Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Mini-Review Article

Insight into the Synthesis, Biological Activity, and Structure-activity Relationship of 1,2,4-Oxadiazole and Analogs: A Comprehensive Review

Author(s): Greesh Kumar, Rajnish Kumar*, Avijit Mazumder, Salahuddin, Himanshu Singh, Upendra Kumar, Mohd. Mustaqeem Abdullah, Mohammad Shahar Yar and Neeraj Kumar

Volume 21, Issue 9, 2024

Published on: 18 April, 2023

Page: [1437 - 1464] Pages: 28

DOI: 10.2174/1570180820666230330105308

Price: $65

conference banner
Abstract

A five-membered heterocyclic compound known as 1,2,4-oxadiazole has one oxygen, two carbon, and two nitrogen atoms within a ring. Numerous studies have shown that 1,2,4-oxadiazole has the potential to be an essential moiety in many harmful pharmacological conditions. 1,2,4-oxadiazole and its derivatives have been used as an antiviral, cough suppressant, vasodilator, anxiolytic, etc. To synthesize a single molecule with potent pharmacological action, two or more pharmacophores are combined currently. This enhances pharmacological effects, facilitates interaction possible with many targets, and reduces the adverse effects related to them. It has been reported that synthesis of 1,2,4-oxadiazole and its analog is possible using a variety of methods. In this present review, we emphasized recently accepted synthetic methods for 1,2,4-oxadiazole and its analogs synthesis. Additionally, the structure-activity relationship concerning several pharmacological effects, interactions with various targets, and the utility of different techniques for the analysis and purification has been described. On the behalf of the above study, the researchers can use this review study to better understand their 1,2,4-oxadiazole research in the future.

Keywords: 1, 2, 4-oxadiazole, chemical structure, synthetic approach, pharmacological potential, structure-activity relationship, targets.

Next »
Graphical Abstract
[1]
Kerru, N.; Gummidi, L.; Maddila, S.; Gangu, K.K.; Jonnalagadda, S.B. A review on recent advances in nitrogen-containing molecules and their biological applications. Molecules, 2020, 25(8), 1909.
[http://dx.doi.org/10.3390/molecules25081909] [PMID: 32326131]
[2]
De, S.S.; Khambete, M.P.; Degani, M.S. Oxadiazole scaffolds in anti-tuberculosis drug discovery. Bioorg. Med. Chem. Lett., 2019, 29(16), 1999-2007.
[http://dx.doi.org/10.1016/j.bmcl.2019.06.054] [PMID: 31296357]
[3]
Vismaya, V. In silico design and molecular docking studies of novel 2-(4-chlorophenyl)-5-aryl-1, 3, 4-oxadiazole derivatives for anti-cancer activity. J. Pharm. Sci. Res., 2019, 11(7), 2604-2609.
[4]
Brogan, J.T.; Stoops, S.L.; Lindsley, C.W. Total synthesis and biological evaluation of phidianidines A and B uncovers unique pharmacological profiles at CNS targets. ACS Chem. Neurosci., 2012, 3(9), 658-664.
[http://dx.doi.org/10.1021/cn300064r] [PMID: 23019492]
[5]
Lin, H.Y.; Snider, B.B. Synthesis of phidianidines A and B. J. Org. Chem., 2012, 77(10), 4832-4836.
[http://dx.doi.org/10.1021/jo300449n] [PMID: 22524523]
[6]
Manzo, E.; Pagano, D.; Carbone, M.; Ciavatta, M.L.; Gavagnin, M. Synthesis of Phidianidine B, a highly cytotoxic 1,2,4-oxadiazole marine metabolite. ARKIVOC, 2012, 2012(9), 220-228.
[http://dx.doi.org/10.3998/ark.5550190.0013.919]
[7]
Hermit, M.B.; Greenwood, J.R.; Bräuner-Osborne, H. Mutation-induced quisqualic acid and ibotenic acid affinity at the metabotropic glutamate receptor subtype 4: ligand selectivity results from a synergy of several amino acid residues. J. Biol. Chem., 2004, 279(33), 34811-34817.
[http://dx.doi.org/10.1074/jbc.M404109200] [PMID: 15184361]
[8]
Banik, B.K.; Sahoo, B.M.; Kumar, B.V.V.R.; Panda, K.C.; Jena, J.; Mahapatra, M.K.; Borah, P. Green synthetic approach: An efficient eco-friendly tool for synthesis of biologically active oxadiazole derivatives. Molecules, 2021, 26(4), 1163.
[http://dx.doi.org/10.3390/molecules26041163] [PMID: 33671751]
[9]
Wei, H.; He, C.; Zhang, J.; Shreeve, J.M. Combination of 1,2,4-Oxadiazole and 1,2,5-Oxadiazole Moieties for the Generation of High-Performance Energetic Materials. Angew. Chem. Int. Ed., 2015, 54(32), 9367-9371.
[http://dx.doi.org/10.1002/anie.201503532] [PMID: 26088918]
[10]
Atmaram, U.A.; Roopan, S.M. Biological activity of oxadiazole and thiadiazole derivatives. Appl. Microbiol. Biotechnol., 2022, 106(9-10), 3489-3505.
[http://dx.doi.org/10.1007/s00253-022-11969-0] [PMID: 35562490]
[11]
Pace, A.; Pierro, P. The new era of 1,2,4-oxadiazoles. Org. Biomol. Chem., 2009, 7(21), 4337-4348.
[http://dx.doi.org/10.1039/b908937c] [PMID: 19830279]
[12]
Pace, A.; Buscemi, S.; Vivona, N.; Silvestri, A.; Barone, G. Photochemistry of 1,2,4-oxadiazoles. A DFT study on photoinduced competitive rearrangements of 3-amino- and 3-n-methylamino-5-perfluoroalkyl-1,2,4-oxadiazoles. J. Org. Chem., 2006, 71(7), 2740-2749.
[http://dx.doi.org/10.1021/jo0525736] [PMID: 16555828]
[13]
Suzuki, J.; Okamura, D.; Gushikawa, T.; Hirai, K.; Ando, T. Synthesis and insecticidal activity of 1,2,4-oxadiazole and 1,2,4-thiadiazole derivatives. J. Pestic. Sci., 2011, 36(3), 392-401.
[http://dx.doi.org/10.1584/jpestics.G11-28]
[14]
Sakamoto, T.; Cullen, M.D.; Hartman, T.L.; Watson, K.M.; Buckheit, R.W.; Pannecouque, C.; De Clercq, E.; Cushman, M. Synthesis and anti-HIV activity of new metabolically stable alkenyldiarylmethane non-nucleoside reverse transcriptase inhibitors incorporating N-methoxy imidoyl halide and 1,2,4-oxadiazole systems. J. Med. Chem., 2007, 50(14), 3314-3321.
[http://dx.doi.org/10.1021/jm070236e] [PMID: 17579385]
[15]
Sangshetti, J.N.; Nagawade, R.R.; Shinde, D.B. Synthesis of novel 3-(1-(1-substituted piperidin-4-yl)-1H-1,2,3-triazol-4-yl)-1,2,4-oxadiazol-5(4H)-one as antifungal agents. Bioorg. Med. Chem. Lett., 2009, 19(13), 3564-3567.
[http://dx.doi.org/10.1016/j.bmcl.2009.04.134] [PMID: 19464891]
[16]
Kaur, P.; Bhat, Z.R.; Bhat, S.; Kumar, R.; Kumar, R.; Tikoo, K.; Gupta, J.; Khurana, N.; Kaur, J.; Khatik, G.L. Synthesis and evaluation of new 1,2,4-oxadiazole based trans- acrylic acid derivatives as potential PPAR-alpha/gamma dual agonist. Bioorg. Chem., 2020, 100, 103867.
[http://dx.doi.org/10.1016/j.bioorg.2020.103867] [PMID: 32353564]
[17]
Mohammadi-Khanaposhtani, M.; Mahdavi, M.; Saeedi, M.; Sabourian, R.; Safavi, M.; Khanavi, M.; Foroumadi, A.; Shafiee, A.; Akbarzadeh, T. Design, synthesis, biological evaluation, and docking study of acetylcholinesterase inhibitors: New acridone-1, 2, 4‐oxadiazole‐1, 2, 3‐triazole hybrids. Chem. Biol. Drug Des., 2015, 86(6), 1425-1432.
[http://dx.doi.org/10.1111/cbdd.12609] [PMID: 26077890]
[18]
Xu, L.L.; Zhu, J.F.; Xu, X.L.; Zhu, J.; Li, L.; Xi, M.Y.; Jiang, Z.Y.; Zhang, M.Y.; Liu, F.; Lu, M.; Bao, Q.C.; Li, Q.; Zhang, C.; Wei, J.L.; Zhang, X.J.; Zhang, L.S.; You, Q.D.; Sun, H.P. Discovery and modification of in vivo active Nrf2 activators with 1, 2, 4-oxadiazole core: hits identification and structure–activity relationship study. J. Med. Chem., 2015, 58(14), 5419-5436.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00170] [PMID: 26111355]
[19]
Tarasenko, M.V.; Presnukhina, S.I.; Baikov, S.V.; Shetnev, A.A. Synthesis and evaluation of antibacterial activity of 1, 2, 4-oxadiazole-containing biphenylcarboxylic acids. Russ. J. Gen. Chem., 2020, 90(9), 1611-1619.
[http://dx.doi.org/10.1134/S1070363220090042]
[20]
Ibrahim, T.S.; Almalki, A.J.; Moustafa, A.H.; Allam, R.M.; Abuo-Rahma, G.E.D.A.; El Subbagh, H.I.; Mohamed, M.F.A. Novel 1,2,4-oxadiazole-chalcone/oxime hybrids as potential antibacterial DNA gyrase inhibitors: Design, synthesis, ADMET prediction and molecular docking study. Bioorg. Chem., 2021, 111, 104885.
[http://dx.doi.org/10.1016/j.bioorg.2021.104885] [PMID: 33838559]
[21]
Mohamed, M.F.A.; Marzouk, A.A.; Nafady, A.; El-Gamal, D.A.; Allam, R.M.; Abuo-Rahma, G.E.D.A.; El Subbagh, H.I.; Moustafa, A.H. Design, synthesis and molecular modeling of novel aryl carboximidamides and 3-aryl-1,2,4-oxadiazoles derived from indomethacin as potent anti-inflammatory iNOS/PGE2 inhibitors. Bioorg. Chem., 2020, 105, 104439.
[http://dx.doi.org/10.1016/j.bioorg.2020.104439] [PMID: 33161252]
[22]
Potenza, M.; Sciarretta, M.; Chini, M.G.; Saviano, A.; Maione, F.; D’Auria, M.V.; De Marino, S.; Giordano, A.; Hofstetter, R.K.; Festa, C.; Werz, O.; Bifulco, G. Structure-based screening for the discovery of 1,2,4-oxadiazoles as promising hits for the development of new anti-inflammatory agents interfering with eicosanoid biosynthesis pathways. Eur. J. Med. Chem., 2021, 224, 113693.
[http://dx.doi.org/10.1016/j.ejmech.2021.113693] [PMID: 34315041]
[23]
Lankau, H.J.; Unverferth, K.; Grunwald, C.; Hartenhauer, H.; Heinecke, K.; Bernöster, K.; Dost, R.; Egerland, U.; Rundfeldt, C. New GABA-modulating 1,2,4-oxadiazole derivatives and their anticonvulsant activity. Eur. J. Med. Chem., 2007, 42(6), 873-879.
[http://dx.doi.org/10.1016/j.ejmech.2006.12.022] [PMID: 17303289]
[24]
Mohammadi-Khanaposhtani, M.; Ahangar, N.; Sobhani, S.; Masihi, P.H.; Shakiba, A.; Saeedi, M.; Akbarzadeh, T. Design, synthesis, in vivo, and in silico evaluation of new coumarin-1,2,4-oxadiazole hybrids as anticonvulsant agents. Bioorg. Chem., 2019, 89, 102989.
[http://dx.doi.org/10.1016/j.bioorg.2019.102989] [PMID: 31158578]
[25]
Reddy, K.T.; Sreenivasulu, R.; Raju, R.R. Synthesis and biological evaluation of 1, 2, 4-oxadiazole linked imidazopyrazine derivatives as anticancer agents. J. Indian Chem. Soc., 2019, 96, 1085-1090.
[26]
Kamal, A.; Reddy, T.S.; Vishnuvardhan, M.V.P.S.; Nimbarte, V.D.; Subba Rao, A.V.; Srinivasulu, V.; Shankaraiah, N. Synthesis of 2-aryl-1,2,4-oxadiazolo-benzimidazoles: Tubulin polymerization inhibitors and apoptosis inducing agents. Bioorg. Med. Chem., 2015, 23(15), 4608-4623.
[http://dx.doi.org/10.1016/j.bmc.2015.05.060] [PMID: 26169762]
[27]
Biernacki, K.; Daśko, M.; Ciupak, O.; Kubiński, K.; Rachon, J.; Demkowicz, S. Novel 1, 2, 4-oxadiazole derivatives in drug discovery. Pharmaceuticals (Basel), 2020, 13(6), 111.
[http://dx.doi.org/10.3390/ph13060111] [PMID: 32485996]
[28]
Benassi, A.; Doria, F.; Pirota, V. Groundbreaking anticancer activity of highly diversified oxadiazole scaffolds. Int. J. Mol. Sci., 2020, 21(22), 8692.
[http://dx.doi.org/10.3390/ijms21228692] [PMID: 33217987]
[29]
Pace, A.; Buscemi, S.; Piccionello, A.P.; Pibiri, I. Recent advances in the chemistry of 1, 2, 4-oxadiazoles. Adv. Heterocycl. Chem., 2015, 116, 85-136.
[http://dx.doi.org/10.1016/bs.aihch.2015.05.001]
[30]
Sharma, K.; Mohan, T.P.; Gangwar, U.; Chopra, D. Role of lone pair- π interaction and halogen bonding in the crystal packing of 1,2,4-oxadiazole derivatives. J. Mol. Struct., 2019, 1197, 742-752.
[http://dx.doi.org/10.1016/j.molstruc.2019.07.107]
[31]
Palumbo Piccionello, A.; Pace, A.; Buscemi, S. Tandem reactions of 1,2,4-oxadiazoles with allylamines. Org. Lett., 2011, 13(17), 4749-4751.
[http://dx.doi.org/10.1021/ol201676g] [PMID: 21827137]
[32]
Buscemi, S.; Pace, A.; Palumbo Piccionello, A.; Vivona, N.; Pani, M. One-pot synthesis of fluorinated 2-amino-pyrimidine-N-oxides. Competing pathways in the four-atom side-chain rearrangements of 1,2,4-oxadiazoles. Tetrahedron, 2006, 62(6), 1158-1164.
[http://dx.doi.org/10.1016/j.tet.2005.10.071]
[33]
Castro, A.; Castaño, T.; Encinas, A.; Porcal, W.; Gil, C. Advances in the synthesis and recent therapeutic applications of 1,2,4-thiadiazole heterocycles. Bioorg. Med. Chem., 2006, 14(5), 1644-1652.
[http://dx.doi.org/10.1016/j.bmc.2005.10.012] [PMID: 16249092]
[34]
Wang, Y.F.; Zhang, F.L.; Chiba, S. Oxidative radical skeletal rearrangement induced by molecular oxygen: Synthesis of quinazolinones. Org. Lett., 2013, 15(11), 2842-2845.
[http://dx.doi.org/10.1021/ol4011745] [PMID: 23692460]
[35]
Micheletti, G.; Frenna, V.; Macaluso, G.; Boga, C.; Spinelli, D. Mononuclear Rearrangement of the Z -Phenylhydrazones of Some 3-Acyl-1,2,4-oxadiazoles: Effect of Substituents on the Nucleophilic Character of the >C=N–NH–C 6 H 5 Chain and on the Charge Density of N-2 of the 1,2,4-Oxadiazole Ring (Electrophilic Counterpart). J. Org. Chem., 2019, 84(5), 2462-2469.
[http://dx.doi.org/10.1021/acs.joc.8b02305] [PMID: 30695638]
[36]
Piccionello, A.P.; Pace, A.; Buscemi, S.; Vivona, N. An ANRORC approach to the synthesis of perfluoroalkylated 1,2,4-triazole-carboxamides. ARKIVOC, 2009, 2009(6), 235-244.
[http://dx.doi.org/10.3998/ark.5550190.0010.624]
[37]
Pace, A.; Pibiri, I.; Buscemi, S.; Vivona, N.; Malpezzi, L. Photochemistry of fluorinated heterocyclic compounds. An expedient route for the synthesis of fluorinated 1,3,4-oxadiazoles and 1,2,4-triazoles. J. Org. Chem., 2004, 69(12), 4108-4115.
[http://dx.doi.org/10.1021/jo049814e] [PMID: 15176836]
[38]
Palumbo Piccionello, A.; Guarcello, A.; Buscemi, S.; Vivona, N.; Pace, A. Synthesis of amino-1,2,4-triazoles by reductive ANRORC rearrangements of 1,2,4-oxadiazoles. J. Org. Chem., 2010, 75(24), 8724-8727.
[http://dx.doi.org/10.1021/jo102049r] [PMID: 21080723]
[39]
Yang, F.; Yu, J.; Liu, Y.; Zhu, J. Cobalt(III)-catalyzed oxadiazole-directed C-H activation for the synthesis of 1-aminoisoquinolines. Org. Lett., 2017, 19(11), 2885-2888.
[http://dx.doi.org/10.1021/acs.orglett.7b01119] [PMID: 28520439]
[40]
Bhattacharyya, S.; Rana, D.; Bhattacharyya, S.N. A Thermodynamic Study of molecular association by gas-liquid chromatography: Trilaurylaminealcohol systems. J. Indian Chem. Soc., 1997, 74(7), 548-551.
[41]
Bhattacharyya, S.; Rana, D.; Bhattacharyya, S.N. Determination of heat of formation of associated systems by calorimetry. J. Indian Chem. Soc., 1997, 74(2), 103-107.
[42]
Critchley, J.P.; Pippett, J.S. 1,2,4-oxadialazolyl perfluoro-olefins. J. Fluor. Chem., 1972, 2(2), 157-165.
[http://dx.doi.org/10.1016/S0022-1139(00)83499-5]
[43]
Aguiar, D.F.; Dutra, L.L.A.; Dantas, W.M.; Camelo de Carvalho, G.G.; Gonçalves Lemes, R.P.; do Ó Pessoa, C.; Koscky Paier, C.R.; Barros Araujo, P.L.; Araujo, E.S.; Pena, L.J.; de Oliveira, R.N. Synthesis, Antitumor and Cytotoxic Activity of New Adamantyl O‐Acylamidoximes and 3‐Aryl‐5‐Adamantane‐1,2,4‐Oxadiazole Derivatives. ChemistrySelect, 2019, 4(31), 9112-9118.
[http://dx.doi.org/10.1002/slct.201901285]
[44]
Ali, G.Q.; Tomi, I.H.R. Synthesis and characterization of new mesogenic esters derived from 1,2,4-oxadiazole and study the effect of alkoxy chain length in their liquid crystalline properties. Liq. Cryst., 2018, 45(3), 421-430.
[http://dx.doi.org/10.1080/02678292.2017.1338767]
[45]
Pubchem National Library of Medicines. 2015. Available from: https://pubchem.ncbi.nlm.nih.gov/#query=1%2C2%2C4oxadiazole&tab=patent&filters=true&grantdate_gte= 2015 (Accessed on: March 30, 2022).
[46]
Pubchem National Library of Medicines. 2015. Available from: hhttps://pubchem.ncbi.nlm.nih.gov/#query=1%2C2%2C4oxadiazole&tab=pubmed&articlepubdate_gte=2015&filters=true (Accessed on: Oct 4, 2022).
[47]
Pottayil, G.N.S.; Muralidhara, R.; Seetharamaiah, S.S.N.; Chennakrishnareddy, G. Inhibitors of CD47 signallling pathway. Patent US20190218252A1, 2019.
[48]
Javier, F. Treatment of stemming bleeding and cancer. Patent WO2020060964A1, 2020.
[49]
Thomas, J.; Regis, J.G.; Edouard, G.; Wolfgang, S.; Sujit, K. Microbiocidal. Patent WO2020212513A1, 2020.
[50]
Pottayil, G.N.S.; Muralidhara, R.; Seetharamaiah, S.S.N.; Nagraj, G. Dual inhibitors of TEM-3 and programmed cell death 1 PD(1) signaling pathway. Patent US20200368210A1, 2020.
[51]
Elena, A. Histone deacetylase 6 (HDAC6) Inhibitors. Patent WO2020245381A1, 2020.
[52]
Pottayil, G.N.S.; Muralidhana, R.; Seetharamaiah, S.S.N. Immunomodulators. Patent US10961205B2, 2021.
[53]
McCarty, N.; Guiying, C. Management of CFTR Protein mediated diseases. Patent US11020379B2, 2021.
[54]
Kelly, D.B.; Yi, F.; Zhihong, H.; Kathryn, T.L.; Fupeng, M.; Valentina, M.; Duncan, S.; Jeffrey, S.; Catherine, F.S. Meibomian gland dysfunction. Patent WO2021105857A1, 2021.
[55]
Irina, V.S.; Irina, I.P.; Natalia, A.Z.; Sirozhiddin, A.N.; Yulia, V.M.; Dmitry, S.B.; Sergey, G.T.; Nariman, F.S. Prostateprotective agents, hypocholesterolemic and anti inflammatory. Patent RU2750488C1, 2021.
[56]
Jaroslav, R; Galina, K; Petr, P; Alexander, H. Anti tuberculosis. Patent US20210403443A1, 2021.
[57]
Pitasse-Santos, P.; Sueth-Santiago, V.; Lima, M.E. 1, 2, 4-and 1, 3, 4-oxadiazoles as scaffolds in the development of antiparasitic agents. J. Braz. Chem. Soc., 2018, 29, 435-456.
[58]
Zakeri, M.; Heravi, M.M.; Abouzari-Lotf, E. A new one-pot synthesis of 1,2,4-oxadiazoles from aryl nitriles, hydroxylamine and crotonoyl chloride. J. Chem. Sci., 2013, 125(4), 731-735.
[http://dx.doi.org/10.1007/s12039-013-0426-6]
[59]
Jakopin, Ž.; Roškar, R.; Dolenc, M.S. Synthesis of 3,5-disubstituted 1,2,4-oxadiazoles as peptidomimetic building blocks. Tetrahedron Lett., 2007, 48(8), 1465-1468.
[http://dx.doi.org/10.1016/j.tetlet.2006.12.077]
[60]
Hou, X.; Zhu, J.; Chen, B.C.; Watterson, S.H.; Pitts, W.J.; Dyckman, A.J.; Carter, P.H.; Mathur, A.; Zhang, H. An efficient scale-up synthesis of BMS-520, a potent and selective isoxazole-containing S1P1 receptor agonist. Org. Process Res. Dev., 2016, 20(5), 989-995.
[http://dx.doi.org/10.1021/acs.oprd.6b00112]
[61]
Zarei, M. A mild and efficient one-pot preparation of 1,2,4-oxadiazoles from nitriles and carboxylic acids using vilsmeier reagent. ChemistrySelect, 2018, 3(40), 11273-11276.
[http://dx.doi.org/10.1002/slct.201801857]
[62]
Swarup, H.A.; Chaithra, N.; Mantelingu, K.; Rangappa, K.S. Green synthetic approach for the construction of 3,5-disubstituted 1,2,4-oxadiazoles and ataluren analogues from dithioesters using water. ChemistrySelect, 2018, 3(19), 5390-5394.
[http://dx.doi.org/10.1002/slct.201800886]
[63]
Lade, J.J.; Patil, B.N.; Vadagaonkar, K.S.; Chaskar, A.C. Oxidative cyclization of amidoximes and thiohydroximic acids: A facile and efficient strategy for accessing 3,5-disubstituted 1,2,4-oxadiazoles and 1,4,2-oxathiazoles. Tetrahedron Lett., 2017, 58(22), 2103-2108.
[http://dx.doi.org/10.1016/j.tetlet.2017.04.045]
[64]
Baykov, S.; Semenov, A.; Tarasenko, M.; Boyarskiy, V.P. Application of amidoximes for the heterocycles synthesis. Tetrahedron Lett., 2020, 61(42), 152403.
[http://dx.doi.org/10.1016/j.tetlet.2020.152403]
[65]
Benmansour, F.; Eydoux, C.; Querat, G.; de Lamballerie, X.; Canard, B.; Alvarez, K.; Guillemot, J.C.; Barral, K. Novel 2-phenyl-5-[(E)-2-(thiophen-2-yl)ethenyl]-1,3,4-oxadiazole and 3-phenyl-5-[(E)-2-(thiophen-2-yl)ethenyl]-1,2,4-oxadiazole derivatives as dengue virus inhibitors targeting NS5 polymerase. Eur. J. Med. Chem., 2016, 109, 146-156.
[http://dx.doi.org/10.1016/j.ejmech.2015.12.046] [PMID: 26774922]
[66]
Nandeesh, K.N.; Swarup, H.A.; Sandhya, N.C.; Mohan, C.D.; Pavan Kumar, C.S.; Kumara, M.N.; Mantelingu, K.; Ananda, S.; Rangappa, K.S. Synthesis and antiproliferative efficiency of novel bis(imidazol-1-yl)vinyl-1,2,4-oxadiazoles. New J. Chem., 2016, 40(3), 2823-2828.
[http://dx.doi.org/10.1039/C5NJ02925B]
[67]
Du, H.C.; Bangs, M.C.; Simmons, N.; Matzuk, M.M. Multistep synthesis of 1, 2, 4-oxadiazoles via DNA-conjugated aryl nitrile substrates. Bioconjug. Chem., 2019, 30(5), 1304-1308.
[http://dx.doi.org/10.1021/acs.bioconjchem.9b00188] [PMID: 30964278]
[68]
Tarasenko, M.; Duderin, N.; Sharonova, T.; Baykov, S.; Shetnev, A.; Smirnov, A.V. Room-temperature synthesis of pharmaceutically important carboxylic acids bearing the 1,2,4-oxadiazole moiety. Tetrahedron Lett., 2017, 58(37), 3672-3677.
[http://dx.doi.org/10.1016/j.tetlet.2017.08.020]
[69]
Baykov, S.; Sharonova, T.; Shetnev, A.; Rozhkov, S.; Kalinin, S.; Smirnov, A.V. The first one-pot ambient-temperature synthesis of 1,2,4-oxadiazoles from amidoximes and carboxylic acid esters. Tetrahedron, 2017, 73(7), 945-951.
[http://dx.doi.org/10.1016/j.tet.2017.01.007]
[70]
Guo, J.; Hua, R.; Sui, Y.; Cao, J. Synthesis of 3,5-disubstituted 1,2,4-oxadiazoles and their behavior of liquid crystallines. Tetrahedron Lett., 2014, 55(9), 1557-1560.
[http://dx.doi.org/10.1016/j.tetlet.2014.01.066]
[71]
Asgari, M.; Memarian, H.R.; Sabzyan, H. Experimental and computational spectroscopic studies of 3,5-disubstituted 4,5-dihydro-1,2,4-oxadiazoles. J. Mol. Struct., 2020, 1207, 127820.
[http://dx.doi.org/10.1016/j.molstruc.2020.127820]
[72]
Teslenko, F.E.; Churakov, A.I.; Larin, A.A.; Ananyev, I.V.; Fershtat, L.L.; Makhova, N.N. Route to 1,2,4- and 1,2,5-oxadiazole ring assemblies via a one-pot condensation/oxidation protocol. Tetrahedron Lett., 2020, 61(13), 151678.
[http://dx.doi.org/10.1016/j.tetlet.2020.151678]
[73]
Das, B.C.; Tang, X.Y.; Rogler, P.; Evans, T. Design and synthesis of 3,5-disubstituted boron-containing 1,2,4-oxadiazoles as potential combretastatin A-4 (CA-4) analogs. Tetrahedron Lett., 2012, 53(31), 3947-3950.
[http://dx.doi.org/10.1016/j.tetlet.2012.02.110] [PMID: 24039307]
[74]
Kaboudin, B.; Saadati, F. Novel method for the synthesis of 1,2,4-oxadiazoles using alumina supported ammonium fluoride under solvent-free condition. J. Heterocycl. Chem., 2005, 42(4), 699-701.
[http://dx.doi.org/10.1002/jhet.5570420434]
[75]
Wolf, L.; Mayer, J.C.P.; Quoos, N.; Sauer, A.C.; Schwab, R.S.; Rodrigues, O.E.D.; Dornelles, L. One-pot synthesis of 1,2,4-oxadiazoles from chalcogen amino acid derivatives under microwave irradiation. Tetrahedron, 2021, 91, 132222.
[http://dx.doi.org/10.1016/j.tet.2021.132222]
[76]
Rostamizadeh, S.; Ghaieni, H.R.; Aryan, R.; Amani, A.M. Clean one-pot synthesis of 1,2,4-oxadiazoles under solvent-free conditions using microwave irradiation and potassium fluoride as catalyst and solid support. Tetrahedron, 2010, 66(2), 494-497.
[http://dx.doi.org/10.1016/j.tet.2009.11.063]
[77]
Kandre, S.; Bhagat, P.R.; Sharma, R.; Gupte, A. Microwave assisted synthesis of 3,5-disubstituted 1,2,4-oxadiazoles from substituted amidoximes and benzoyl cyanides. Tetrahedron Lett., 2013, 54(27), 3526-3529.
[http://dx.doi.org/10.1016/j.tetlet.2013.04.101]
[78]
de Oliveira, V.N.M.; dos Santos, F.G.; Ferreira, V.P.G.; Araújo, H.M.; do Ó Pessoa, C.; Nicolete, R.; de Oliveira, R.N. Focused microwave irradiation-assisted synthesis of N -cyclohexyl-1,2,4-oxadiazole derivatives with antitumor activity. Synth. Commun., 2018, 48(19), 2522-2532.
[http://dx.doi.org/10.1080/00397911.2018.1509350]
[79]
Suresh, D.; Kanagaraj, K.; Pitchumani, K. Microwave promoted one-pot synthesis of 2-aryl substituted 1,3,4-oxadiazoles and 1,2,4-oxadiazole derivatives using Al3+-K10 clay as a heterogeneous catalyst. Tetrahedron Lett., 2014, 55(27), 3678-3682.
[http://dx.doi.org/10.1016/j.tetlet.2014.05.004]
[80]
Bretanha, L.C.; Teixeira, V.E.; Ritter, M.; Siqueira, G.M.; Cunico, W.; Pereira, C.M.P.; Freitag, R.A. Ultrasound-promoted synthesis of 3-trichloromethyl-5-alkyl(aryl)-1,2,4-oxadiazoles. Ultrason. Sonochem., 2011, 18(3), 704-707.
[http://dx.doi.org/10.1016/j.ultsonch.2010.09.016] [PMID: 21115383]
[81]
Kaboudin, B.; Malekzadeh, L. Organic reactions in water: An efficient method for the synthesis of 1,2,4-oxadiazoles in water. Tetrahedron Lett., 2011, 52(48), 6424-6426.
[http://dx.doi.org/10.1016/j.tetlet.2011.09.081]
[82]
Darehkordi, A.; Ramezani, M.; Rahmani, F. TiO 2 -Nanoparticles Catalyzed Synthesis of New Trifluoromethyl-4,5-dihydro-1,2,4-oxadiazoles and Trifluoromethyl-1,2,4-oxadiazoles. J. Heterocycl. Chem., 2018, 55(7), 1702-1708.
[http://dx.doi.org/10.1002/jhet.3207]
[83]
Wang, X.; Fu, J.P.; Xie, J.X.; Teng, Q.H.; Tang, H.T.; Pan, Y.M. Palladium-catalyzed synthesis of 5-amino-1,2,4-oxadiazoles via isocyanide insertion. Org. Biomol. Chem., 2020, 18(26), 4936-4940.
[http://dx.doi.org/10.1039/D0OB01092H] [PMID: 32583841]
[84]
Wang, C.; Rui, X.; Si, D.; Dai, R.; Zhu, Y.; Wen, H.; Li, W.; Liu, J. Copper-catalyzed three-component cascade reaction of benzaldehyde with benzylamine and hydroxylamine or aniline: Synthesis of 1,2,4-oxadiazoles and quinazolines. Adv. Synth. Catal., 2021, 363(11), 2825-2833.
[http://dx.doi.org/10.1002/adsc.202001535]
[85]
Sau, P.; Rakshit, A.; Alam, T.; Srivastava, H.K.; Patel, B.K. tert -Butyl Nitrite Mediated Synthesis of 1,2,4-Oxadiazol-5(4 H)-ones from Terminal Aryl Alkenes. Org. Lett., 2019, 21(13), 4966-4970.
[http://dx.doi.org/10.1021/acs.orglett.9b01430] [PMID: 31247805]
[86]
Chalyk, B.A.; Sosedko, A.S.; Volochnyuk, D.M.; Tolmachev, A.A.; Gavrilenko, K.S.; Liashuk, O.S.; Grygorenko, O.O. Regioselective synthesis of isoxazole and 1,2,4-oxadiazole-derived phosphonates via [3 + 2] cycloaddition. Org. Biomol. Chem., 2018, 16(47), 9152-9164.
[http://dx.doi.org/10.1039/C8OB02257G] [PMID: 30303234]
[87]
Jiang, K.M.; Luesakul, U.; Zhao, S.Y.; An, K.; Muangsin, N.; Neamati, N.; Jin, Y.; Lin, J. Tautomeric-dependent lactam cycloaddition with nitrile oxide: Facile synthesis of 1,2,4-oxadiazole[4,5- a]indolone derivatives. ACS Omega, 2017, 2(7), 3123-3134.
[http://dx.doi.org/10.1021/acsomega.7b00490] [PMID: 30023685]
[88]
Jiang, K.M.; Zhang, J.Q.; Jin, Y.; Lin, J. 1,3-Dipolar cycloaddition of imidazole derivatives with nitrile oxide: Synthesis of imidazo[1,2,4]oxadiazole derivatives. Asian J. Org. Chem., 2017, 6(11), 1620-1627.
[http://dx.doi.org/10.1002/ajoc.201700347]
[89]
Jiang, H.; Zhao, J.; Han, X.; Zhu, S. Stereoselective preparation of 1,2,4-oxadiazole derivatives substituted by pentafluorophenyl by 1,3-dipolar cycloaddition reaction. Tetrahedron, 2006, 62(47), 11008-11011.
[http://dx.doi.org/10.1016/j.tet.2006.06.119]
[90]
Chainikova, E.M.; Abdullin, M.F.; Lobov, A.N.; Teregulova, A.N.; Safiullin, R.L. Formation of 1,2,4-oxadiazoles in the course of photooxidation of aromatic azides in acetonitrile. Mendeleev Commun., 2021, 31(2), 233-235.
[http://dx.doi.org/10.1016/j.mencom.2021.03.029]
[91]
Cai, B.G.; Chen, Z.L.; Xu, G.Y.; Xuan, J.; Xiao, W.J. [3+ 2]-Cycloaddition of 2 H-azirines with nitrosoarenes: visible-light-promoted synthesis of 2, 5-dihydro-1, 2, 4-oxadiazoles. Org. Lett., 2019, 21(11), 4234-4238.
[http://dx.doi.org/10.1021/acs.orglett.9b01416] [PMID: 31095398]
[92]
Piccionello, A.P.; Pace, A.; Buscemi, S. Rearrangements of 1, 2, 4-oxadiazole:“one ring to rule them all”. Chem. Heterocycl. Compd., 2017, 53(9), 936-947.
[http://dx.doi.org/10.1007/s10593-017-2154-1]
[93]
Bian, Q.; Wu, C.; Yuan, J.; Shi, Z.; Ding, T.; Huang, Y.; Xu, H.; Xu, Y. Iron nitrate-mediated selective synthesis of 3-acyl-1,2,4-oxadiazoles from alkynes and nitriles: The dual roles of iron nitrate. J. Org. Chem., 2020, 85(6), 4058-4066.
[http://dx.doi.org/10.1021/acs.joc.9b03070] [PMID: 31994881]
[94]
Kuram, M.R.; Kim, W.G.; Myung, K.; Hong, S.Y. Copper-catalyzed direct synthesis of 1, 2, 4-oxadiazoles from amides and organic nitriles by oxidative N–O bond formation. Eur. J. Org. Chem., 2016, 2016(3)
[95]
Melekhova, A.A.; Smirnov, A.S.; Novikov, A.S.; Panikorovskii, T.L.; Bokach, N.A.; Kukushkin, V.Y. Copper (I)-catalyzed 1, 3-dipolar cycloaddition of ketonitrones to dialkylcyanamides: A step toward sustainable generation of 2, 3-dihydro-1, 2, 4-oxadiazoles. ACS Omega, 2017, 2(4), 1380-1391.
[http://dx.doi.org/10.1021/acsomega.7b00130] [PMID: 31457510]
[96]
Mercalli, V.; Massarotti, A.; Varese, M.; Giustiniano, M.; Meneghetti, F.; Novellino, E.; Tron, G.C. Multicomponent reaction of Z-chlorooximes, isocyanides, and hydroxylamines as hypernucleophilic traps. A one-pot route to aminodioximes and their transformation into 5-amino-1, 2, 4-oxadiazoles by mitsunobu–beckmann rearrangement. J. Org. Chem., 2015, 80(19), 9652-9661.
[http://dx.doi.org/10.1021/acs.joc.5b01676] [PMID: 26360930]
[97]
Golushko, A.A.; Khoroshilova, O.V.; Vasilyev, A.V. Synthesis of 1, 2, 4-oxadiazoles by tandem reaction of nitroalkenes with arenes and nitriles in the superacid TfOH. J. Org. Chem., 2019, 84(11), 7495-7500.
[http://dx.doi.org/10.1021/acs.joc.9b00812] [PMID: 31117566]
[98]
Shi, J.; Wang, Y.; Chen, J.; Lao, Y.; Huang, P.; Liao, L.; Jiang, C.; Li, X.; Wen, J.; Zhou, S.; Zhang, J. Synthesis and biological evaluation of 1,2,4-oxadiazole core derivatives as potential neuroprotectants against acute ischemic stroke. Neurochem. Int., 2021, 148, 105103.
[http://dx.doi.org/10.1016/j.neuint.2021.105103] [PMID: 34147514]
[99]
Abdildinova, A.; Gong, Y.D. Current parallel solid-phase synthesis of drug-like oxadiazole and thiadiazole derivatives for combinatorial chemistry. ACS Comb. Sci., 2018, 20(6), 309-329.
[http://dx.doi.org/10.1021/acscombsci.8b00044] [PMID: 29714475]
[100]
Avanzo, R.E.; Padrón, J.M.; D’Accorso, N.B.; Fascio, M.L. Synthesis and in vitro antiproliferative activities of (5-aryl-1,2,4-oxadiazole-3-yl) methyl d-ribofuranosides. Bioorg. Med. Chem. Lett., 2017, 27(16), 3674-3677.
[http://dx.doi.org/10.1016/j.bmcl.2017.07.015] [PMID: 28716494]
[101]
Abd el hameid, M.K.; Mohammed, M.R. Design, synthesis, and cytotoxicity screening of 5-aryl-3-(2-(pyrrolyl) thiophenyl)-1, 2, 4-oxadiazoles as potential antitumor molecules on breast cancer MCF-7 cells. Bioorg. Chem., 2019, 86, 609-623.
[http://dx.doi.org/10.1016/j.bioorg.2019.01.067] [PMID: 30807934]
[102]
Polothi, R.; Raolji, G.S.B.; Kuchibhotla, V.S.; Sheelam, K.; Tuniki, B.; Thodupunuri, P. Synthesis and biological evaluation of 1,2,4-oxadiazole linked 1,3,4-oxadiazole derivatives as tubulin binding agents. Synth. Commun., 2019, 49(13), 1603-1612.
[http://dx.doi.org/10.1080/00397911.2018.1535076]
[103]
Cascioferro, S.; Attanzio, A.; Di Sarno, V.; Musella, S.; Tesoriere, L.; Cirrincione, G.; Diana, P.; Parrino, B. New 1, 2, 4-oxadiazole nortopsentin derivatives with cytotoxic activity. Mar. Drugs, 2019, 17(1), 35.
[http://dx.doi.org/10.3390/md17010035] [PMID: 30626057]
[104]
Yang, Z.; Shen, M.; Tang, M.; Zhang, W.; Cui, X.; Zhang, Z.; Pei, H.; Li, Y.; Hu, M.; Bai, P.; Chen, L. Discovery of 1,2,4-oxadiazole-Containing hydroxamic acid derivatives as histone deacetylase inhibitors potential application in cancer therapy. Eur. J. Med. Chem., 2019, 178, 116-130.
[http://dx.doi.org/10.1016/j.ejmech.2019.05.089] [PMID: 31177073]
[105]
Han, M.; Li, S.; Ai, J.; Sheng, R.; Hu, Y.; Hu, Y.; Geng, M. Discovery of 4-chloro-3-(5-(pyridin-3-yl)-1,2,4-oxadiazole-3-yl)benzamides as novel RET kinase inhibitors. Bioorg. Med. Chem. Lett., 2016, 26(23), 5679-5684.
[http://dx.doi.org/10.1016/j.bmcl.2016.10.061] [PMID: 27815117]
[106]
Ningaiah, S.; Bhadraiah, U.K.; Keshavamurthy, S.; Javarasetty, C. Novel pyrazoline amidoxime and their 1,2,4-oxadiazole analogues: Synthesis and pharmacological screening. Bioorg. Med. Chem. Lett., 2013, 23(16), 4532-4539.
[http://dx.doi.org/10.1016/j.bmcl.2013.06.042] [PMID: 23850201]
[107]
Shi, G.; He, X.; Shang, Y.; Xiang, L.; Yang, C.; Han, G.; Du, B. Synthesis of 3′,4′-Diaryl-4′ H -spiro[indoline-3,5′-[1′,2′,4′]oxadiazol]-2-ones via DMAP-catalyzed domino reactions and their antibacterial activity. Chin. J. Chem., 2016, 34(9), 901-909.
[http://dx.doi.org/10.1002/cjoc.201600285]
[108]
Shetnev, A.; Baykov, S.; Kalinin, S.; Belova, A.; Sharoyko, V.; Rozhkov, A.; Zelenkov, L.; Tarasenko, M.; Sadykov, E.; Korsakov, M.; Krasavin, M. 1, 2, 4-Oxadiazole/2-imidazoline hybrids: Multi-target-directed compounds for the treatment of infectious diseases and cancer. Int. J. Mol. Sci., 2019, 20(7), 1699.
[http://dx.doi.org/10.3390/ijms20071699] [PMID: 30959765]
[109]
Pitcher, N.P.; Harjani, J.R.; Zhao, Y.; Jin, J.; Knight, D.R.; Li, L.; Putsathit, P.; Riley, T.V.; Carter, G.P.; Baell, J.B. Development of 1, 2, 4-oxadiazole antimicrobial agents to treat enteric pathogens within the gastrointestinal tract. ACS Omega, 2022, 7(8), 6737-6759.
[http://dx.doi.org/10.1021/acsomega.1c06294] [PMID: 35252669]
[110]
Diwakar, S.D.; Joshi, R.S.; Gill, C.H. Synthesis and in vitro antibacterial assessment of novel chromones featuring 1,2,4-oxadiazole. J. Heterocycl. Chem., 2011, 48(4), 882-887.
[http://dx.doi.org/10.1002/jhet.656]
[111]
Spink, E.; Ding, D.; Peng, Z.; Boudreau, M.A.; Leemans, E.; Lastochkin, E.; Song, W.; Lichtenwalter, K.; O’Daniel, P.I.; Testero, S.A.; Pi, H.; Schroeder, V.A.; Wolter, W.R.; Antunes, N.T.; Suckow, M.A.; Vakulenko, S.; Chang, M.; Mobashery, S. Structure-activity relationship for the oxadiazole class of antibiotics. J. Med. Chem., 2015, 58(3), 1380-1389.
[http://dx.doi.org/10.1021/jm501661f] [PMID: 25590813]
[112]
Fortuna, C.G.; Berardozzi, R.; Bonaccorso, C.; Caltabiano, G.; Di Bari, L.; Goracci, L.; Guarcello, A.; Pace, A.; Palumbo Piccionello, A.; Pescitelli, G.; Pierro, P.; Lonati, E.; Bulbarelli, A.; Cocuzza, C.E.A.; Musumarra, G.; Musumeci, R. New potent antibacterials against Gram-positive multiresistant pathogens: Effects of side chain modification and chirality in linezolid-like 1,2,4-oxadiazoles. Bioorg. Med. Chem., 2014, 22(24), 6814-6825.
[http://dx.doi.org/10.1016/j.bmc.2014.10.037] [PMID: 25464880]
[113]
Cunha, F.; Nogueira, J.; de Aguiar, A. Synthesis and antibacterial evaluation of 3, 5-diaryl-1, 2, 4-oxadiazole derivatives. J. Braz. Chem. Soc., 2018, 29, 2405-2416.
[http://dx.doi.org/10.21577/0103-5053.20180118]
[114]
Parrino, B.; Carbone, D.; Cascioferro, S.; Pecoraro, C.; Giovannetti, E.; Deng, D.; Di Sarno, V.; Musella, S.; Auriemma, G.; Cusimano, M.G.; Schillaci, D.; Cirrincione, G.; Diana, P. 1,2,4-Oxadiazole topsentin analogs as staphylococcal biofilm inhibitors targeting the bacterial transpeptidase sortase A. Eur. J. Med. Chem., 2021, 209, 112892.
[http://dx.doi.org/10.1016/j.ejmech.2020.112892] [PMID: 33035921]
[115]
Deb, P.K.; Al-Shar’i, N.A.; Venugopala, K.N.; Pillay, M.; Borah, P. In vitro anti-TB properties, in silico target validation, molecular docking and dynamics studies of substituted 1,2,4-oxadiazole analogues against Mycobacterium tuberculosis. J. Enzyme Inhib. Med. Chem., 2021, 36(1), 869-884.
[http://dx.doi.org/10.1080/14756366.2021.1900162] [PMID: 34060396]
[116]
Flipo, M.; Desroses, M.; Lecat-Guillet, N.; Dirié, B.; Carette, X.; Leroux, F.; Piveteau, C.; Demirkaya, F.; Lens, Z.; Rucktooa, P.; Villeret, V.; Christophe, T.; Jeon, H.K.; Locht, C.; Brodin, P.; Déprez, B.; Baulard, A.R.; Willand, N. Ethionamide boosters: synthesis, biological activity, and structure-activity relationships of a series of 1,2,4-oxadiazole EthR inhibitors. J. Med. Chem., 2011, 54(8), 2994-3010.
[http://dx.doi.org/10.1021/jm200076a] [PMID: 21417236]
[117]
Atmaram Upare, A.; Gadekar, P.K.; Sivaramakrishnan, H.; Naik, N.; Khedkar, V.M.; Sarkar, D.; Choudhari, A.; Mohana Roopan, S. Design, synthesis and biological evaluation of (E)-5-styryl-1,2,4-oxadiazoles as anti-tubercular agents. Bioorg. Chem., 2019, 86, 507-512.
[http://dx.doi.org/10.1016/j.bioorg.2019.01.054] [PMID: 30776681]
[118]
Liu, X.H.; Wen, Y.H.; Cheng, L.; Xu, T.M.; Wu, N.J. Design, synthesis, and pesticidal activities of pyrimidin-4-amine derivatives bearing a 5-(trifluoromethyl)-1, 2, 4-oxadiazole moiety. J. Agric. Food Chem., 2021, 69(25), 6968-6980.
[http://dx.doi.org/10.1021/acs.jafc.1c00236] [PMID: 34137594]
[119]
Yang, S.; Ren, C.L.; Ma, T.Y.; Zou, W.Q.; Dai, L.; Tian, X.Y.; Liu, X.H.; Tan, C.X. 1, 2, 4-Oxadiazole-based bio-isosteres of benzamides: Synthesis, biological activity and toxicity to zebrafish embryo. Int. J. Mol. Sci., 2021, 22(5), 2367.
[http://dx.doi.org/10.3390/ijms22052367] [PMID: 33673430]
[120]
Karad, S.C.; Purohit, V.B.; Thummar, R.P.; Vaghasiya, B.K.; Kamani, R.D.; Thakor, P.; Thakkar, V.R.; Thakkar, S.S.; Ray, A.; Raval, D.K. Synthesis and biological screening of novel 2-morpholinoquinoline nucleus clubbed with 1,2,4-oxadiazole motifs. Eur. J. Med. Chem., 2017, 126, 894-909.
[http://dx.doi.org/10.1016/j.ejmech.2016.12.016] [PMID: 27988464]
[121]
Sangshetti, J.N.; Shinde, D.B. Synthesis of some novel 3-(1-(1-substitutedpiperidin-4-yl)-1H-1,2,3-triazol-4-yl)-5-substituted phenyl-1,2,4-oxadiazoles as antifungal agents. Eur. J. Med. Chem., 2011, 46(4), 1040-1044.
[http://dx.doi.org/10.1016/j.ejmech.2011.01.015] [PMID: 21324567]
[122]
Egorova, A.; Kazakova, E.; Jahn, B.; Ekins, S.; Makarov, V.; Schmidtke, M. Novel pleconaril derivatives: Influence of substituents in the isoxazole and phenyl rings on the antiviral activity against enteroviruses. Eur. J. Med. Chem., 2020, 188, 112007.
[http://dx.doi.org/10.1016/j.ejmech.2019.112007] [PMID: 31881489]
[123]
Kim, J.; Shin, J.S.; Ahn, S.; Han, S.B.; Jung, Y.S. 3-Aryl-1, 2, 4-oxadiazole derivatives active against human rhinovirus. ACS Med. Chem. Lett., 2018, 9(7), 667-672.
[http://dx.doi.org/10.1021/acsmedchemlett.8b00134] [PMID: 30034598]
[124]
Li, F.; Ma, C.; DeGrado, W.F.; Wang, J. Discovery of highly potent inhibitors targeting the predominant drug-resistant S31N mutant of the influenza A virus M2 proton channel. J. Med. Chem., 2016, 59(3), 1207-1216.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01910] [PMID: 26771709]
[125]
Yatam, S.; Jadav, S.S.; Gundla, R.; Gundla, K.P.; Reddy, G.M.; Ahsan, M.J.; Chimakurthy, J. Design, Synthesis and biological evaluation of 2 (((5-aryl-1,2,4-oxadiazol-3-yl)methyl)thio)benzo[d]oxazoles: New antiinflammatory and antioxidant agents. ChemistrySelect, 2018, 3(37), 10305-10310.
[http://dx.doi.org/10.1002/slct.201801558]
[126]
Yatam, S.; Gundla, R.; Jadav, S.S.; Pedavenkatagari, N.; Chimakurthy, J.; Rani, B.N.; Kedam, T. Focused library design and synthesis of 2-mercapto benzothiazole linked 1,2,4-oxadiazoles as COX-2/5-LOX inhibitors. J. Mol. Struct., 2018, 1159, 193-204.
[http://dx.doi.org/10.1016/j.molstruc.2018.01.060]
[127]
Oka, Y.; Yabuuchi, T.; Oi, T.; Kuroda, S.; Fujii, Y.; Ohtake, H.; Inoue, T.; Wakahara, S.; Kimura, K.; Fujita, K.; Endo, M. Discovery of N-{5-[3-(3-hydroxypiperidin-1-yl)-1, 2, 4-oxadiazol-5-yl]-4-methyl-1, 3-thiazol-2-yl} acetamide (TASP0415914) as an orally potent phosphoinositide 3-kinase γ inhibitor for the treatment of inflammatory diseases. Bioorg. Med. Chem., 2013, 21(24), 7578-7583.
[http://dx.doi.org/10.1016/j.bmc.2013.10.042] [PMID: 24262886]
[128]
dos Santos Filho, J.M. de Queiroz e Silva, D.M.A.; Macedo, T.S.; Teixeira, H.M.P.; Moreira, D.R.M.; Challal, S.; Wolfender, J.L.; Queiroz, E.F.; Soares, M.B.P. Conjugation of N -acylhydrazone and 1,2,4-oxadiazole leads to the identification of active antimalarial agents. Bioorg. Med. Chem., 2016, 24(22), 5693-5701.
[http://dx.doi.org/10.1016/j.bmc.2016.09.013] [PMID: 27667552]
[129]
dos Santos Filho, J.M.; Leite, A.C.L.; Oliveira, B.G.; Moreira, D.R.M.; Lima, M.S.; Soares, M.B.P.; Leite, L.F.C.C. Design, synthesis and cruzain docking of 3-(4-substituted-aryl)-1,2,4-oxadiazole-N-acylhydrazones as anti-Trypanosoma cruzi agents. Bioorg. Med. Chem., 2009, 17(18), 6682-6691.
[http://dx.doi.org/10.1016/j.bmc.2009.07.068] [PMID: 19683450]
[130]
Parikh, P.H.; Timaniya, J.B.; Patel, M.J.; Patel, K.P. Design, synthesis, and characterization of novel substituted 1,2,4-oxadiazole and their biological broadcast. Med. Chem. Res., 2020, 29(3), 538-548.
[http://dx.doi.org/10.1007/s00044-020-02505-8]
[131]
Carbone, D.; Parrino, B.; Cascioferro, S.; Pecoraro, C.; Giovannetti, E.; Di Sarno, V.; Musella, S.; Auriemma, G.; Cirrincione, G.; Diana, P. 1,2,4-Oxadiazole topsentin analogs with antiproliferative activity against pancreatic cancer cells, targeting GSK3β kinase. ChemMedChem, 2021, 16(3), 537-554.
[http://dx.doi.org/10.1002/cmdc.202000752] [PMID: 33141472]
[132]
Dokla, E.M.E.; Fang, C.S.; Chu, P.C.; Chang, C.S.; Abouzid, K.A.M.; Chen, C.S. Targeting YAP degradation by a novel 1, 2, 4-oxadiazole derivative via restoration of the function of the Hippo pathway. ACS Med. Chem. Lett., 2020, 11(4), 426-432.
[http://dx.doi.org/10.1021/acsmedchemlett.9b00501] [PMID: 32292545]
[133]
Cai, J.; Wei, H.; Hong, K.H.; Wu, X.; Cao, M.; Zong, X.; Li, L.; Sun, C.; Chen, J.; Ji, M. Discovery and preliminary evaluation of 2-aminobenzamide and hydroxamate derivatives containing 1,2,4-oxadiazole moiety as potent histone deacetylase inhibitors. Eur. J. Med. Chem., 2015, 96, 1-13.
[http://dx.doi.org/10.1016/j.ejmech.2015.04.002] [PMID: 25874326]
[134]
Xiao, Z.; Peng, Y.; Zheng, B.; Chang, Q.; Guo, Y.; Chen, Z.; Li, Q.; Hu, G. Design, synthesis, and biological evaluation of 1,2,4-oxadiazole-containing pyrazolo[3,4-b]pyridinones as a new series of AMPKα1β1γ1 activators. Arch. Pharm., 2021, 354(7), 2000458.
[http://dx.doi.org/10.1002/ardp.202000458] [PMID: 33683726]
[135]
Gao, J.; Liu, X.; Zhang, B.; Mao, Q.; Zhang, Z.; Zou, Q.; Dai, X.; Wang, S. Design, synthesis and biological evaluation of 1-alkyl-5/6-(5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)-1H-indole-3-carbonitriles as novel xanthine oxidase inhibitors. Eur. J. Med. Chem., 2020, 190, 112077.
[http://dx.doi.org/10.1016/j.ejmech.2020.112077] [PMID: 32014678]
[136]
Mouchlis, V.D.; Limnios, D.; Kokotou, M.G.; Barbayianni, E.; Kokotos, G.; McCammon, J.A.; Dennis, E.A. Development of potent and selective inhibitors for group via calcium-independent phospholipase A2 guided by molecular dynamics and structure–activity relationships. J. Med. Chem., 2016, 59(9), 4403-4414.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00377] [PMID: 27087127]
[137]
Rybak, M.Y.; Balanda, A.O.; Yatsyshyna, A.P.; Kotey, I.M.; Starosyla, S.A.; Bdzhola, V.G.; Lukash, L.L.; Yarmoluk, S.M.; Tukalo, M.A.; Volynets, G.P. Discovery of novel antituberculosis agents among 3-phenyl-5-(1-phenyl-1H-[1,2,3]triazol-4-yl)-[1,2,4]oxadiazole derivatives targeting aminoacyl-tRNA synthetases. Sci. Rep., 2021, 11(1), 7162.
[http://dx.doi.org/10.1038/s41598-021-86562-y] [PMID: 33414495]
[138]
Zentner, I.; Sierra, L.J.; Fraser, A.K.; Maciunas, L.; Mankowski, M.K.; Vinnik, A.; Fedichev, P.; Ptak, R.G.; Martín-García, J.; Cocklin, S. Identification of a small-molecule inhibitor of HIV-1 assembly that targets the phosphatidylinositol (4,5)-bisphosphate binding site of the HIV-1 matrix protein. ChemMedChem, 2013, 8(3), 426-432.
[http://dx.doi.org/10.1002/cmdc.201200577] [PMID: 23361947]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy