Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Review Article

Review on Diabetic Complications and their Management by Flavonoids and Triterpenoids

Author(s): Shivam*, Asheesh Kumar Gupta and Sushil Kumar

Volume 13, Issue 8, 2023

Published on: 18 April, 2023

Article ID: e300323215147 Pages: 10

DOI: 10.2174/2210315513666230330082412

Price: $65

Abstract

Diabetes mellitus, together with its numerous consequences, is rapidly becoming a major health issue. Natural products are secondary metabolites found in plants that have a wide range of biological functions. The development of anti-diabetic medications derived from natural compounds, particularly those derived from plants having a documented folk-use history in the treatment of diabetes, is gaining traction. Many studies have shown the usefulness of natural flavonoids with hypoglycemic properties in the management of diabetic problems, along with their advantages. This paper describes the mechanisms of action of several natural flavonoids whose hypoglycemic effects have been confirmed. Comprehensive lifestyle treatments can help those at high risk of diabetes to avoid or delay the start of the disease, according to the results of randomized controlled trials. Terpenoids are a type of natural substance that have been identified as an anti-diabetic agent in various studies. Some of them are in various phases of preclinical and clinical testing to conclude whether they can be used as anti-diabetic drugs. These compounds can block the enzymes involved in insulin resistance, facilitate glucose metabolism, and positively affect plasma glucose and insulin levels. By blocking multiple pathways implicated in diabetes and its consequences, flavonoids and triterpenes can operate as potential agents in the treatment of diabetic retinopathy, neuropathy, and nephropathy, as well as poor wound healing. However, there have been few attempts to investigate the biological effects of triterpenes and clinical research investigating their use in the treatment of diabetes. As a result, it is critical to pay close attention to these chemicals' therapeutic potential and to contribute fresh information to the scientific community. This review focuses on current advancements in flavonoids and triterpenes chemistry, derivatives, biological interventions, and therapeutic applications, with a focus on diabetes and related illnesses.

Keywords: Diabetes, diabetic complications, neuropathy, nephropathy, retinopathy, flavanoids, terpenoids.

Graphical Abstract
[1]
El Barky, A.R.; Hussein, S.A.; Alm-Eldeen, A.A.; Hafez, Y.A.; Mohamed, T.M. Anti-diabetic activity of Holothuria thomasi saponin. Biomed. Pharmacother., 2016, 84, 1472-1487.
[2]
Stephen Irudayaraj, S.; Sunil, C.; Duraipandiyan, V.; Ignacimuthu, S. Antidiabetic and antioxidant activities of Toddalia asiatica (L.) Lam. leaves in Streptozotocin induced diabetic rats. J. Ethnopharmacol., 2012, 143(2), 515-523.
[http://dx.doi.org/10.1016/j.jep.2012.07.006] [PMID: 22842651]
[3]
Mahdi, A.A.; Chandra, A.; Singh, R.K.; Shukla, S.; Mishra, L.C.; Ahmad, S. Effect of herbal hypoglycemic agents on oxidative stress and antioxidant status in diabetic rats. Indian J. Clin. Biochem., 2003, 18(2), 8-15.
[http://dx.doi.org/10.1007/BF02867361] [PMID: 23105386]
[4]
Platel, K.; Srinivasan, K. Plant foods in the management of Diabetes mellitus: Vegetables as potential hypoglycaemic agents. Nahrung, 1997, 41(2), 68-74.
[http://dx.doi.org/10.1002/food.19970410203] [PMID: 9188186]
[5]
Day, C. Traditional plant treatments for diabetes mellitus: Pharmaceutical foods. Br. J. Nutr., 1998, 80(1), 5-6.
[http://dx.doi.org/10.1017/S0007114598001718] [PMID: 9797638]
[6]
Junejo, J.A.; Rudrapal, M.; Zaman, M.K. Antidiabetic activity of Carallia brachiata Lour. leaves hydro-alcoholic extract (HAE) with antioxidant potential in diabetic rats. Indian J. Nat. Prod. Resour., 2020, 11, 18-29.
[7]
Ling, S.K.; Takashima, T.; Tanaka, T.; Fujioka, T.; Mihashi, K.; Kouno, I. A new diglycosyl megastigmane from Carallia brachiata. Fitoterapia, 2004, 75(7-8), 785-788.
[http://dx.doi.org/10.1016/j.fitote.2004.09.019] [PMID: 15567266]
[8]
Deshpande, A.D.; Harris-Hayes, M.; Schootman, M. Epidemiology of diabetes and diabetes-related complications. Phys. Ther., 2008, 88(11), 1254-1264.
[http://dx.doi.org/10.2522/ptj.20080020] [PMID: 18801858]
[9]
Tuttolomondo, A.; Maida, C.; Pinto, A. Diabetic foot syndrome as a possible cardiovascular marker in diabetic patients. J. Diabetes Res., 2015, 2015, 1-12.
[http://dx.doi.org/10.1155/2015/268390] [PMID: 25883983]
[10]
Scott, A.; Chambers, D.; Goyder, E.; O’Cathain, A. Socioeconomic inequalities in mortality, morbidity and diabetes management for adults with type 1 diabetes: A systematic review. PLoS One, 2017, 12(5), e0177210.
[http://dx.doi.org/10.1371/journal.pone.0177210] [PMID: 28489876]
[11]
Gall, M.A.; Rossing, P.; Skøtt, P.; Damsbo, P.; Vaag, A.; Bech, K.; Dejgaard, A.; Lauritzen, M.; Lauritzen, E.; Hougaard, P. Prevalence of micro and macroalbuminuria, arterial hypertension, retinopathy and large vessel disease in European type 2 (non-insulin-dependent) diabetic patients. Diabetologia, 1991, 34(9), 655-661.
[http://dx.doi.org/10.1007/BF00400995] [PMID: 1955098]
[12]
Kumar, S.; Dobos, G.J.; Rampp, T. The significance of ayurvedic medicinal plants. J. Evid. Based Complementary Altern. Med., 2017, 22(3), 494-501.
[http://dx.doi.org/10.1177/2156587216671392] [PMID: 27707902]
[13]
Candrilli, S.D.; Davis, K.L.; Kan, H.J.; Lucero, M.A.; Rousculp, M.D. Prevalence and the associated burden of illness of symptoms of diabetic peripheral neuropathy and diabetic retinopathy. J. Diabetes Complications, 2007, 21(5), 306-314.
[http://dx.doi.org/10.1016/j.jdiacomp.2006.08.002] [PMID: 17825755]
[14]
Vinay, K.P. Anup: M.; Shyam, S. G.; Ila, S; Rao, C. V. Effect of the standardized extract of Holarrhena antidysenterica seeds against steptozotocin-induced diabetes in rats. Int. J. Pharma Res. Rev., 2015, 4(4), 1-6.
[15]
Adler, A.I.; Boyko, E.J.; Ahroni, J.H.; Stensel, V.; Forsberg, R.C.; Smith, D.G. Risk factors for diabetic peripheral sensory neuropathy. Results of the seattle prospective diabetic foot study. Diabetes Care, 1997, 20(7), 1162-1167.
[http://dx.doi.org/10.2337/diacare.20.7.1162] [PMID: 9203456]
[16]
Fox, C.S.; Coady, S.; Sorlie, P.D.; Levy, D.; Meigs, J.B.; D’Agostino, R.B., Sr; Wilson, P.W.; Savage, P.J. Trends in cardiovascular complications of diabetes. JAMA, 2004, 292(20), 2495-2499.
[http://dx.doi.org/10.1001/jama.292.20.2495] [PMID: 15562129]
[17]
Booth, G.L.; Kapral, M.K.; Fung, K.; Tu, J.V. Recent trends in cardiovascular complications among men and women with and without diabetes. Diabetes Care, 2006, 29(1), 32-37.
[http://dx.doi.org/10.2337/diacare.29.01.06.dc05-0776] [PMID: 16373892]
[18]
Abo-Youssef, A.M.H.; Messiha, B.A.S. Beneficial effects of Aloe vera in treatment of diabetes: Comparative in vivo and in vitro studies. Bull. Fac. Pharm. Cairo Univ., 2013, 51(1), 7-11.
[http://dx.doi.org/10.1016/j.bfopcu.2012.03.002]
[19]
Senadheera, S.P.A.; Ekanayake, S.; Wanigatunge, C. Anti-hyperglycaemic effects of herbal porridge made of Scoparia dulcis leaf extract in diabetics – a randomized crossover clinical trial. BMC Complement. Altern. Med., 2015, 15(1), 410.
[http://dx.doi.org/10.1186/s12906-015-0935-6] [PMID: 26582144]
[20]
Anderson, R.A.; Zhan, Z.; Luo, R.; Guo, X.; Guo, Q.; Zhou, J.; Kong, J.; Davis, P.A.; Stoecker, B.J. Cinnamon extract lowers glucose, insulin and cholesterol in people with elevated serum glucose. J. Tradit. Complement. Med., 2016, 6(4), 332-336.
[http://dx.doi.org/10.1016/j.jtcme.2015.03.005] [PMID: 27774415]
[21]
Vessal, M.; Hemmati, M.; Vasei, M. Antidiabetic effects of quercetin in streptozocin-induced diabetic rats. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2003, 135(3), 357-364.
[http://dx.doi.org/10.1016/S1532-0456(03)00140-6] [PMID: 12927910]
[22]
Li, Y.Q.; Zhou, F.C.; Gao, F.; Bian, J.S.; Shan, F. Comparative evaluation of quercetin, isoquercetin and rutin as inhibitors of alpha-glucosidase. J. Agric. Food Chem., 2009, 57(24), 11463-11468.
[http://dx.doi.org/10.1021/jf903083h] [PMID: 19938837]
[23]
Liu, I.M.; Tzeng, T.F.; Liou, S.S.; Lan, T.W. Improvement of insulin sensitivity in obese Zucker rats by myricetin extracted from Abelmoschus moschatus. Planta Med., 2007, 73(10), 1054-1060.
[http://dx.doi.org/10.1055/s-2007-981577] [PMID: 17694473]
[24]
Zhang, Y.; Zhen, W.; Maechler, P.; Liu, D. Small molecule kaempferol modulates PDX-1 protein expression and subsequently promotes pancreatic β-cell survival and function via CREB. J. Nutr. Biochem., 2013, 24(4), 638-646.
[http://dx.doi.org/10.1016/j.jnutbio.2012.03.008] [PMID: 22819546]
[25]
Escandón-Rivera, S. González-Andrade, M.; Bye, R.; Linares, E.; Navarrete, A.; Mata, R. α-Glucosidase Inhibitors from Brickellia cavanillesii. J. Nat. Prod., 2012, 75(5), 968-974.
[http://dx.doi.org/10.1021/np300204p] [PMID: 22587572]
[26]
Suh, K.S.; Oh, S.; Woo, J.T.; Kim, S.W.; Kim, J.W.; Kim, Y.S.; Chon, S. Apigenin attenuates 2-deoxy-D-ribose-induced oxidative cell damage in HIT-T15 pancreatic β-cells. Biol. Pharm. Bull., 2012, 35(1), 121-126.
[http://dx.doi.org/10.1248/bpb.35.121] [PMID: 22223348]
[27]
Kang, Y.J.; Jung, U.J.; Lee, M.K.; Kim, H.J.; Jeon, S.M.; Park, Y.B.; Chung, H.G.; Baek, N.I.; Lee, K.T.; Jeong, T.S.; Choi, M.S. Eupatilin, isolated from Artemisia princeps Pampanini, enhances hepatic glucose metabolism and pancreatic β-cell function in type 2 diabetic mice. Diabetes Res. Clin. Pract., 2008, 82(1), 25-32.
[http://dx.doi.org/10.1016/j.diabres.2008.06.012] [PMID: 18703253]
[28]
Pu, P.; Wang, X.A.; Salim, M.; Zhu, L.H.; Wang, L.; Chen, J.; Xiao, J.F.; Deng, W.; Shi, H.W.; Jiang, H.; Li, H.L. Baicalein, a natural product, selectively activating AMPKα2 and ameliorates metabolic disorder in diet-induced mice. Mol. Cell. Endocrinol., 2012, 362(1-2), 128-138.
[http://dx.doi.org/10.1016/j.mce.2012.06.002] [PMID: 22698522]
[29]
Kim, M.S.; Hur, H.J.; Kwon, D.Y.; Hwang, J.T. Tangeretin stimulates glucose uptake via regulation of AMPK signaling pathways in C2C12 myotubes and improves glucose tolerance in high-fat diet-induced obese mice. Mol. Cell. Endocrinol., 2012, 358(1), 127-134.
[http://dx.doi.org/10.1016/j.mce.2012.03.013] [PMID: 22476082]
[30]
Lee, J.S. Effects of soy protein and genistein on blood glucose, antioxidant enzyme activities, and lipid profile in streptozotocin-induced diabetic rats. Life Sci., 2006, 79(16), 1578-1584.
[http://dx.doi.org/10.1016/j.lfs.2006.06.030] [PMID: 16831449]
[31]
Ae Park, S.; Choi, M.S.; Cho, S.Y.; Seo, J.S.; Jung, U.J.; Kim, M.J.; Sung, M.K.; Park, Y.B.; Lee, M.K. Genistein and daidzein modulate hepatic glucose and lipid regulating enzyme activities in C57BL/KsJ-db/db mice. Life Sci., 2006, 79(12), 1207-1213.
[http://dx.doi.org/10.1016/j.lfs.2006.03.022] [PMID: 16647724]
[32]
Zhang, D.; Gao, X.; Wang, Q.; Qin, M.; Liu, K.; Huang, F.; Liu, B. Kakkalide ameliorates endothelial insulin resistance by suppressing reactive oxygen species-associated inflammation. J. Diabetes, 2013, 5(1), 13-24.
[http://dx.doi.org/10.1111/1753-0407.12017] [PMID: 23190749]
[33]
Zhang, W.Y.; Lee, J.J.; Kim, Y.; Kim, I.S.; Han, J.H.; Lee, S.G.; Ahn, M.J.; Jung, S.H.; Myung, C.S. Effect of eriodictyol on glucose uptake and insulin resistance in vitro. J. Agric. Food Chem., 2012, 60(31), 7652-7658.
[http://dx.doi.org/10.1021/jf300601z] [PMID: 22809065]
[34]
Priscilla, D.H.; Roy, D.; Suresh, A.; Kumar, V.; Thirumurugan, K. Naringenin inhibits α-glucosidase activity: A promising strategy for the regulation of postprandial hyperglycemia in high fat diet fed streptozotocin induced diabetic rats. Chem. Biol. Interact., 2014, 210, 77-85.
[http://dx.doi.org/10.1016/j.cbi.2013.12.014] [PMID: 24412302]
[35]
Martín, M.Á.; Fernández-Millán, E.; Ramos, S.; Bravo, L.; Goya, L. Cocoa flavonoid epicatechin protects pancreatic beta cell viability and function against oxidative stress. Mol. Nutr. Food Res., 2014, 58(3), 447-456.
[http://dx.doi.org/10.1002/mnfr.201300291] [PMID: 24115486]
[36]
Choo, C.Y.; Sulong, N.Y.; Man, F.; Wong, T.W. Vitexin and isovitexin from the Leaves of Ficus deltoidea with in-vivo α-glucosidase inhibition. J. Ethnopharmacol., 2012, 142(3), 776-781.
[http://dx.doi.org/10.1016/j.jep.2012.05.062] [PMID: 22683902]
[37]
Shibano, M.; Kakutani, K.; Taniguchi, M.; Yasuda, M.; Baba, K. Antioxidant constituents in the dayflower (Commelina communis L.) and their α-glucosidase-inhibitory activity. J. Nat. Med., 2008, 62(3), 349-353.
[http://dx.doi.org/10.1007/s11418-008-0244-1] [PMID: 18409066]
[38]
Jung, U.J.; Lee, M.K.; Jeong, K.S.; Choi, M.S. The hypoglycemic effects of hesperidin and naringin are partly mediated by hepatic glucose-regulating enzymes in C57BL/KsJ-db/db mice. J. Nutr., 2004, 134(10), 2499-2503.
[http://dx.doi.org/10.1093/jn/134.10.2499] [PMID: 15465737]
[39]
Jorge, A.P.; Horst, H.; Sousa, E.; Pizzolatti, M.G.; Silva, F.R.M.B. Insulinomimetic effects of kaempferitrin on glycaemia and on 14C-glucose uptake in rat soleus muscle. Chem. Biol. Interact., 2004, 149(2-3), 89-96.
[http://dx.doi.org/10.1016/j.cbi.2004.07.001] [PMID: 15501431]
[40]
Cai, E.P.; Lin, J.K. Epigallocatechin gallate (EGCG) and rutin suppress the glucotoxicity through activating IRS2 and AMPK signaling in rat pancreatic beta cells. J. Agric. Food Chem., 2009, 57(20), 9817-9827.
[http://dx.doi.org/10.1021/jf902618v] [PMID: 19803520]
[41]
Zhang, B.B.; Moller, D.E. New approaches in the treatment of type 2 diabetes. Curr. Opin. Chem. Biol., 2000, 4(4), 461-467.
[http://dx.doi.org/10.1016/S1367-5931(00)00103-4] [PMID: 10959776]
[42]
Qi, L.W.; Liu, E.H.; Chu, C.; Peng, Y.B.; Cai, H.X.; Li, P. Anti-diabetic agents from natural products-an update from 2004 to 2009. Curr. Top. Med. Chem., 2010, 10(4), 434-457.
[http://dx.doi.org/10.2174/156802610790980620] [PMID: 20180758]
[43]
Khan, A.; Pessin, J. Insulin regulation of glucose uptake: A complex interplay of intracellular signalling pathways. Diabetologia, 2002, 45(11), 1475-1483.
[http://dx.doi.org/10.1007/s00125-002-0974-7] [PMID: 12436329]
[44]
Cazarolli, L.; Zanatta, L.; Alberton, E.; Reis Bonorino Figueiredo, M.; Folador, P.; Damazio, R.; Pizzolatti, M.; Mena Barreto Silva, F. Flavonoids: cellular and molecular mechanism of action in glucose homeostasis. Mini Rev. Med. Chem., 2008, 8(10), 1032-1038.
[http://dx.doi.org/10.2174/138955708785740580] [PMID: 18782055]
[45]
Sutherland, C.; O’Brien, R.M.; Granner, D.K. New connections in the regulation of PEPCK gene expression by insulin. Philos. Trans. R. Soc. Lond. B Biol. Sci., 1996, 351(1336), 191-199.
[http://dx.doi.org/10.1098/rstb.1996.0016] [PMID: 8650266]
[46]
Rachmani, R.; Bar-Dayan, Y.; Ronen, Z.; Levi, Z.; Slavachevsky, I.; Ravid, M. The effect of acarbose on insulin resistance in obese hypertensive subjects with normal glucose tolerance: A randomized controlled study. Diabetes Obes. Metab., 2004, 6(1), 63-68.
[http://dx.doi.org/10.1111/j.1463-1326.2004.00317.x] [PMID: 14686965]
[47]
Alqahtani, A.; Hamid, K.; Kam, A.; Wong, K.H.; Abdelhak, Z.; Razmovski-Naumovski, V.; Chan, K.; Li, K.M.; Groundwater, P.W.; Li, G.Q. The pentacyclic triterpenoids in herbal medicines and their pharmacological activities in diabetes and diabetic complications. Curr. Med. Chem., 2013, 20(7), 908-931.
[PMID: 23210780]
[48]
Zhu, L.; Wang, B.; Guo, T.; Tan, J.; Zhou, X.; Xiao, L.; Liu, X. Promoting effect of triterpenoid compound from Agrimonia pilosa Ledeb on preadipocytes differentiation via up-regulation of PPARγ expression. Pharmacogn. Mag., 2015, 11(41), 219-225.
[http://dx.doi.org/10.4103/0973-1296.149741] [PMID: 25709235]
[49]
Peng, C.H.; Chyau, C.C.; Wang, C.J.; Lin, H.T.; Huang, C.N.; Ker, Y.B. Abelmoschus esculentus fractions potently inhibited the pathogenic targets associated with diabetic renal epithelial to mesenchymal transition. Food Funct., 2016, 7(2), 728-740.
[http://dx.doi.org/10.1039/C5FO01214G] [PMID: 26787242]
[50]
Liu, X.; Zhu, L.; Tan, J.; Zhou, X.; Xiao, L.; Yang, X.; Wang, B. Glucosidase inhibitory activity and antioxidant activity of flavonoid compound and triterpenoid compound from Agrimonia pilosa Ledeb. BMC Complement. Altern. Med., 2014, 14(1), 12.
[http://dx.doi.org/10.1186/1472-6882-14-12] [PMID: 24410924]
[51]
Yamabe, N.; Yokozawa, T.; Oya, T.; Kim, M. Therapeutic potential of (-)-epigallocatechin 3-O-gallate on renal damage in diabetic nephropathy model rats. J. Pharmacol. Exp. Ther., 2006, 319(1), 228-236.
[http://dx.doi.org/10.1124/jpet.106.107029] [PMID: 16835369]
[52]
Zang, M.; Xu, S.; Maitland-Toolan, K.A.; Zuccollo, A.; Hou, X.; Jiang, B.; Wierzbicki, M.; Verbeuren, T.J.; Cohen, R.A. Polyphenols stimulate AMP-activated protein kinase, lower lipids, and inhibit accelerated atherosclerosis in diabetic LDL receptor-deficient mice. Diabetes, 2006, 55(8), 2180-2191.
[http://dx.doi.org/10.2337/db05-1188] [PMID: 16873680]
[53]
Qi, X.M.; Wu, G.Z.; Wu, Y.G.; Lin, H.; Shen, J.J.; Lin, S.Y. Renoprotective effect of breviscapine through suppression of renal macrophage recruitment in streptozotocin-induced diabetic rats. Nephron, Exp. Nephrol., 2006, 104(4), e147-e157.
[http://dx.doi.org/10.1159/000094966] [PMID: 16902319]
[54]
Hase, M.; Babazono, T.; Karibe, S.; Kinae, N.; Iwamoto, Y. Renoprotective effects of tea catechin in streptozotocin- induced diabetic rats. Int. Urol. Nephrol., 2007, 38(3-4), 693-699.
[http://dx.doi.org/10.1007/s11255-006-0051-0] [PMID: 17124623]
[55]
Hintz, K.K.; Ren, J. Phytoestrogenic isoflavones daidzein and genistein reduce glucose-toxicity-induced cardiac contractile dysfunction in ventricular myocytes. Endocr. Res., 2004, 30(2), 215-223.
[http://dx.doi.org/10.1081/ERC-120037730] [PMID: 15473131]
[56]
Kumar, B.; Gupta, S.K.; Srinivasan, B.P.; Nag, T.C.; Srivastava, S.; Saxena, R.; Jha, K.A. Hesperetin rescues retinal oxidative stress, neuroinflammation and apoptosis in diabetic rats. Microvasc. Res., 2013, 87, 65-74.
[http://dx.doi.org/10.1016/j.mvr.2013.01.002] [PMID: 23376836]
[57]
Diao, H.; Kang, Z.; Han, F.; Jiang, W. Astilbin protects diabetic rat heart against ischemia-reperfusion injury via blockade of HMGB1- dependent NF-κB signaling pathway. Food Chem. Toxicol., 2014, 63, 104-110.
[58]
Lee, K.H.; Choi, E.M. Myricetin, a naturally occurring flavonoid, prevents 2-deoxy-d-ribose induced dysfunction and oxidative damage in osteoblastic MC3T3-E1 cells. Eur. J. Pharmacol., 2008, 591(1-3), 1-6.
[http://dx.doi.org/10.1016/j.ejphar.2008.06.004] [PMID: 18599037]
[59]
Prince, P.S.M.; Kannan, N.K. Protective effect of rutin on lipids, lipoproteins, lipid metabolizing enzymes and glycoproteins in streptozotocin-induced diabetic rats. J. Pharm. Pharmacol., 2010, 58(10), 1373-1383.
[http://dx.doi.org/10.1211/jpp.58.10.0011] [PMID: 17034661]
[60]
Sun, D.; Huang, J.; Zhang, Z.; Gao, H.; Li, J.; Shen, M.; Cao, F.; Wang, H. Luteolin limits infarct size and improves cardiac function after myocardium ischemia/reperfusion injury in diabetic rats. PLoS One, 2012, 7(3), e33491.
[http://dx.doi.org/10.1371/journal.pone.0033491] [PMID: 22432030]
[61]
Anjaneyulu, M.; Chopra, K.; Kaur, I. Antidepressant activity of quercetin, a bioflavonoid, in streptozotocin-induced diabetic mice. J. Med. Food, 2003, 6(4), 391-395.
[http://dx.doi.org/10.1089/109662003772519976] [PMID: 14977450]
[62]
Khazim, K.; Gorin, Y.; Cavaglieri, R.C.; Abboud, H.E.; Fanti, P. The antioxidant silybin prevents high glucose-induced oxidative stress and podocyte injury in vitro and in vivo. Am. J. Physiol. Renal Physiol., 2013, 305(5), F691-F700.
[http://dx.doi.org/10.1152/ajprenal.00028.2013] [PMID: 23804455]
[63]
Jain, D.; Bansal, M.K.; Dalvi, R.; Upganlawar, A.; Somani, R. Protective effect of diosmin against diabetic neuropathy in experimental rats. J. Integr. Med., 2014, 12(1), 35-41.
[http://dx.doi.org/10.1016/S2095-4964(14)60001-7] [PMID: 24461593]
[64]
Malekinejad, H.; Rezabakhsh, A.; Rahmani, F.; Hobbenaghi, R. Silymarin regulates the cytochrome P450 3A2 and glutathione peroxides in the liver of streptozotocin-induced diabetic rats. Phytomedicine, 2012, 19(7), 583-590.
[http://dx.doi.org/10.1016/j.phymed.2012.02.009] [PMID: 22445624]
[65]
Yoshikawa, M.; Yoshizumi, S.; Ueno, T.; Matsuda, H.; Murakami, T.; Yamahara, J.; Murakami, N. Medicinal foodstuffs. I. Hypoglycemic constituents from a garnish foodstuff “taranome,” the young shoot of Aralia elata SEEM.: elatosides G, H, I, J, and K. Chem. Pharm. Bull., 1995, 43(11), 1878-1882.
[http://dx.doi.org/10.1248/cpb.43.1878] [PMID: 8575028]
[66]
Ghosh, T.; Maity, T.; Singh, J. Antihyperglycemic activity of bacosine, a triterpene from Bacopa monnieri, in alloxan-induced diabetic rats. Planta Med., 2011, 77(8), 804-808.
[http://dx.doi.org/10.1055/s-0030-1250600] [PMID: 21154199]
[67]
Sugihara, Y.; Nojima, H.; Matsuda, H.; Murakami, T.; Yoshikawa, M.; Kimura, I. Antihyperglycemic effects of gymnemic acid IV, a compound derived from Gymnema sylvestre leaves in streptozotocin-diabetic mice. J. Asian Nat. Prod. Res., 2000, 2(4), 321-327.
[http://dx.doi.org/10.1080/10286020008041372] [PMID: 11249615]
[68]
Gowri, P.M.; Tiwari, A.K.; Ali, A.Z.; Rao, J.M. Inhibition of α-glucosidase and amylase by bartogenic acid isolated from Barringtonia racemosa Roxb. seeds. Phytother. Res., 2007, 21(8), 796-799.
[http://dx.doi.org/10.1002/ptr.2176] [PMID: 17533638]
[69]
De Tommasi, N.; De Simone, F.; Cirino, G.; Cicala, C.; Pizza, C. Hypoglycemic effects of sesquiterpene glycosides and polyhydroxylated triterpenoids of Eriobotrya japonica. Planta Med., 1991, 57(5), 414-416.
[http://dx.doi.org/10.1055/s-2006-960137] [PMID: 1798792]
[70]
Chen, Q.; Luo, J.G.; Kong, L.Y. Triterpenoid saponins from Gypsophila altissima L. Chem. Pharm. Bull., 2010, 58(3), 412-414.
[http://dx.doi.org/10.1248/cpb.58.412] [PMID: 20190453]
[71]
Ko, B.S.; Jang, J.S.; Hong, S.M.; Sung, S.R.; Lee, J.E.; Lee, M.Y.; Jeon, W.K.; Park, S. Changes in components, glycyrrhizin and glycyrrhetinic acid, in raw Glycyrrhiza uralensis Fisch, modify insulin sensitizing and insulinotropic actions. Biosci. Biotechnol. Biochem., 2007, 71(6), 1452-1461.
[http://dx.doi.org/10.1271/bbb.60533] [PMID: 17587675]
[72]
Papi Reddy, K.; Singh, A.B.; Puri, A.; Srivastava, A.K.; Narender, T. Synthesis of novel triterpenoid (lupeol) derivatives and their in vivo antihyperglycemic and antidyslipidemic activity. Bioorg. Med. Chem. Lett., 2009, 19(15), 4463-4466.
[http://dx.doi.org/10.1016/j.bmcl.2009.05.034] [PMID: 19515563]
[73]
Motomura, K.; Fujiwara, Y.; Kiyota, N.; Tsurushima, K.; Takeya, M.; Nohara, T.; Nagai, R.; Ikeda, T. Astragalosides isolated from the root of Astragalus radix inhibit the formation of advanced glycation end products. J. Agric. Food Chem., 2009, 57(17), 7666-7672.
[http://dx.doi.org/10.1021/jf9007168] [PMID: 19681610]
[74]
Viji, V.; Shobha, B.; Kavitha, S.K.; Ratheesh, M.; Kripa, K.; Helen, A. Betulinic acid isolated from Bacopa monniera (L.) Wettst suppresses lipopolysaccharide stimulated interleukin-6 production through modulation of nuclear factor-κB in peripheral blood mononuclear cells. Int. Immunopharmacol., 2010, 10(8), 843-849.
[http://dx.doi.org/10.1016/j.intimp.2010.04.013] [PMID: 20430119]
[75]
Jung, S.H.; Ha, Y.J.; Shim, E.K.; Choi, S.Y.; Jin, J.L.; Yun-Choi, H.S.; Lee, J.R. Insulin-mimetic and insulin-sensitizing activities of a pentacyclic triterpenoid insulin receptor activator. Biochem. J., 2007, 403(2), 243-250.
[http://dx.doi.org/10.1042/BJ20061123] [PMID: 17201692]
[76]
Jayaprakasam, B.; Olson, L.K.; Schutzki, R.E.; Tai, M.H.; Nair, M.G. Amelioration of obesity and glucose intolerance in high-fat-fed C57BL/6 mice by anthocyanins and ursolic acid in Cornelian cherry (Cornus mas). J. Agric. Food Chem., 2006, 54(1), 243-248.
[http://dx.doi.org/10.1021/jf0520342] [PMID: 16390206]
[77]
Lai, Y.C.; Chen, C.K.; Tsai, S.F.; Lee, S.S. Triterpenes as α-glucosidase inhibitors from Fagus hayatae. Phytochemistry, 2012, 74, 206-211.
[http://dx.doi.org/10.1016/j.phytochem.2011.09.016] [PMID: 22169017]
[78]
Zong, W.; Zhao, G. Corosolic acid isolation from the leaves of Eriobotrta japonica showing the effects on carbohydrate metabolism and differentiation of 3T3-L1 adipocytes. Asia Pac. J. Clin. Nutr., 2007, 16(Suppl. 1), 346-352.
[PMID: 17392131]
[79]
Kamalakkanan, N.; Rajadurai, M.; Prince, P.S.M. Effect of Aegle marmelos fruits on normal and streptozotocin-diabetic Wistar rats. J. Med. Food, 2003, 6(2), 93-98.
[http://dx.doi.org/10.1089/109662003322233486] [PMID: 12935319]
[80]
Topal, G.; Koç, E.; Karaca, Ç.; Altuğ, T.; Ergin, B.; Demirci, C.; Melikoğlu, G.; Meriçli, A.H.; Kucur, M.; Özdemir, O.; Uydeş Doğan, B.S. Effects of Crataegus microphylla on vascular dysfunction in streptozotocin-induced diabetic rats. Phytother. Res., 2013, 27(3), 330-337.
[http://dx.doi.org/10.1002/ptr.4726] [PMID: 22585450]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy