellm, L.; Lehrer, R.I.; Ganz, T. Protegrins: New antibiotics of mammalian origin. Expert Opin. Investig. Drugs, 2000, 9(8), 1731-1742.
[http://dx.doi.org/10.1517/13543784.9.8.1731] [PMID: 11060772]
[60]
Giles, F.J.; Rodriguez, R.; Weisdorf, D.; Wingard, J.R.; Martin, P.J.; Fleming, T.R.; Goldberg, S.L.; Anaissie, E.J.; Bolwell, B.J.; Chao, N.J.; Shea, T.C.; Brunvand, M.M.; Vaughan, W.; Petersen, F.; Schubert, M.; Lazarus, H.M.; Maziarz, R.T.; Silverman, M.; Beveridge, R.A.; Redman, R.; Pulliam, J.G.; Devitt-Risse, P.; Fuchs, H.J.; Hurd, D.D. A phase III, randomized, double-blind, placebo-controlled, study of iseganan for the reduction of stomatitis in patients receiving stomatotoxic chemotherapy. Leuk. Res., 2004, 28(6), 559-565.
[http://dx.doi.org/10.1016/j.leukres.2003.10.021] [PMID: 15120931]
[61]
Xiang, Y.; Zhang, J.; Mao, H.; Yan, Z.; Wang, X.; Bao, C.; Zhu, L. Highly tough, stretchable, and enzymatically degradable hydrogels modulated by bioinspired hydrophobic β-sheet peptides. Biomacromolecules, 2021, 22(11), 4846-4856.
[http://dx.doi.org/10.1021/acs.biomac.1c01134] [PMID: 34706536]
[62]
Kumaraswamy, P.; Lakshmanan, R.; Sethuraman, S.; Krishnan, U.M. Self-assembly of peptides: Influence of substrate, pH and medium on the formation of supramolecular assemblies. Soft Matter, 2011, 7(6), 2744-2754.
[http://dx.doi.org/10.1039/C0SM00897D] [PMID: 28090615]
[63]
Del Borgo, M.P.; Mechler, A.I.; Traore, D.; Forsyth, C.; Wilce, J.A.; Wilce, M.C.J.; Aguilar, M.I.; Perlmutter, P. Supramolecular self-assembly of N-acetyl-capped β-peptides leads to nano- to macroscale fiber formation. Angew. Chem. Int. Ed., 2013, 52(32), 8266-8270.
[http://dx.doi.org/10.1002/anie.201303175] [PMID: 23784963]
[64]
Kobori, T.; Iwamoto, S.; Takeyasu, K.; Ohtani, T. Self-assembly of peptide amphiphiles: From molecules to self-assembly of peptide amphip. Biopolymers, 2007, 85(4), 392-406.
[PMID: 17211885]
[65]
Elmsmari, F.; González Sánchez, J.A.; Duran-Sindreu, F.; Belkadi, R.; Espina, M.; García, M.L.; Sánchez-López, E. Calcium hydroxide-loaded PLGA biodegradable nanoparticles as an intracanal medicament. Int. Endod. J., 2021, 54(11), 2086-2098.
[http://dx.doi.org/10.1111/iej.13603] [PMID: 34355406]
[66]
Jacoby, G.; Segal Asher, M.; Ehm, T.; Abutbul Ionita, I.; Shinar, H.; Azoulay-Ginsburg, S.; Zemach, I.; Koren, G.; Danino, D.; Kozlov, M.M.; Amir, R.J.; Beck, R. Order from disorder with intrinsically disordered peptide amphiphiles. J. Am. Chem. Soc., 2021, 143(30), 11879-11888.
[http://dx.doi.org/10.1021/jacs.1c06133] [PMID: 34310121]
[67]
de Almeida, R.N.; Han, Y.; Perez, J.; Kirkpatrick, S.; Wang, Y.; Sheridan, M.C. Design, synthesis, and nanostructure-dependent antibacterial activity of cationic peptide amphiphiles. ACS Appl. Mater. Interfaces, 2019, 11(3), 2790-2801.
[http://dx.doi.org/10.1021/acsami.8b17808] [PMID: 30588791]
[68]
Castelletto, V.; Edwards-Gayle, C.J.C.; Hamley, I.W.; Barrett, G.; Seitsonen, J.; Ruokolainen, J. Peptide-stabilized emulsions and gels from an arginine-rich surfactant-like peptide with antimicrobial activity. ACS Appl. Mater. Interfaces, 2019, 11(10), 9893-9903.
[http://dx.doi.org/10.1021/acsami.9b00581] [PMID: 30785266]
[69]
Gong, H.; Zhang, J.; Hu, X.; Li, Z.; Fa, K.; Liu, H.; Waigh, T.A.; McBain, A.; Lu, J.R. Hydrophobic control of the bioactivity and cytotoxicity of de novo-designed antimicrobial peptides. ACS Appl. Mater. Interfaces, 2019, 11(38), 34609-34620.
[http://dx.doi.org/10.1021/acsami.9b10028] [PMID: 31448889]
[70]
Cirillo, S.; Tomeh, M.A.; Wilkinson, R.N.; Hill, C.; Brown, S.; Zhao, X. Designed antitumor peptide for targeted siRNA delivery into cancer Spheroids. ACS Appl. Mater. Interfaces, 2021, 13(42), 49713-49728.
[http://dx.doi.org/10.1021/acsami.1c14761] [PMID: 34657415]
[71]
Gong, Z.; Shi, Y.; Tan, H.; Wang, L.; Gao, Z.; Lian, B.; Wang, G.; Sun, H.; Sun, P.; Zhou, B.; Bai, J. Plasma amine oxidase-induced nanoparticle-to-nanofiber geometric transformation of an amphiphilic peptide for drug encapsulation and enhanced bactericidal activity. ACS Appl. Mater. Interfaces, 2020, 12(4), 4323-4332.
[http://dx.doi.org/10.1021/acsami.9b21296] [PMID: 31899611]
[72]
Pelin, J.N.B.D.; Edwards-Gayle, C.J.C.; Castelletto, V.; Aguilar, A.M.; Alves, W.A.; Seitsonen, J.; Ruokolainen, J.; Hamley, I.W. Self-assembly, nematic phase formation, and organocatalytic behavior of a proline-functionalized lipopeptide. ACS Appl. Mater. Interfaces, 2020, 12(12), 13671-13679.
[http://dx.doi.org/10.1021/acsami.0c00686] [PMID: 32134243]
[73]
Pan, F.; Li, Y.; Ding, Y.; Lv, S.; You, R.; Hadianamrei, R.; Tomeh, M.A.; Zhao, X. Anticancer effect of rationally designed α-helical amphiphilic peptides. Colloids Surf. B Biointerfaces, 2022, 220(September), 112841.
[http://dx.doi.org/10.1016/j.colsurfb.2022.112841] [PMID: 36174494]
[74]
Cieślik-Boczula, K. Alpha-helix to beta-sheet transition in long-chain poly- l -lysine: Formation of alpha-helical fibrils by poly- l -lysine. Biochimie, 2017, 137, 106-114.
[http://dx.doi.org/10.1016/j.biochi.2017.03.006] [PMID: 28315381]
[75]
Sun, M.; Wang, C.; Lv, M.; Fan, Z.; Du, J. Intracellular self-assembly of peptides to induce apoptosis against drug-resistant melanoma. J. Am. Chem. Soc., 2022, 144(16), 7337-7345.
[http://dx.doi.org/10.1021/jacs.2c00697] [PMID: 35357824]
[76]
Woldemichael, T.; Keswani, R.K.; Rzeczycki, P.M.; Murashov, M.D.; LaLone, V.; Gregorka, B.; Swanson, J.A.; Stringer, K.A.; Rosania, G.R. Reverse engineering the intracellular self-assembly of a functional mechanopharmaceutical device. Sci. Rep., 2018, 8(1), 2934.
[http://dx.doi.org/10.1038/s41598-018-21271-7] [PMID: 29440773]
[77]
Lee, S.; Trinh, T.H.T.; Yoo, M.; Shin, J.; Lee, H.; Kim, J.; Hwang, E.; Lim, Y.B.; Ryou, C. Self-assembling peptides and their application in the treatment of diseases. Int. J. Mol. Sci., 2019, 20(23), 5850.
[http://dx.doi.org/10.3390/ijms20235850] [PMID: 31766475]
[78]
Luo, J.; Wärmländer, S.K.T.S.; Gräslund, A.; Abrahams, J.P. Alzheimer peptides aggregate into transient nanoglobules that nucleate fibrils. Biochemistry, 2014, 53(40), 6302-6308.
[http://dx.doi.org/10.1021/bi5003579] [PMID: 25198136]
[79]
Edwards-Gayle, C.J.C.; Hamley, I.W. Self-assembly of bioactive peptides, peptide conjugates, and peptide mimetic materials. Org. Biomol. Chem., 2017, 15(28), 5867-5876.
[http://dx.doi.org/10.1039/C7OB01092C] [PMID: 28661532]
[80]
Zuo, Y.; Xiong, Q.; Li, Q.; Zhao, B.; Xue, F.; Shen, L.; Li, H.; Yuan, Q.; Cao, S. Osteogenic growth peptide (OGP)-loaded amphiphilic peptide (NapFFY) supramolecular hydrogel promotes osteogenesis and bone tissue reconstruction. Int. J. Biol. Macromol., 2022, 195(195), 558-564.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.12.028] [PMID: 34920074]
[81]
Karavasili, C.; Andreadis, D.A.; Katsamenis, O.L.; Panteris, E.; Anastasiadou, P.; Kakazanis, Z.; Zoumpourlis, V.; Markopoulou, C.K.; Koutsopoulos, S.; Vizirianakis, I.S.; Fatouros, D.G. Synergistic antitumor potency of a self-assembling peptide hydrogel for the local co-delivery of doxorubicin and curcumin in the treatment of head and neck cancer. Mol. Pharm., 2019, 16(6), 2326-2341.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b01221] [PMID: 31026168]
[82]
Maude, S; Tai, LR; Davies, RP.; Liu, B; Harris, SA; Kocienski, PJ; Aggeli, A. Peptide Synthesis and Self-Assembly. In: Deming, T. (eds) Peptide-Based Materials. Topics in Current Chemistry, 2011, 310. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2011_234
[83]
Dehsorkhi, A.; Castelletto, V.; Hamley, I.W.; Adamcik, J.; Mezzenga, R. The effect of pH on the self-assembly of a collagen derived peptide amphiphile. Soft Matter, 2013, 9(26), 6033-6036.
[http://dx.doi.org/10.1039/c3sm51029h]
[84]
Fair, R.J.; Tor, Y. Antibiotics and bacterial resistance in the 21st century. Perspect. Medicin. Chem., 2014, 6(6), PMC.S14459.
[http://dx.doi.org/10.4137/PMC.S14459] [PMID: 25232278]
[85]
Teixeira, M.C.; Carbone, C.; Sousa, M.C.; Espina, M.; Garcia, M.L.; Sanchez-Lopez, E.; Souto, E.B. Nanomedicines for the delivery of antimicrobial peptides (Amps). Nanomaterials, 2020, 10(3), 560.
[http://dx.doi.org/10.3390/nano10030560] [PMID: 32244858]
[86]
Sánchez-López, E.; Gómara, M.J.; Haro, I. Nanotechnology-based platforms for vaginal delivery of peptide microbicides. Curr. Med. Chem., 2021, 28(22), 4356-4379.
[http://dx.doi.org/10.2174/0929867328666201209095753] [PMID: 33297908]
[87]
Koczulla, A.R.; Bals, R. Antimicrobial peptides. Drugs, 2003, 63(4), 389-406.
[http://dx.doi.org/10.2165/00003495-200363040-00005] [PMID: 12558461]
[88]
Bahar, A.; Ren, D. Antimicrobial peptides. Pharmaceuticals, 2013, 6(12), 1543-1575.
[http://dx.doi.org/10.3390/ph6121543] [PMID: 24287494]
[89]
Zhang, L.; Gallo, R.L. Antimicrobial peptides. Curr. Biol., 2016, 26(1), R14-R19.
[http://dx.doi.org/10.1016/j.cub.2015.11.017] [PMID: 26766224]
[90]
Kundu, R. Cationic amphiphilic peptides: Synthetic antimicrobial agents inspired by nature. ChemMedChem, 2020, 15(20), 1887-1896.
[http://dx.doi.org/10.1002/cmdc.202000301] [PMID: 32767819]
[91]
Fjell, C.D.; Hiss, J.A.; Hancock, R.E.W.; Schneider, G. Designing antimicrobial peptides: Form follows function. Nat. Rev. Drug Discov., 2012, 11(1), 37-51.
[http://dx.doi.org/10.1038/nrd3591] [PMID: 22173434]
[92]
Locock, K.E.S.; Michl, T.D.; Griesser, H.J.; Haeussler, M.; Meagher, L. Structure–activity relationships of guanylated antimicrobial polymethacrylates. Pure Appl. Chem., 2014, 86(8), 1281-1291.
[http://dx.doi.org/10.1515/pac-2014-0213]
[93]
Zha, R.H.; Sur, S.; Stupp, S.I. Self-assembly of cytotoxic peptide amphiphiles into supramolecular membranes for cancer therapy. Adv. Healthc. Mater., 2013, 2(1), 126-133.
[http://dx.doi.org/10.1002/adhm.201200118] [PMID: 23184589]
[94]
Trac, N.; Chen, L.Y.; Zhang, A.; Liao, C.P.; Poon, C.; Wang, J.; Ando, Y.; Joo, J.; Garri, C.; Shen, K.; Kani, K.; Gross, M.E.; Chung, E.J. CCR2-targeted micelles for anti-cancer peptide delivery and immune stimulation. J. Control. Release, 2021, 329(329), 614-623.
[http://dx.doi.org/10.1016/j.jconrel.2020.09.054] [PMID: 33011241]
[95]
Xu, T.; Liang, C.; Zheng, D.; Yan, X.; Chen, Y.; Chen, Y.; Li, X.; Shi, Y.; Wang, L.; Yang, Z. Nuclear delivery of dual anticancer drug-based nanomedicine constructed by cisplatinum-induced peptide self-assembly. Nanoscale, 2020, 12(28), 15275-15282.
[http://dx.doi.org/10.1039/D0NR00143K] [PMID: 32644059]
[96]
Aronson, M.R.; Dahl, E.S.; Halle, J.A.; Simonson, A.W.; Gogal, R.A.; Glick, A.B.; Aird, K.M.; Medina, S.H. Re-engineering antimicrobial peptides into oncolytics targeting drug-resistant ovarian cancers. Cell. Mol. Bioeng., 2020, 13(5), 447-461.
[http://dx.doi.org/10.1007/s12195-020-00626-z] [PMID: 33184577]
[97]
Abdullah, T.; Bhatt, K.; Eggermont, L.J.; O’Hare, N.; Memic, A.; Bencherif, S.A. Supramolecular self-assembled peptide-based vaccines: Current state and future perspectives. Front Chem., 2020, 8, 598160.
[http://dx.doi.org/10.3389/fchem.2020.598160] [PMID: 33195107]
[98]
Zhang, R.; Smith, J.D.; Allen, B.N.; Kramer, J.S.; Schauflinger, M.; Ulery, B.D. Peptide amphiphile micelle vaccine size and charge influence the host antibody response. ACS Biomater. Sci. Eng., 2018, 4(7), 2463-2472.
[http://dx.doi.org/10.1021/acsbiomaterials.8b00511] [PMID: 33435110]
[99]
Li, S.; Zhang, W.; Xue, H.; Xing, R.; Yan, X. Tumor microenvironment-oriented adaptive nanodrugs based on peptide self-assembly. Chem. Sci., 2020, 11(33), 8644-8656.
[http://dx.doi.org/10.1039/D0SC02937H] [PMID: 34123123]
[100]
O’Neill, C.L.; Shrimali, P.C.; Clapacs, Z.P.; Files, M.A.; Rudra, J.S. Peptide-based supramolecular vaccine systems. Acta Biomater., 2021, 133, 153-167.
[http://dx.doi.org/10.1016/j.actbio.2021.05.003] [PMID: 34010691]
[101]
Trent, A.; Ulery, B.D.; Black, M.J.; Barrett, J.C.; Liang, S.; Kostenko, Y.; David, N.A.; Tirrell, M.V. Peptide amphiphile micelles self-adjuvant group A streptococcal vaccination. AAPS J., 2015, 17(2), 380-388.
[http://dx.doi.org/10.1208/s12248-014-9707-3] [PMID: 25527256]
[102]
Avila, L.A.; Aps, L.R.M.M.; Ploscariu, N.; Sukthankar, P.; Guo, R.; Wilkinson, K.E.; Games, P.; Szoszkiewicz, R.; Alves, R.P.S.; Diniz, M.O.; Fang, Y.; Ferreira, L.C.S.; Tomich, J.M. Gene delivery and immunomodulatory effects of plasmid DNA associated with branched amphiphilic peptide capsules. J. Control. Release, 2016, 241, 15-24.
[http://dx.doi.org/10.1016/j.jconrel.2016.08.042] [PMID: 27592740]
[103]
Sukthankar, P.; Avila, L.A.; Whitaker, S.K.; Iwamoto, T.; Morgenstern, A.; Apostolidis, C.; Liu, K.; Hanzlik, R.P.; Dadachova, E.; Tomich, J.M. Branched amphiphilic peptide capsules: Cellular uptake and retention of encapsulated solutes. Biochim. Biophys. Acta Biomembr., 2014, 1838(9), 2296-2305.
[http://dx.doi.org/10.1016/j.bbamem.2014.02.005] [PMID: 24565797]
[104]
Chen, C.H.; Hsu, E.L.; Stupp, S.I. Supramolecular self-assembling peptides to deliver bone morphogenetic proteins for skeletal regeneration. Bone, 2020, 141(July), 115565.
[http://dx.doi.org/10.1016/j.bone.2020.115565] [PMID: 32745692]
[105]
Gelain, F.; Luo, Z.; Zhang, S. Self-assembling peptide EAK16 and RADA16 nanofiber scaffold hydrogel. Chem. Rev., 2020, 120(24), 13434-13460.
[http://dx.doi.org/10.1021/acs.chemrev.0c00690] [PMID: 33216525]
[106]
Liu, X.; Ren, H.; Peng, A.; Cheng, H.; Chen, J.; Xia, X.; Liu, T.; Wang, X. The effect of RADA16-I and CDNF on neurogenesis and neuroprotection in brain ischemia-reperfusion injury. Int. J. Mol. Sci., 2022, 23(3), 1436.
[http://dx.doi.org/10.3390/ijms23031436] [PMID: 35163360]
[107]
Hosseinkhani, H.; Hosseinkhani, M.; Khademhosseini, A.; Kobayashi, H.; Tabata, Y. Enhanced angiogenesis through controlled release of basic fibroblast growth factor from peptide amphiphile for tissue regeneration. Biomaterials, 2006, 27(34), 5836-5844.
[http://dx.doi.org/10.1016/j.biomaterials.2006.08.003] [PMID: 16930687]
[108]
Chen, S.; Liu, Y.; Liang, R.; Hong, G.; An, J.; Peng, X.; Zheng, W-H.; Song, F. Self-assembly of amphiphilic peptides to construct activatable nanophotosensitizers for theranostic photodynamic therapy. Chin. Chem. Lett., 2021, 32(12), 3903-3906.
[http://dx.doi.org/10.1016/j.cclet.2021.06.041]
[109]
Son, K.; Takeoka, S.; Ito, Y.; Ueda, M. End-sealing of peptide nanotubes by cationic amphiphilic polypeptides and their salt-responsive accordion-like opening and closing behavior. Biomacromolecules, 2022, 23(7), 2785-2792.
[http://dx.doi.org/10.1021/acs.biomac.2c00153] [PMID: 35700101]
[110]
Yao, L.; Xu, J.; Zhang, L.; Zheng, T.; Liu, L.; Zhang, L. Physicochemical stability-increasing effects of anthocyanin via a co-assembly approach with an amphiphilic peptide. Food Chem., 2021, 362(May), 130101.
[http://dx.doi.org/10.1016/j.foodchem.2021.130101] [PMID: 34091173]
[111]
Michiue, H.; Kitamatsu, M.; Fukunaga, A.; Tsuboi, N.; Fujimura, A.; Matsushita, H.; Igawa, K.; Kasai, T.; Kondo, N.; Matsui, H.; Furuya, S. Self-assembling A6K peptide nanotubes as a mercaptoundecahydrododecaborate (BSH) delivery system for boron neutron capture therapy (BNCT). J. Control. Release, 2021, 330(330), 788-796.
[http://dx.doi.org/10.1016/j.jconrel.2020.11.001] [PMID: 33188824]
[112]
Chen, T.; Lyu, Y.; Tan, M.; Yang, C.; Li, Y.; Shao, C.; Zhu, Y.; Shan, A. Fabrication of supramolecular antibacterial nanofibers with membrane-disruptive mechanism. J. Med. Chem., 2021, 64(22), 16480-16496.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00829] [PMID: 34783241]
[113]
Peng, F.; Liu, J.; Zhang, Y.; Fan, J.; Gong, D.; He, L.; Zhang, W.; Qiu, F. Designer self-assembling peptide nanofibers induce biomineralization of lidocaine for slow-release and prolonged analgesia. Acta Biomater., 2022, 146, 66-79.
[http://dx.doi.org/10.1016/j.actbio.2022.05.002] [PMID: 35545185]
[114]
Liang, J.; Wu, W.L.; Xu, X.D.; Zhuo, R.X.; Zhang, X.Z. pH Responsive micelle self-assembled from a new amphiphilic peptide as anti-tumor drug carrier. Colloids Surf. B Biointerfaces, 2014, 114, 398-403.
[http://dx.doi.org/10.1016/j.colsurfb.2013.10.037] [PMID: 24257687]
[115]
Chang, C.; Liang, P.; Chen, L.; Liu, J.; Chen, S.; Zheng, G.; Quan, C. pH-responsive nanoparticle assembly from peptide amphiphiles for tumor targeting drug delivery. J. Biomater. Sci. Polym. Ed., 2017, 28(13), 1338-1350.
[http://dx.doi.org/10.1080/09205063.2017.1325095] [PMID: 28467173]
[116]
Wirth, T.; Parker, N.; Ylä-Herttuala, S. History of gene therapy. Gene, 2013, 525(2), 162-169.
[http://dx.doi.org/10.1016/j.gene.2013.03.137] [PMID: 23618815]
[117]
Hadianamrei, R.; Wang, J.; Brown, S.; Zhao, X. Rationally designed cationic amphiphilic peptides for selective gene delivery to cancer cells. Int. J. Pharm., 2022, 617(February), 121619.
[http://dx.doi.org/10.1016/j.ijpharm.2022.121619] [PMID: 35218898]
[118]
Liu, X.Y.; Zhang, X.; Yang, J.B.; Wu, C.Y.; Wang, Q.; Lu, Z.L.; Tang, Q. Multifunctional amphiphilic peptide dendrimer as nonviral gene vectors for effective cancer therapy via combined gene/photodynamic therapies. Colloids Surf. B Biointerfaces, 2022, 217(June), 112651.
[http://dx.doi.org/10.1016/j.colsurfb.2022.112651] [PMID: 35759892]
[119]
Yuan, X.; Luo, S.Z.; Chen, L. Novel branched amphiphilic peptides for nucleic acids delivery. Int. J. Pharm., 2022, 624(February), 121983.
[http://dx.doi.org/10.1016/j.ijpharm.2022.121983] [PMID: 35803534]
[120]
Qian, Y.; Wang, W.; Wang, Z.; Jia, X.; Han, Q.; Rostami, I.; Wang, Y.; Hu, Z. pH-Triggered peptide self-assembly for targeting imaging and therapy toward angiogenesis with enhanced signals. ACS Appl. Mater. Interfaces, 2018, 10(9), 7871-7881.
[http://dx.doi.org/10.1021/acsami.8b00583] [PMID: 29439558]
[121]
Tang, W.; Zhao, Z.; Chong, Y.; Wu, C.; Liu, Q.; Yang, J.; Zhou, R.; Lian, Z.X.; Liang, G. Tandem enzymatic self-assembly and slow release of dexamethasone enhances its antihepatic fibrosis effect. ACS Nano, 2018, 12(10), 9966-9973.
[http://dx.doi.org/10.1021/acsnano.8b04143] [PMID: 30285414]
[122]
Cao, M.; Lu, S.; Wang, N.; Xu, H.; Cox, H.; Li, R.; Waigh, T.; Han, Y.; Wang, Y.; Lu, J.R. Enzyme-triggered morphological transition of peptide nanostructures for tumor-targeted drug delivery and enhanced cancer therapy. ACS Appl. Mater. Interfaces, 2019, 11(18), 16357-16366.
[http://dx.doi.org/10.1021/acsami.9b03519] [PMID: 30991000]
[123]
Yao, L.; Xu, J.; Zhang, L.; Liu, L.; Zhang, L. Nanoencapsulation of anthocyanin by an amphiphilic peptide for stability enhancement. Food Hydrocoll., 2021, 118(March), 106741.
[http://dx.doi.org/10.1016/j.foodhyd.2021.106741]
[124]
Shinga, K.; Iwata, T.; Murata, K.; Daitoku, Y.; Michibata, J.; Arafiles, J.V.V.; Sakamoto, K.; Akishiba, M.; Takatani-Nakase, T.; Mizuno, S.; Sugiyama, F.; Imanishi, M.; Futaki, S. L17ER4: A cell-permeable attenuated cationic amphiphilic lytic peptide. Bioorg. Med. Chem., 2022, 61(February), 116728.
[http://dx.doi.org/10.1016/j.bmc.2022.116728] [PMID: 35395514]
[125]
Mohammed, E.H.M.; Lohan, S.; Tiwari, R.K.; Parang, K. Amphiphilic cyclic peptide [W4KR5]-Antibiotics combinations as broad-spectrum antimicrobial agents. Eur. J. Med. Chem., 2022, 235, 114278.
[http://dx.doi.org/10.1016/j.ejmech.2022.114278] [PMID: 35339840]
[126]
Klemm, P.; Solomun, J.I.; Rodewald, M.; Kuchenbrod, M.T.; Hänsch, V.G.; Richter, F.; Popp, J.; Hertweck, C.; Hoeppener, S.; Bonduelle, C.; Lecommandoux, S.; Traeger, A.; Schubert, S. Efficient gene delivery of tailored amphiphilic polypeptides by polyplex surfing. Biomacromolecules, 2022, 23(11), 4718-4733.
[http://dx.doi.org/10.1021/acs.biomac.2c00919] [PMID: 36269943]
[127]
Crombez, L.; Aldrian-Herrada, G.; Konate, K.; Nguyen, Q.N.; McMaster, G.K.; Brasseur, R.; Heitz, F.; Divita, G. A new potent secondary amphipathic cell-penetrating peptide for siRNA delivery into mammalian cells. Mol. Ther., 2009, 17(1), 95-103.
[http://dx.doi.org/10.1038/mt.2008.215] [PMID: 18957965]
[128]
Hadianamrei, R.; Tomeh, M.A.; Brown, S.; Wang, J.; Zhao, X. Rationally designed short cationic α-helical peptides with selective anticancer activity. J. Colloid Interface Sci., 2022, 607(Pt 1), 488-501.
[http://dx.doi.org/10.1016/j.jcis.2021.08.200] [PMID: 34509120]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy