Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

The Cell Death and Signal Transduction Mechanisms in Colorectal Carcinogenesis: Recent Advances

Author(s): Monu Kumar Kashyap, Akash Ved*, Rajiv Ratan Singh Yadav, Akhand Pratap Singh, Mahima Kushwaha and Karuna S. Shukla

Volume 23, Issue 12, 2023

Published on: 19 April, 2023

Page: [1361 - 1375] Pages: 15

DOI: 10.2174/1871520623666230328144748

Price: $65

Open Access Journals Promotions 2
Abstract

In underdeveloped nations, colorectal carcinogenesis (CRC) is a significant health issue. It is the third most common outcome of cancer death. Despite a variety of therapy options, new medications are needed to lessen the severity of this condition. In the colon, adenomatous polyps are the most common cause of CRC, occurring in 45 percent of cases, particularly in patients over 60 years old. Inflammatory polyps are acquiring popularity in CRC, as well as inflammation appears to exert a function in the disease, according to mounting research. The azoxymethane, dimethyl hydrazine, APCmin/+ mouse model, and a combination of sulfated polysaccharides composed of dextran and sulfated and dimethylhydrazine are among the experimental models used to study CRC in animals. Numerous signal transduction pathways are engaged as CRC progresses. The p53, TGF-β, Delta-Notch, Salvador-Warts-Hippo (SWH), and Kelch-like ECH associated protein 1 pathways are among the key signal transduction pathways. To decide cell destiny, several signalling pathways work in tandem with the death of cell modalities, such as autophagy, necroptosis, and apoptosis. In our lab, we have spent a lot of time looking into the cell signalling and mechanisms of cell death in CRC. The pathogenesis of CRC, as well as the associated cell death and cell signalling pathways, are summarised in this study.

Keywords: Cell signalling, signal transduction, colon cancer, APCmin/+ model, colorectal carcinogenesis, inflammatory polyps.

Graphical Abstract
[1]
Soofiyani, S.R.; Ahangari, H.; Soleimanian, A.; Babaei, G.; Ghasemnejad, T.; Safavi, S.E.; Eyvazi, S.; Tarhriz, V. The role of circadian genes in the pathogenesis of colorectal cancer. Gene, 2021, (804), 145-194.
[2]
Tang, S.; Cai, S.; Ji, S.; Yan, X.; Zhang, W.; Qiao, X.; Zhang, H.; Ye, M.; Yu, S. Isoangustone A induces autophagic cell death in colorectal cancer cells by activating AMPK signaling. Fitoterapia, 2021, 152, 104935.
[http://dx.doi.org/10.1016/j.fitote.2021.104935] [PMID: 34004245]
[3]
Tamas, K.; Walenkamp, A.M.E.; de Vries, E.G.E.; van Vugt, M.A.T.M.; Beets-Tan, R.G.; van Etten, B.; de Groot, D.J.A.; Hospers, G.A.P. Rectal and colon cancer: Not just a different anatomic site. Cancer Treat. Rev., 2015, 41(8), 671-679.
[http://dx.doi.org/10.1016/j.ctrv.2015.06.007] [PMID: 26145760]
[4]
Tariq, H.; Kamal, M.U.; Mehershahi, S.; Saad, M.; Azam, S.; Kumar, K.; Niazi, M.; Makker, J.; Daniel, M. A rare case of colonic metastases from tonsillar carcinoma: Case report and review of literature. World J. Oncol., 2018, 9(1), 35-37.
[http://dx.doi.org/10.14740/wjon1073w] [PMID: 29581814]
[5]
Center, M.M.; Jemal, A.; Smith, R.A.; Ward, E. Worldwide variations in colorectal cancer. CA Cancer J. Clin., 2009, 59(6), 366-378.
[http://dx.doi.org/10.3322/caac.20038] [PMID: 19897840]
[6]
Chatenoud, L.; Bertuccio, P.; Bosetti, C.; Malvezzi, M.; Levi, F.; Negri, E.; La Vecchia, C. Trends in mortality from major cancers in the Americas: 1980–2010. Ann. Oncol., 2014, 25(9), 1843-1853.
[http://dx.doi.org/10.1093/annonc/mdu206] [PMID: 24907637]
[7]
Deng, Y. Rectal cancer in Asian vs. Western countries: Why the variation in incidence? Curr. Treat. Options Oncol., 2017, 18(10), 64.
[http://dx.doi.org/10.1007/s11864-017-0500-2] [PMID: 28948490]
[8]
Pan, W.; Zhao, J.; Zhang, S.; Chen, X.; Liang, W.; Li, Q. Towards exertion of immunotherapeutics in the treatment of colorectal cancer; Adverse sides, challenges, and future directions. Int. Immunopharmacol., 2021, 101(Pt B), 108337.
[http://dx.doi.org/10.1016/j.intimp.2021.108337] [PMID: 34775366]
[9]
Marquesvidal, P.; Ravasco, P.; Ermelindacamilo, M. Foodstuffs and colorectal cancer risk: A review. Clin. Nutr., 2006, 25(1), 14-36.
[http://dx.doi.org/10.1016/j.clnu.2005.09.008] [PMID: 16290272]
[10]
Schwingshackl, L.; Schwedhelm, C.; Hoffmann, G.; Knüppel, S.; Laure Preterre, A.; Iqbal, K.; Bechthold, A.; De Henauw, S.; Michels, N.; Devleesschauwer, B.; Boeing, H.; Schlesinger, S. Food groups and risk of colorectal cancer. Int. J. Cancer, 2018, 142(9), 1748-1758.
[http://dx.doi.org/10.1002/ijc.31198] [PMID: 29210053]
[11]
Stappenbeck, T.S.; Mills, J.C.; Gordon, J.I. Molecular features of adult mouse small intestinal epithelial progenitors. Proc. Natl. Acad. Sci. USA, 2003, 100(3), 1004-1009.
[http://dx.doi.org/10.1073/pnas.242735899] [PMID: 12552106]
[12]
Ramachandran, A.; Madesh, M.; Balasubramanian, K.A. Apoptosis in the intestinal epithelium: Its relevance in normal and pathophysiological conditions. J. Gastroenterol. Hepatol., 2000, 15(2), 109-120.
[http://dx.doi.org/10.1046/j.1440-1746.2000.02059.x] [PMID: 10735533]
[13]
Pino, M.S.; Chung, D.C. The chromosomal instability pathway in colon cancer. Gastroenterology, 2010, 138(6), 2059-2072.
[http://dx.doi.org/10.1053/j.gastro.2009.12.065] [PMID: 20420946]
[14]
Tegeder, I.; Pfeilschifter, J.; Geisslinger, G. Cyclooxygenaseindependent actions of cyclooxygenase inhibitors. FASEB J., 2001, 15(12), 2057-2072.
[http://dx.doi.org/10.1096/fj.01-0390rev] [PMID: 11641233]
[15]
Zhou, X. Exosomalnc RNAs facilitate interactive ‘dialogue’ between tumor cells and tumor-associated macrophages. Cancer Lett., 2022, (25), 215-275.
[16]
Li, Z.; Si, W.; Jin, W.; Yuan, Z.; Chen, Y.; Fu, L. Targeting autophagy in colorectal cancer: An update on pharmacological small-molecule compounds. Drug Discov. Today, 2022, 27(8), 2373-2385.
[http://dx.doi.org/10.1016/j.drudis.2022.05.011] [PMID: 35589015]
[17]
Edelmann, L.; Edelmann, W. Loss of DNA mismatch repair function and cancer predisposition in the mouse: Animal models for human hereditary nonpolyposis colorectal cancer. American J. Medical Genet. C. Semin. Med. Genet. Wiley Online Library, 2004, 129C(1), pp. 91-109.
[http://dx.doi.org/10.1002/ajmg.c.30021]
[18]
Shadbad, M.A.; Asadzadeh, Z.; Derakhshani, A.; Hosseinkhani, N.; Mokhtarzadeh, A.; Baghbanzadeh, A.; Hajiasgharzadeh, K.; Brunetti, O.; Argentiero, A.; Racanelli, V.; Silvestris, N.; Baradaran, B. A scoping review on the potentiality of PD-L1-inhibiting microRNAs in treating colorectal cancer: Toward single-cell sequencing-guided biocompatible-based delivery. Biomed. Pharmacother., 2021, 143, 112213.
[http://dx.doi.org/10.1016/j.biopha.2021.112213] [PMID: 34560556]
[19]
Conte, A.; Valente, V.; Paladino, S.; Pierantoni, G.M. HIPK2 in cancer biology and therapy: Recent findings and future perspectives. Cell. Signal., 2022, 2022, 110-191.
[PMID: 36241057]
[20]
Reichling, T.; Goss, K.H.; Carson, D.J.; Holdcraft, R.W.; Ley-Ebert, C.; Witte, D.; Aronow, B.J.; Groden, J. Transcriptional profiles of intestinal tumors in Apcmin mice are unique from those of embryonic intestine and identify novel gene targets dysregulated in human colorectal tumors. Cancer Res., 2005, 65(1), 166-176.
[http://dx.doi.org/10.1158/0008-5472.166.65.1] [PMID: 15665292]
[21]
Jin, D.; Liu, T.; Dong, W.; Zhang, Y.; Wang, S.; Xie, R.; Wang, B.; Cao, H. Dietary feeding of freeze-dried whole cranberry inhibits intestinal tumor development in Apcmin/+ mice. Oncotarget, 2017, 8(58), 97787-97800.
[http://dx.doi.org/10.18632/oncotarget.22081] [PMID: 29228651]
[22]
Huang, G.; Khan, I.; Li, X.; Chen, L.; Leong, W.; Ho, L.T.; Hsiao, W.L.W. Ginsenosides Rb3 and Rd reduce polyps formation while reinstate the dysbiotic gut microbiota and the intestinal microenvironment in ApcMin/+ mice. Sci. Rep., 2017, 7(1), 12552.
[http://dx.doi.org/10.1038/s41598-017-12644-5] [PMID: 28970547]
[23]
Bissahoyo, A.; Pearsall, R.S.; Hanlon, K.; Amann, V.; Hicks, D.; Godfrey, V.L.; Threadgill, D.W. Azoxymethane is a genetic background-dependent colorectal tumor initiator and promoter in mice: effects of dose, route, and diet. Toxicol. Sci., 2005, 88(2), 340-345.
[http://dx.doi.org/10.1093/toxsci/kfi313] [PMID: 16150884]
[24]
Perše, M.; Cerar, A. Morphological and molecular alterations in 1, 2 dimethylhydrazine and azoxymethane induced colon carcinogenesis in rats. J. Biomed. Biotechnol., 2010, 20, 11.
[PMID: 21253581]
[25]
Ashokkumar, P.; Sudhandiran, G. Luteolin inhibits cell proliferation during Azoxymethane-induced experimental colon carcinogenesis via Wnt/β-catenin pathway. Invest. New Drugs, 2011, 29(2), 273-284.
[http://dx.doi.org/10.1007/s10637-009-9359-9] [PMID: 20013030]
[26]
Liu, Y.; Cheuk-Hay, L.H.; Cheng, W.Y.; Yu, J. Gut microbiome in colorectal cancer: Clinical diagnosis and treatment. Genom. Proteomics Bioinform., 2022, S1672-0229(22), 00086-00089.
[http://dx.doi.org/10.1016/j.gpb.2022.07.002] [PMID: 35914737]
[27]
Umesalma, S.; Sudhandiran, G. Differential inhibitory effects of the polyphenol ellagic acid on inflammatory mediators NF-kappaB, iNOS, COX-2, TNF-α, and IL-6 in 1,2-dimethylhydrazine-induced rat colon carcinogenesis. Basic Clin. Pharmacol. Toxicol., 2010, 107(2), 650-655.
[http://dx.doi.org/10.1111/j.1742-7843.2010.00565.x] [PMID: 20406206]
[28]
Sivasakthi, P.; Sabarathinam, S.; Vijayakumar, T.M. Network pharmacology and in silico pharmacokinetic prediction of Ozanimod in the management of ulcerative colitis: A computational study. Health Sci. Rep., 2022, 5(1), e473.
[http://dx.doi.org/10.1002/hsr2.473] [PMID: 35229041]
[29]
Kohno, H.; Suzuki, R.; Sugie, S.; Tanaka, T. β-Catenin mutations in a mouse model of inflammation-related colon carcinogenesis induced by 1,2-dimethylhydrazine and dextran sodium sulfate. Cancer Sci., 2005, 96(2), 69-76.
[http://dx.doi.org/10.1111/j.1349-7006.2005.00020.x] [PMID: 15723650]
[30]
Jobst, K. Teratogenous changes and tumors in rats following treatment with methylnitroso-urea (MNU). Neoplasma, 1967, 14(4), 435-436.
[PMID: 6063014]
[31]
Haria, P.D.; Baheti, A.D.; Palsetia, D.; Ankathi, S.K.; Choudhari, A.; Guha, A.; Saklani, A.; Sinha, R. Follow-up of colorectal cancer and patterns of recurrence. Clin. Radiol., 2021, 76(12), 908-915.
[http://dx.doi.org/10.1016/j.crad.2021.07.016] [PMID: 34474747]
[32]
Wang, Y.; Zhang, Z.; Sun, W.; Zhang, J.; Xu, Q.; Zhou, X.; Mao, L. Ferroptosis in colorectal cancer: Potential mechanisms and effective therapeutic targets. Biomed. Pharmacother., 2022, 153(5), 113524.
[http://dx.doi.org/10.1016/j.biopha.2022.113524] [PMID: 36076606]
[33]
Shao, X.; Chen, X.; Wang, Z.; Zhu, C.; Du, Y.; Tang, D.; Ji, S. Diprenylated flavonoids from licorice induce death of SW480 colorectal cancer cells by promoting autophagy: Activities of lupalbigenin and 6,8-diprenylgenistein. J. Ethnopharmacol., 2022, 296(11), 115488.
[http://dx.doi.org/10.1016/j.jep.2022.115488] [PMID: 35728712]
[34]
Magalhães, B.; Peleteiro, B.; Lunet, N. Dietary patterns and colorectal cancer. Eur. J. Cancer Prev., 2012, 21(1), 15-23.
[http://dx.doi.org/10.1097/CEJ.0b013e3283472241] [PMID: 21946864]
[35]
Qiao, C.; Wang, H.; Guan, Q.; Wei, M.; Li, Z. Ferroptosis-based nano delivery systems targeted therapy for colorectal cancer: Insights and future perspectives. Asian J. Pharmaceut. Sci., 2022, (4), 1-10.
[36]
Newmark, H.L.; Yang, K.; Kurihara, N.; Fan, K.; Augenlicht, L.H.; Lipkin, M. Western-style diet-induced colonic tumors and their modulation by calcium and vitamin D in C57Bl/6 mice: A preclinical model for human sporadic colon cancer. Carcinogenesis, 2008, 30(1), 88-92.
[http://dx.doi.org/10.1093/carcin/bgn229] [PMID: 19017685]
[37]
Mahima, M.; Mahmood, T.; Ved, A.; Siddiqui, M.H.; Ahsan, F.; Shamim, A.; Ansari, V.A.; Ahmad, A.; Kashyap, M.K. An in-depth analysis of ovarian cancer: Pathogenesis and clinical manifestation. Drug Res., 2022, 72(8), 424-434.
[http://dx.doi.org/10.1055/a-1867-4654] [PMID: 35760337]
[38]
Wang, D.; Peregrina, K.; Dhima, E.; Lin, E.Y.; Mariadason, J.M.; Augenlicht, L.H. Paneth cell marker expression in intestinal villi and colon crypts characterizes dietary induced risk for mouse sporadic intestinal cancer. Proc. Natl. Acad. Sci. USA, 2011, 108(25), 10272-10277.
[http://dx.doi.org/10.1073/pnas.1017668108] [PMID: 21652773]
[39]
Abushukair, H.; Ababneh, O.; Zaitoun, S.; Saeed, A. Primary and secondary immune checkpoint inhibitors resistance in colorectal cancer: Key mechanisms and ways to overcome resistance. Cancer Treat. Res. Commun., 2022, 33, 100643.
[http://dx.doi.org/10.1016/j.ctarc.2022.100643] [PMID: 36175334]
[40]
Subramaniam, R.; Mizoguchi, A.; Mizoguchi, E. Mechanistic roles of epithelial and immune cell signaling during the development of colitis-associated cancer. Cancer Res. Front., 2016, 2(1), 1-21.
[http://dx.doi.org/10.17980/2016.1] [PMID: 27110580]
[41]
Al-Sohaily, S.; Biankin, A.; Leong, R.; Kohonen-Corish, M.; Warusavitarne, J. Molecular pathways in colorectal cancer. J. Gastroenterol. Hepatol., 2012, 27(9), 1423-1431.
[http://dx.doi.org/10.1111/j.1440-1746.2012.07200.x] [PMID: 22694276]
[42]
Fath, M.K.; Anjomrooz, M.; Taha, S.R.; Zadeh, M.S.; Sahraei, M.; Atbaei, R.; Naghibi, A.F.; Payandeh, Z.; Rahmani, Z.; Barati, G. The therapeutic effect of exosomes from mesenchymal stem cells on colorectal cancer: Toward cell-free therapy. Pathol. Res. Pract., 2022, 154, 10-24.
[43]
Xie, Y.; Hou, W.; Song, X.; Yu, Y.; Huang, J.; Sun, X.; Kang, R.; Tang, D. Ferroptosis: Process and function. Cell Death Differ., 2016, 23(3), 369-379.
[http://dx.doi.org/10.1038/cdd.2015.158] [PMID: 26794443]
[44]
Kroemer, G.; Perfettini, J.L. Entosis, a key player in cancer cell competition. Cell Res., 2014, 24(11), 1280-1281.
[http://dx.doi.org/10.1038/cr.2014.133] [PMID: 25342563]
[45]
Fatokun, A.A.; Dawson, V.L.; Dawson, T.M. Parthanatos: Mitochondrial-linked mechanisms and therapeutic opportunities. Br. J. Pharmacol., 2014, 171(8), 2000-2016.
[http://dx.doi.org/10.1111/bph.12416] [PMID: 24684389]
[46]
Ben Nasr, M.; Bassi, R.; Usuelli, V.; Valderrama-Vasquez, A.; Tezza, S.; D’Addio, F.; Fiorina, P. The use of hematopoietic stem cells in autoimmune diseases. Regen. Med., 2016, 11(4), 395-405.
[http://dx.doi.org/10.2217/rme-2015-0057] [PMID: 27165670]
[47]
Kim, K.H.; Lee, M.S. Autophagy-a key player in cellular and body metabolism. Nat. Rev. Endocrinol., 2014, 10(6), 322-337.
[http://dx.doi.org/10.1038/nrendo.2014.35] [PMID: 24663220]
[48]
Galluzzi, L.; Bravo-San Pedro, J.M.; Kepp, O.; Kroemer, G.; Kroemer, G. Regulated cell death and adaptive stress responses. Cell. Mol. Life Sci., 2016, 73(11-12), 2405-2410.
[http://dx.doi.org/10.1007/s00018-016-2209-y] [PMID: 27048813]
[49]
Wong, J.J.L.; Hawkins, N.J.; Ward, R.L. Colorectal cancer: A model for epigenetic tumorigenesis. Gut, 2007, 56(1), 140-148.
[http://dx.doi.org/10.1136/gut.2005.088799] [PMID: 16840508]
[50]
Fearon, E.R. Molecular genetics of colorectal cancer. Annu. Rev. Pathol., 2011, 6(1), 479-507.
[http://dx.doi.org/10.1146/annurev-pathol-011110-130235] [PMID: 21090969]
[51]
Marshman, E.; Ottewell, P.D.; Potten, C.S.; Watson, A.J.M. Caspase activation during spontaneous and radiation‐induced apoptosis in the murine intestine. J. Pathol., 2001, 195(3), 285-292.
[http://dx.doi.org/10.1002/path.967]
[52]
Manne, U.; Shanmugam, C.; Katkoori, V.R.; Bumpers, H.L.; Grizzle, W.E. Development and progression of colorectal neoplasia. Cancer Biomark., 2011, 9(1-6), 235-265.
[http://dx.doi.org/10.3233/CBM-2011-0160] [PMID: 22112479]
[53]
Li, X.L.; Zhou, J.; Chen, Z.R.; Chng, W.J. P53 mutations in colorectal cancer-molecular pathogenesis and pharmacological reactivation. World J. Gastroenterol., 2015, 21(1), 84-93.
[http://dx.doi.org/10.3748/wjg.v21.i1.84] [PMID: 25574081]
[54]
Kumar, M.; Kaur, V.; Kumar, S.; Kaur, S. Phytoconstituents as apoptosis inducing agents: Strategy to combat cancer. Cytotechnology, 2016, 68(4), 531-563.
[http://dx.doi.org/10.1007/s10616-015-9897-2] [PMID: 26239338]
[55]
Pandurangan, A.K.; Dharmalingam, P.; Sadagopan, S.K.A.; Ramar, M.; Munusamy, A.; Ganapasam, S. Luteolin induces growth arrest in colon cancer cells through involvement of Wnt/β-catenin/GSK-3β signaling. J. Environ. Pathol. Toxicol. Oncol., 2013, 32(2), 131-139.
[http://dx.doi.org/10.1615/JEnvironPatholToxicolOncol.2013007522] [PMID: 24099426]
[56]
Gerola, S.; Nittka, S.; Kähler, G.; Tao, S.; Brenner, H.; Binelli, G.; Eils, R.; Brors, B.; Neumaier, M. Genetic variants in apoptosis-related genes associated with colorectal hyperplasia. Genes Chrom Cancer, 2014, 53(9), 769-778.
[http://dx.doi.org/10.1002/gcc.22185] [PMID: 24861865]
[57]
Sinicrope, F.A.; Hart, J.; Hsu, H.A.; Lemoine, M.; Michelassi, F.; Stephens, L.C. Apoptotic and mitotic indices predict survival rates in lymph node-negative colon carcinomas. Clin. Cancer Res., 1999, 5(7), 1793-1804.
[PMID: 10430084]
[58]
Danielsen, S.A.; Eide, P.W.; Nesbakken, A.; Guren, T.; Leithe, E.; Lothe, R.A. Portrait of the PI3K/AKT pathway in colorectal cancer. Biochim. Biophysica Acta, 2015, 1855(1), 104-121.
[59]
Kenific, C.M.; Thorburn, A.; Debnath, J. Autophagy and metastasis: Another double-edged sword. Curr. Opin. Cell Biol., 2010, 22(2), 241-245.
[http://dx.doi.org/10.1016/j.ceb.2009.10.008] [PMID: 19945838]
[60]
Chen, Z.; Li, Y.; Zhang, C.; Yi, H.; Wu, C.; Wang, J.; Liu, Y.; Tan, J.; Wen, J. Downregulation of Beclin 1 and impairment of autophagy in a small population of colorectal cancer. Dig. Dis. Sci., 2013, 58(10), 2887-2894.
[http://dx.doi.org/10.1007/s10620-013-2732-8] [PMID: 23812859]
[61]
Moriwaki, K.; Bertin, J.; Gough, P.J.; Orlowski, G.M.; Chan, F.K. Differential roles of RIPK1 and RIPK3 in TNF-induced necroptosis and chemotherapeutic agent-induced cell death. Cell Death Dis., 2015, 6(2), e1636.
[http://dx.doi.org/10.1038/cddis.2015.16] [PMID: 25675296]
[62]
Xie, X.; Zhao, Y.; Ma, C.Y.; Xu, X.M.; Zhang, Y.Q.; Wang, C.G.; Jin, J.; Shen, X.; Gao, J.L.; Li, N.; Sun, Z.J.; Dong, D.L. Dimethyl fumarate induces necroptosis in colon cancer cells through GSH depletion/ROS increase/MAPKs activation pathway. Br. J. Pharmacol., 2015, 172(15), 3929-3943.
[http://dx.doi.org/10.1111/bph.13184] [PMID: 25953698]
[63]
Oliver Metzig, M.; Fuchs, D.; Tagscherer, K.E.; Gröne, H-J.; Schirmacher, P.; Roth, W. Inhibition of caspases primes colon cancer cells for 5-fluorouracil-induced TNF-α-dependent necroptosis driven by RIP1 kinase and NF-κB. Oncogene, 2016, 35(26), 3399-3409.
[http://dx.doi.org/10.1038/onc.2015.398] [PMID: 26522725]
[64]
Katz, L.H.; Li, Y.; Chen, J.S.; Muñoz, N.M.; Majumdar, A.; Chen, J.; Mishra, L. Targeting TGF-β signaling in cancer. Expert Opin. Ther. Targets, 2013, 17(7), 743-760.
[http://dx.doi.org/10.1517/14728222.2013.782287] [PMID: 23651053]
[65]
Goel, S.; Huang, J.; Klampfer, L. K-Ras, intestinal homeostasis and colon cancer. Curr. Clin. Pharmacol., 2015, 10(1), 73-81.
[http://dx.doi.org/10.2174/1574884708666131111204440] [PMID: 24219000]
[66]
Karthika, C.; Hari, B.; Rahman, M.H.; Akter, R.; Najda, A.; Albadrani, G.M.; Sayed, A.A.; Akhtar, M.F.; Abdel-Daim, M.M. Multiple strategies with the synergistic approach for addressing colorectal cancer. Biomed. Pharmacother., 2021, 140(140), 111704.
[http://dx.doi.org/10.1016/j.biopha.2021.111704] [PMID: 34082400]
[67]
Kishore, C.; Bhadra, P. Current advancements and future perspectives of immunotherapy in colorectal cancer research. Eur. J. Pharmacol., 2021, 893(893), 173819.
[http://dx.doi.org/10.1016/j.ejphar.2020.173819] [PMID: 33347822]
[68]
Ryan, L.; Wong, Y.; Dwyer, K.M.; Clarke, D.; Kyprian, L.; Craig, J.M. Coprocytobiology: A technical review of cytological colorectal cancer screening in fecal samples. SLAS Technol., 2021, 26(6), 591-604.
[http://dx.doi.org/10.1177/24726303211024562] [PMID: 34219541]
[69]
Fevr, T.; Robine, S.; Louvard, D.; Huelsken, J. Wnt/β-catenin is essential for intestinal homeostasis and maintenance of intestinal stem cells. Mol. Cell. Biol., 2007, 27(21), 7551-7559.
[http://dx.doi.org/10.1128/MCB.01034-07] [PMID: 17785439]
[70]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
[71]
Fortin, J.; Mak, T.W. Targeting PI3K signaling in cancer: A cautionary tale of two AKTs. Cancer Cell, 2016, 29(4), 429-431.
[http://dx.doi.org/10.1016/j.ccell.2016.03.020] [PMID: 27070694]
[72]
Colakoglu, T.; Yildirim, S.; Kayaselcuk, F.; Nursal, T.Z.; Ezer, A.; Noyan, T.; Karakayali, H.; Haberal, M. Clinicopathological significance of PTEN loss and the phosphoinositide 3-kinase/Akt pathway in sporadic colorectal neoplasms: Is PTEN loss predictor of local recurrence? Am. J. Surg., 2008, 195(6), 719-725.
[http://dx.doi.org/10.1016/j.amjsurg.2007.05.061] [PMID: 18440486]
[73]
Lin, M.C.; Wang, F.Y.; Kuo, Y.H.; Tang, F.Y. Cancer chemopreventive effects of lycopene: Suppression of MMP-7 expression and cell invasion in human colon cancer cells. J. Agric. Food Chem., 2011, 59(20), 11304-11318.
[http://dx.doi.org/10.1021/jf202433f] [PMID: 21923160]
[74]
Din, F.V.N.; Valanciute, A.; Houde, V.P.; Zibrova, D.; Green, K.A.; Sakamoto, K.; Alessi, D.R.; Dunlop, M.G. Aspirin inhibits mTOR signaling, activates AMP-activated protein kinase, and induces autophagy in colorectal cancer cells. Gastroenterology, 2012, 142(7), 1504-1515.
[http://dx.doi.org/10.1053/j.gastro.2012.02.050] [PMID: 22406476]
[75]
Alexander, P.G.; McMillan, D.C.; Park, J.H. A meta-analysis of CD274 (PD-L1) assessment and prognosis in colorectal cancer and its role in predicting response to anti-PD-1 therapy. Crit. Rev. Oncol. Hematol., 2021, 157, 103147.
[http://dx.doi.org/10.1016/j.critrevonc.2020.103147] [PMID: 33278675]
[76]
Kaklamani, V.G.; Pasche, B. Role of TGF-β in cancer and the potential for therapy and prevention. Expert Rev. Anticancer Ther., 2004, 4(4), 649-661.
[http://dx.doi.org/10.1586/14737140.4.4.649] [PMID: 15270668]
[77]
Xu, Y.; Pasche, B. TGF-β signaling alterations and susceptibility to colorectal cancer. Hum. Mol. Genet., 2007, 16(R1), R14-R20.
[http://dx.doi.org/10.1093/hmg/ddl486] [PMID: 17613544]
[78]
Leask, A.; Abraham, D.J. TGF‐β signaling and the fibrotic response. FASEB J., 2004, 18(7), 816-827.
[http://dx.doi.org/10.1096/fj.03-1273rev] [PMID: 15117886]
[79]
Zhao, Y.; Wang, C.; Goel, A. Role of gut microbiota in epigenetic regulation of colorectal Cancer. Biochim. Biophysica Acta, 2021, (1), 188-190.
[80]
Letterio, J.J.; Roberts, A.B. Regulation of immune responses by TGF-β. Annu. Rev. Immunol., 1998, 16(1), 137-161.
[http://dx.doi.org/10.1146/annurev.immunol.16.1.137] [PMID: 9597127]
[81]
Gatza, C.E.; Holtzhausen, A.; Kirkbride, K.C.; Morton, A.; Gatza, M.L.; Datto, M.B.; Blobe, G.C. Type III TGF-β receptor enhances colon cancer cell migration and anchorage-independent growth. Neoplasia, 2011, 13(8), 758-828.
[http://dx.doi.org/10.1593/neo.11528] [PMID: 21847367]
[82]
Oshima, H.; Nakayama, M.; Han, T.S.; Naoi, K.; Ju, X.; Maeda, Y.; Robine, S.; Tsuchiya, K.; Sato, T.; Sato, H.; Taketo, M.M.; Oshima, M. Suppressing TGFβ signaling in regenerating epithelia in an inflammatory microenvironment is sufficient to cause invasive intestinal cancer. Cancer Res., 2015, 75(4), 766-776.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-2036] [PMID: 25687406]
[83]
Ruzzo, A.; Graziano, F.; Canestrari, E.; Magnani, M. Molecular predictors of efficacy to anti-EGFR agents in colorectal cancer patients. Curr. Cancer Drug Targ, 2010, 10(1), 68-79.
[http://dx.doi.org/10.2174/156800910790980205] [PMID: 20088793]
[84]
Mendelsohn, J. The epidermal growth factor receptor as a target for cancer therapy. Endocr. Relat. Cancer, 2001, 8(1), 3-9.
[http://dx.doi.org/10.1677/erc.0.0080003] [PMID: 11350723]
[85]
Hsieh, J.S.; Lin, S.R.; Chang, M.Y.; Chen, F.M.; Lu, C.Y.; Huang, T.J.; Huang, Y.S.; Huang, C.J.; Wang, J.Y. APC, K-ras, and p53 gene mutations in colorectal cancer patients: Correlation to clinicopathologic features and postoperative surveillance. Am. Surg., 2005, 71(4), 336-343.
[http://dx.doi.org/10.1177/000313480507100413] [PMID: 15943410]
[86]
Artavanis-Tsakonas, S.; Rand, M.D.; Lake, R.J. Notch signaling: Cell fate control and signal integration in development. Science, 1999, 284(5415), 770-776.
[http://dx.doi.org/10.1126/science.284.5415.770]
[87]
Schmitt, M.W.; Loeb, L.A.; Salk, J.J. The influence of subclonal resistance mutations on targeted cancer therapy. Nat. Rev. Clin. Oncol., 2016, 13(6), 335-347.
[http://dx.doi.org/10.1038/nrclinonc.2015.175] [PMID: 26483300]
[88]
Mirone, G.; Perna, S.; Shukla, A.; Marfe, G. Involvement of Notch-1 in resistance to regorafenib in colon cancer cells. J. Cell. Physiol., 2016, 231(5), 1097-1105.
[http://dx.doi.org/10.1002/jcp.25206] [PMID: 26419617]
[89]
Kranenburg, O. Prometastatic NOTCH signaling in colon cancer. Cancer Discov., 2015, 5(2), 115-117.
[http://dx.doi.org/10.1158/2159-8290.CD-14-1456] [PMID: 25656897]
[90]
Rajendran, P.; Dashwood, W.M.; Li, L.; Kang, Y.; Kim, E.; Johnson, G.; Fischer, K.A.; Löhr, C.V.; Williams, D.E.; Ho, E.; Yamamoto, M.; Lieberman, D.A.; Dashwood, R.H. Nrf2 status affects tumor growth, HDAC3 gene promoter associations, and the response to sulforaphane in the colon. Clin. Epigenetics, 2015, 7(1), 102.
[http://dx.doi.org/10.1186/s13148-015-0132-y] [PMID: 26388957]
[91]
Lu, Y.; An, L.; Taylor, M.R.G.; Chen, Q.M. Nrf2 signaling in heart failure: Expression of Nrf2, Keap1, antioxidant and detoxification genes in dilated or ischemic cardiomyopathy. Physiologica. Genomics, 2022, 54(3), 115-127.
[92]
Copple, I.M. The Keap1-Nrf2 cell defense pathway-a promising therapeutic target? Adv. Pharmacol., 2012, 63, 43-79.
[http://dx.doi.org/10.1016/B978-0-12-398339-8.00002-1] [PMID: 22776639]
[93]
Manigandan, K.; Manimaran, D.; Jayaraj, R.L.; Elangovan, N.; Dhivya, V.; Kaphle, A. Taxifolin curbs NF-κB-mediated Wnt/β-catenin signaling via up-regulating Nrf2 pathway in experimental colon carcinogenesis. Biochimie, 2015, 119, 103-112.
[http://dx.doi.org/10.1016/j.biochi.2015.10.014] [PMID: 26482805]
[94]
Niture, S.K.; Khatri, R.; Jaiswal, A.K. Regulation of Nrf2-an update. Free Radic. Biol. Med., 2014, 66, 36-44.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.02.008] [PMID: 23434765]
[95]
Katsuoka, F.; Otsuki, A.; Takahashi, M.; Ito, S.; Yamamoto, M. Direct and specific functional evaluation of the Nrf2 and MafG heterodimer by introducing a tethered dimer into small Maf-deficient cells. Mol. Cell. Biol., 2019, 39(20), e00273-e19.
[http://dx.doi.org/10.1128/MCB.00273-19] [PMID: 31383749]
[96]
Wondrak, G.; Villeneuve, N.F.; Lamore, S.D.; Bause, A.S.; Jiang, T.; Zhang, D.D. The cinnamon-derived dietary factor cinnamic aldehyde activates the Nrf2-dependent antioxidant response in human epithelial colon cells. Molecules, 2010, 15(5), 3338-3355.
[http://dx.doi.org/10.3390/molecules15053338] [PMID: 20657484]
[97]
Romanucci, V.; Giordano, M.; Pagano, R.; Agarwal, C.; Agarwal, R.; Zarrelli, A.; Di Fabio, G. Solid-phase synthesis of curcumin mimics and their anticancer activity against human pancreatic, prostate, and colorectal cancer cell lines. Bioorg. Med. Chem., 2021, 42, 116249.
[http://dx.doi.org/10.1016/j.bmc.2021.116249] [PMID: 34126286]
[98]
Irvine, K.D.; Harvey, K.F. Control of organ growth by patterning and hippo signaling in Drosophila. Cold Spring Harb. Perspect. Biol., 2015, 7(6), a019224.
[http://dx.doi.org/10.1101/cshperspect.a019224] [PMID: 26032720]
[99]
Kosik, K.S.; Kowall, N.W.; McKee, A. Along the way to a neurofibrillary tangle: A look at the structure of tau. Ann. Med., 1989, 21(2), 109-112.
[http://dx.doi.org/10.3109/07853898909149195] [PMID: 2504256]
[100]
Santucci, M.; Vignudelli, T.; Ferrari, S.; Mor, M.; Scalvini, L.; Bolognesi, M.L.; Uliassi, E.; Costi, M.P. The Hippo pathway and YAP/TAZ–TEAD protein–protein interaction as targets for regenerative medicine and cancer treatment. Miniperspective. J. Med. Chem., 2015, 58(12), 4857-4873.
[http://dx.doi.org/10.1021/jm501615v] [PMID: 25719868]
[101]
Nagashima, S.; Bao, Y.; Hata, Y. The Hippo pathway as drug targets in cancer therapy and regenerative medicine. Curr. Drug Targets, 2017, 18(4), 447-454.
[http://dx.doi.org/10.2174/1389450117666160112115641] [PMID: 26758663]
[102]
Hansen, C.G.; Moroishi, T.; Guan, K.L. YAP and TAZ: A nexus for Hippo signaling and beyond. Trends Cell Biol., 2015, 25(9), 499-513.
[http://dx.doi.org/10.1016/j.tcb.2015.05.002] [PMID: 26045258]
[103]
Liang, K.; Zhou, G.; Zhang, Q.; Li, J.; Zhang, C. Expression of hippo pathway in colorectal cancer. Saudi J. Gastroenterol., 2014, 20(3), 188.
[104]
Konsavage, W.M., Jr; Kyler, S.L.; Rennoll, S.A.; Jin, G.; Yochum, G.S. Wnt/β-catenin signaling regulates Yes-associated protein (YAP) gene expression in colorectal carcinoma cells. J. Biol. Chem., 2012, 287(15), 11730-11739.
[http://dx.doi.org/10.1074/jbc.M111.327767] [PMID: 22337891]
[105]
Mohamed, D.A.W.; Nabil, E.S.; Motaleb, F.I.A.; Aboushahba, R.M.; Abou-Zeid, A.A.A.; Mohamed, S.M. miR-34a-5p suppresses colorectal cancer cell proliferation through silencing Microtubule Actin Crosslinking Factor 1 (MACF1) gene. Gene Rep., 2021, 25, 101416.
[http://dx.doi.org/10.1016/j.genrep.2021.101416]
[106]
Rupaimoole, R.; Slack, F.J. MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases. Nat. Rev. Drug Discov., 2017, 16(3), 203-222.
[http://dx.doi.org/10.1038/nrd.2016.246] [PMID: 28209991]
[107]
Xie, Q.; Li, Z.; Liu, Y.; Zhang, D.; Su, M.; Niitsu, H.; Lu, Y.; Coffey, R.J.; Bai, M. Translocator protein-targeted photodynamic therapy for direct and abscopal immunogenic cell death in colorectal cancer. Acta Biomater., 2021, 134(134), 716-729.
[http://dx.doi.org/10.1016/j.actbio.2021.07.052] [PMID: 34329783]
[108]
Cao, L.; Liu, Y.; Wang, D.; Huang, L.; Li, F.; Liu, J.; Zhang, C.; Shen, Z.; Gao, Q.; Yuan, W.; Zhang, Y. miR-760 suppresses human colorectal cancer growth by targeting BATF3/AP-1/cyclinD1 signaling. J. Exp. Clin. Cancer Res., 2018, 37(1), 83.
[http://dx.doi.org/10.1186/s13046-018-0757-8] [PMID: 29661228]
[109]
Zhang, W.; Sun, Z.; Su, L.; Wang, F.; Jiang, Y.; Yu, D.; Zhang, F.; Sun, Z.; Liang, W. miRNA-185 serves as a prognostic factor and suppresses migration and invasion through Wnt1 in colon cancer. Eur. J. Pharmacol., 2018, 825, 75-84.
[http://dx.doi.org/10.1016/j.ejphar.2018.02.019] [PMID: 29454608]
[110]
Noffsinger, A.E. Serrated polyps and colorectal cancer: New pathway to malignancy. Annu. Rev. Pathol., 2009, 4(1), 343-364.
[http://dx.doi.org/10.1146/annurev.pathol.4.110807.092317] [PMID: 19400693]
[111]
Martín, M.J.; Azcona, P.; Lassalle, V.; Gentili, C. Doxorubicin delivery by magnetic nanotheranostics enhances the cell death in chemoresistant colorectal cancer-derived cells. Eur. J. Pharm. Sci., 2021, 158(158), 105681.
[http://dx.doi.org/10.1016/j.ejps.2020.105681] [PMID: 33347979]
[112]
Lindor, N.M. Hereditary colorectal cancer: MYH-associated polyposis and other newly identified disorders. Best Pract. Res. Clin. Gastroenterol., 2009, 23(1), 75-87.
[http://dx.doi.org/10.1016/j.bpg.2008.11.013] [PMID: 19258188]
[113]
Umar, A.; Boland, C.R.; Terdiman, J.P.; Syngal, S.; Chapelle, A.; Rüschoff, J.; Fishel, R.; Lindor, N.M.; Burgart, L.J.; Hamelin, R.; Hamilton, S.R.; Hiatt, R.A.; Jass, J.; Lindblom, A.; Lynch, H.T.; Peltomaki, P.; Ramsey, S.D.; Rodriguez-Bigas, M.A.; Vasen, H.F.A.; Hawk, E.T.; Barrett, J.C.; Freedman, A.N.; Srivastava, S. Revised Bethesda guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J. Natl. Cancer Inst., 2004, 96(4), 261-268.
[http://dx.doi.org/10.1093/jnci/djh034] [PMID: 14970275]
[114]
Miao, X.; Zhang, Y.; Li, Z.; Huang, L.; Xin, T.; Shen, R.; Wang, T. Inhibition of indoleamine 2,3-dioxygenase 1 synergizes with oxaliplatin for efficient colorectal cancer therapy. Mol. Ther. Methods Clin. Dev., 2021, 20, 442-450.
[http://dx.doi.org/10.1016/j.omtm.2020.12.013] [PMID: 33665222]
[115]
Brabletz, T.; Hlubek, F.; Spaderna, S.; Schmalhofer, O.; Hiendlmeyer, E.; Jung, A.; Kirchner, T. Invasion and metastasis in colorectal cancer: Epithelial-mesenchymal transition, mesenchymalepithelial transition, stem cells and β-catenin. Cells Tissues Organs, 2005, 179(1-2), 56-65.
[http://dx.doi.org/10.1159/000084509] [PMID: 15942193]
[116]
Iwatsuki, M.; Mimori, K.; Yokobori, T.; Ishi, H.; Beppu, T.; Nakamori, S.; Baba, H.; Mori, M. Epithelial-mesenchymal transition in cancer development and its clinical significance. Cancer Sci., 2010, 101(2), 293-299.
[http://dx.doi.org/10.1111/j.1349-7006.2009.01419.x] [PMID: 19961486]
[117]
Cano, A.; Pérez-Moreno, M.A.; Rodrigo, I.; Locascio, A.; Blanco, M.J.; del Barrio, M.G.; Portillo, F.; Nieto, M.A. The transcription factor snail controls epithelial–mesenchymal transitions by repressing E-cadherin expression. Nat. Cell Biol., 2000, 2(2), 76-83.
[http://dx.doi.org/10.1038/35000025] [PMID: 10655586]
[118]
Wang, S.; Wang, L.; Zhou, Z.; Deng, Q.; Li, L.; Zhang, M.; Liu, L.; Li, Y. Leucovorin enhances the anti-cancer effect of bortezomib in colorectal cancer cells. Sci. Rep., 2017, 7(1), 682.
[http://dx.doi.org/10.1038/s41598-017-00839-9] [PMID: 28386133]
[119]
Zhang, N.; Ng, A.S.; Cai, S.; Li, Q.; Yang, L.; Kerr, D. Novel therapeutic strategies: Targeting epithelial–mesenchymal transition in colorectal cancer. Lancet Oncol., 2021, 22(8), e358-e368.
[http://dx.doi.org/10.1016/S1470-2045(21)00343-0] [PMID: 34339656]
[120]
Battaglin, F.; Dadduzio, V.; Bergamo, F.; Manai, C.; Schirripa, M.; Lonardi, S.; Zagonel, V.; Loupakis, F. Anti-EGFR monoclonal antibody panitumumab for the treatment of patients with metastatic colorectal cancer: An overview of current practice and future perspectives. Expert Opin. Biol. Ther., 2017, 17(10), 1297-1308.
[http://dx.doi.org/10.1080/14712598.2017.1356815] [PMID: 28752777]
[121]
Dickey, M.S.R.; Raina, A.J.; Gilbar, P.J.; Wisniowski, B.L.; Collins, J.T.; Karki, B.; Nguyen, A.D.K. Pembrolizumab-induced thrombotic thrombocytopenic purpura. J. Oncol. Pharm. Pract., 2020, 26(5), 1237-1240.
[http://dx.doi.org/10.1177/1078155219887212] [PMID: 31718453]
[122]
dos Reis, P.E.D.; Ciol, M.A.; de Melo, N.S.; Figueiredo, P.T.S.; Leite, A.F.; Manzi, N.M. Chamomile infusion cryotherapy to prevent oral mucositis induced by chemotherapy: A pilot study. Support. Care Cancer, 2016, 24(10), 4393-4398.
[http://dx.doi.org/10.1007/s00520-016-3279-y] [PMID: 27189615]
[123]
Tanaka, S.; Haruma, K.; Yoshihara, M.; Kajiyama, G.; Kira, K.; Amagase, H.; Chayama, K. Aged garlic extract has potential suppressive effect on colorectal adenomas in humans. J. Nutr., 2006, 136(Suppl. 3), 821S-826S.
[http://dx.doi.org/10.1093/jn/136.3.821S] [PMID: 16484573]
[124]
Ishikawa, H.; Saeki, T.; Otani, T.; Suzuki, T.; Shimozuma, K.; Nishino, H.; Fukuda, S.; Morimoto, K. Aged garlic extract prevents a decline of NK cell number and activity in patients with advanced cancer. J. Nutr., 2006, 136(Suppl. 3), 816S-820S.
[http://dx.doi.org/10.1093/jn/136.3.816S] [PMID: 16484572]
[125]
Marx, W.; McCarthy, A.; Ried, K.; McKavanagh, D.; Vitetta, L.; Sali, A.; Lohning, A.; Isenring, E. The effect of a standardized ginger extract on chemotherapy-induced nausea-related quality of life in patients undergoing moderately or highly emetogenic chemotherapy: A double blind, randomized, placebo controlled trial. Nutrients, 2017, 9(8), 867.
[http://dx.doi.org/10.3390/nu9080867] [PMID: 28805667]
[126]
Nuñez-Sánchez, M.A.; González-Sarrías, A.; García-Villalba, R.; Monedero-Saiz, T.; García-Talavera, N.V.; Gómez-Sánchez, M.B.; Sánchez-Álvarez, C.; García-Albert, A.M.; Rodríguez-Gil, F.J.; Ruiz-Marín, M.; Pastor-Quirante, F.A.; Martínez-Díaz, F.; Tomás-Barberán, F.A.; Espín, J.C.; García-Conesa, M.T. Gene expression changes in colon tissues from colorectal cancer patients following the intake of an ellagitannin-containing pomegranate extract: A randomized clinical trial. J. Nutr. Biochem., 2017, 42, 126-133.
[http://dx.doi.org/10.1016/j.jnutbio.2017.01.014] [PMID: 28183047]
[127]
Tajima, Y.; Ishida, H.; Yamamoto, A.; Chika, N.; Onozawa, H.; Matsuzawa, T.; Kumamoto, K.; Ishibashi, K.; Mochiki, E. Comparison of the risk of surgical site infection and feasibility of surgery between sennoside versus polyethylene glycol as a mechanical bowel preparation of elective colon cancer surgery: A randomized controlled trial. Surg. Today, 2016, 46(6), 735-740.
[http://dx.doi.org/10.1007/s00595-015-1239-7] [PMID: 26319220]
[128]
Hashim, Y.Z.H.Y.; Worthington, J.; Allsopp, P.; Ternan, N.G.; Brown, E.M.; McCann, M.J.; Rowland, I.R.; Esposto, S.; Servili, M.; Gill, C.I.R. Virgin olive oil phenolics extract inhibit invasion of HT115 human colon cancer cells in vitro and in vivo. Food Funct., 2014, 5(7), 1513-1519.
[http://dx.doi.org/10.1039/c4fo00090k] [PMID: 24836598]
[129]
Agra, Y.; Sacristán, A.; González, M.; Ferrari, M.; Portugués, A.; Calvo, M.J. Efficacy of senna versus lactulose in terminal cancer patients treated with opioids. J. Pain Symptom Manage., 1998, 15(1), 1-7.
[http://dx.doi.org/10.1016/S0885-3924(97)00276-5] [PMID: 9436336]
[130]
Tastekin, D.; Tambas, M.; Kilic, K.; Erturk, K.; Arslan, D. The efficacy of Pistacia Terebinthus soap in the treatment of cetuximab-induced skin toxicity. Invest. New Drugs, 2014, 32(6), 1295-1300.
[http://dx.doi.org/10.1007/s10637-014-0128-z] [PMID: 24930136]
[131]
Mutluay, Y.E.; Izgu, N.; Ozdemir, L.; Aslan, E.S.; Kartal, M. Sage tea–thyme–peppermint hydrosol oral rinse reduces chemotherapy-induced oral mucositis: A randomized controlled pilot study. Complement. Ther. Med., 2016, 27, 58-64.
[http://dx.doi.org/10.1016/j.ctim.2016.05.010] [PMID: 27515877]
[132]
Zhang, N.; Hu, X.; Du, Y.; Du, J. The role of miRNAs in colorectal cancer progression and chemoradiotherapy. Biomed. Pharmacother., 2021, 134, 111099.
[http://dx.doi.org/10.1016/j.biopha.2020.111099] [PMID: 33338745]
[133]
Alberts, D.S.; Einspahr, J.; Rees-McGee, S.; Ramanujam, P.; Buller, M.K.; Clark, L.; Ritenbaugh, C.; Atwood, J.; Pethigal, P.; Earnest, D.; Villar, H.; Phelps, J.; Lipkin, M.; Wargovich, M.; Meyskens, F.L. Effects of dietary wheat bran fiber on rectal epithelial cell proliferation in patients with resection for colorectal cancers. J. Natl. Cancer Inst., 1990, 82(15), 1280-1285.
[http://dx.doi.org/10.1093/jnci/82.15.1280] [PMID: 2165179]
[134]
Galluzzi, L.; Vitale, I.; Aaronson, S.A.; Abrams, J.M.; Adam, D.; Agostinis, P.; Alnemri, E.S.; Altucci, L.; Amelio, I.; Andrews, D.W.; Annicchiarico-Petruzzelli, M.; Antonov, A.V.; Arama, E.; Baehrecke, E.H.; Barlev, N.A.; Bazan, N.G.; Bernassola, F.; Bertrand, M.J.M.; Bianchi, K.; Blagosklonny, M.V.; Blomgren, K.; Borner, C.; Boya, P.; Brenner, C.; Campanella, M.; Candi, E.; Carmona-Gutierrez, D.; Cecconi, F.; Chan, F.K.M.; Chandel, N.S.; Cheng, E.H.; Chipuk, J.E.; Cidlowski, J.A.; Ciechanover, A.; Cohen, G.M.; Conrad, M.; Cubillos-Ruiz, J.R.; Czabotar, P.E.; D’Angiolella, V.; Dawson, T.M.; Dawson, V.L.; De Laurenzi, V.; De Maria, R.; Debatin, K.M.; DeBerardinis, R.J.; Deshmukh, M.; Di Daniele, N.; Di Virgilio, F.; Dixit, V.M.; Dixon, S.J.; Duckett, C.S.; Dynlacht, B.D.; El-Deiry, W.S.; Elrod, J.W.; Fimia, G.M.; Fulda, S.; García-Sáez, A.J.; Garg, A.D.; Garrido, C.; Gavathiotis, E.; Golstein, P.; Gottlieb, E.; Green, D.R.; Greene, L.A.; Gronemeyer, H.; Gross, A.; Hajnoczky, G.; Hardwick, J.M.; Harris, I.S.; Hengartner, M.O.; Hetz, C.; Ichijo, H.; Jäättelä, M.; Joseph, B.; Jost, P.J.; Juin, P.P.; Kaiser, W.J.; Karin, M.; Kaufmann, T.; Kepp, O.; Kimchi, A.; Kitsis, R.N.; Klionsky, D.J.; Knight, R.A.; Kumar, S.; Lee, S.W.; Lemasters, J.J.; Levine, B.; Linkermann, A.; Lipton, S.A.; Lockshin, R.A.; López-Otín, C.; Lowe, S.W.; Luedde, T.; Lugli, E.; MacFarlane, M.; Madeo, F.; Malewicz, M.; Malorni, W.; Manic, G.; Marine, J.C.; Martin, S.J.; Martinou, J.C.; Medema, J.P.; Mehlen, P.; Meier, P.; Melino, S.; Miao, E.A.; Molkentin, J.D.; Moll, U.M.; Muñoz-Pinedo, C.; Nagata, S.; Nuñez, G.; Oberst, A.; Oren, M.; Overholtzer, M.; Pagano, M.; Panaretakis, T.; Pasparakis, M.; Penninger, J.M.; Pereira, D.M.; Pervaiz, S.; Peter, M.E.; Piacentini, M.; Pinton, P.; Prehn, J.H.M.; Puthalakath, H.; Rabinovich, G.A.; Rehm, M.; Rizzuto, R.; Rodrigues, C.M.P.; Rubinsztein, D.C.; Rudel, T.; Ryan, K.M.; Sayan, E.; Scorrano, L.; Shao, F.; Shi, Y.; Silke, J.; Simon, H.U.; Sistigu, A.; Stockwell, B.R.; Strasser, A.; Szabadkai, G.; Tait, S.W.G.; Tang, D.; Tavernarakis, N.; Thorburn, A.; Tsujimoto, Y.; Turk, B.; Vanden Berghe, T.; Vandenabeele, P.; Vander Heiden, M.G.; Villunger, A.; Virgin, H.W.; Vousden, K.H.; Vucic, D.; Wagner, E.F.; Walczak, H.; Wallach, D.; Wang, Y.; Wells, J.A.; Wood, W.; Yuan, J.; Zakeri, Z.; Zhivotovsky, B.; Zitvogel, L.; Melino, G.; Kroemer, G. Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death 2018. Cell Death Differ., 2018, 25(3), 486-541.
[http://dx.doi.org/10.1038/s41418-017-0012-4] [PMID: 29362479]
[135]
Linn, S.C.; Giaccone, G. MDR1/P-glycoprotein expression in colorectal cancer. Eur. J. Cancer, 1995, 31(7-8), 1291-1294.
[http://dx.doi.org/10.1016/0959-8049(95)00278-Q] [PMID: 7577038]
[136]
Hu, T.; Li, Z.; Gao, C.Y.; Cho, C.H. Mechanisms of drug resistance in colon cancer and its therapeutic strategies. World J. Gastroenterol., 2016, 22(30), 6876-6889.
[http://dx.doi.org/10.3748/wjg.v22.i30.6876] [PMID: 27570424]
[137]
Catalano, A.; Iacopetta, D.; Ceramella, J.; Scumaci, D.; Giuzio, F.; Saturnino, C.; Aquaro, S.; Rosano, C.; Sinicropi, M.S. multidrug resistance (mdr): A widespread phenomenon in pharmacological therapies. Molecules, 2022, 27(3), 616.
[http://dx.doi.org/10.3390/molecules27030616] [PMID: 35163878]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy