Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Research Article

Metabolome Profiling of Malignant Ascites Identifies Candidate Metabolic Biomarkers of Hepatocellular Carcinoma

Author(s): Weijia Wang, Yue Wu, Qinsheng Zhang* and Peilin Cui*

Volume 31, Issue 13, 2024

Published on: 12 June, 2023

Page: [1769 - 1780] Pages: 12

DOI: 10.2174/0929867330666230324153552

Price: $65

Abstract

Background: Malignant ascites is one of the severe complications of hepatocellular carcinoma, which can be regarded as a unique tumor microenvironment of hepatocellular carcinoma. The identification of novel biomarkers in malignant ascites could be crucial to differentiate patients with hepatocellular carcinoma and cirrhotic ascites.

Objective: The study aimed to distinguish the metabolomics of malignant ascites in patients with hepatocellular carcinoma from that of non-malignant ascites (cirrhotic ascites).

Methods: Liquid chromatography-mass spectrometry was performed to analyze the differentially distributed biomarkers in patients with malignant ascites and hepatocellular carcinoma (n = 39), as well as in patients with cirrhotic ascites, which were taken as controls (n = 36).

Results: A total of 20 differential metabolites associated with malignant ascites were identified, of which 8 metabolites were upregulated and 12 metabolites were downregulated (ratio < 0.5 or > 1.5, respectively). Moreover, pathway and enrichment analyses revealed nitrogen metabolism, urea cycle, phenylalanine, and tyrosine metabolism to be implicated in the formation of malignant ascites in patients with hepatocellular carcinoma.

Conclusion: Our results suggest that the key factors associated with pathways, such as arachidonic acid, phenylalanine, and glutamic acid pathways, are potential ascitic fluidbased biomarkers for differentiating hepatocellular carcinoma with cirrhosis ascites; the results also provide a clinical pathophysiological interpretation of biomarkers and metabolic pathways relevant to disease status.

Keywords: Malignant ascites, UPLC-MS/MS, metabolism, hepatocellular carcinoma, biomarkers, tumor.

« Previous
[1]
Zheng, L.; Xu, M.; Xu, J.; Wu, K.; Fang, Q.; Liang, Y.; Zhou, S.; Cen, D.; Ji, L.; Han, W.; Cai, X. ELF3 promotes epithelial–mesenchymal transition by protecting ZEB1 from miR-141-3p-mediated silencing in hepatocellular carcinoma. Cell Death Dis., 2018, 9(3), 387.
[http://dx.doi.org/10.1038/s41419-018-0399-y] [PMID: 29523781]
[2]
El-Serag, H.B. Hepatocellular carcinoma. N. Engl. J. Med., 2011, 365(12), 1118-1127.
[http://dx.doi.org/10.1056/NEJMra1001683] [PMID: 21992124]
[3]
Pavlova, N.N.; Thompson, C.B. The emerging hallmarks of cancer metabolism. Cell Metab., 2016, 23(1), 27-47.
[http://dx.doi.org/10.1016/j.cmet.2015.12.006] [PMID: 26771115]
[4]
Cavazzoni, E.; Bugiantella, W.; Graziosi, L.; Franceschini, M.S.; Donini, A. Malignant ascites: Pathophysiology and treatment. Int. J. Clin. Oncol., 2013, 18(1), 1-9.
[http://dx.doi.org/10.1007/s10147-012-0396-6] [PMID: 22460778]
[5]
Watala, C.; Karolczak, K.; Kassassir, H.; Talar, M.; Przygodzki, T.; Maczynska, K.; Labieniec-Watala, M. How do the full-generation poly(amido)amine (PAMAM) dendrimers activate blood platelets? Activation of circulating platelets and formation of “fibrinogen aggregates” in the presence of polycations. Int. J. Pharm., 2016, 503(1-2), 247-261.
[http://dx.doi.org/10.1016/j.ijpharm.2015.08.073] [PMID: 26319628]
[6]
Pillai, R.C.; Fraser, J.F.; Ziegenfuss, M.; Bhaskar, B. Influence of circulating levels of fibrinogen and perioperative coagulation parameters on predicting postoperative blood loss in cardiac surgery: A prospective observational study. J. Card. Surg., 2014, 29(2), 189-195.
[http://dx.doi.org/10.1111/jocs.12255] [PMID: 24734282]
[7]
Moore, C.M.; Van Thiel, D.H. Cirrhotic ascites review: Pathophysiology, diagnosis and management. World J. Hepatol., 2013, 5(5), 251-263.
[http://dx.doi.org/10.4254/wjh.v5.i5.251] [PMID: 23717736]
[8]
Oberg, A.L.; Mahoney, D.W. Statistical methods for quantitative mass spectrometry proteomic experiments with labeling. BMC Bioinformatics, 2012, 13(S16), 7.
[http://dx.doi.org/10.1186/1471-2105-13-S16-S7]
[9]
Thompson, J.W.; Forrester, M.T.; Moseley, M.A.; Foster, M.W. Solid-phase capture for the detection and relative quantification of S-nitrosoproteins by mass spectrometry. Methods, 2013, 62(2), 130-137.
[http://dx.doi.org/10.1016/j.ymeth.2012.10.001] [PMID: 23064468]
[10]
Mehrotra, S.; Goyal, V. Evaluation of designer crops for biosafety-A scientist’s perspective. Gene, 2013, 515(2), 241-248.
[http://dx.doi.org/10.1016/j.gene.2012.12.029] [PMID: 23266812]
[11]
Sauzay, C.; Petit, A.; Bourgeois, A.M.; Barbare, J.C.; Chauffert, B.; Galmiche, A.; Houessinon, A. Alpha-foetoprotein (AFP): A multi-purpose marker in hepatocellular carcinoma. Clin Chim Acta, 2016, 463, 39-44.
[12]
Lindon, J.C.; Holmes, E.; Nicholson, J.K. Metabonomics in pharmaceutical R & D. FEBS J., 2007, 274(5), 1140-1151.
[http://dx.doi.org/10.1111/j.1742-4658.2007.05673.x] [PMID: 17298438]
[13]
Zhang, J.; Liang, R.; Wei, J.; Ye, J.; He, Q.; ChunlingYuan; Ye, J.; Li, Y.; Liu, Z.; Lin, Y. Identification of candidate biomarkers in malignant ascites from patients with hepatocellular carcinoma by iTRAQ-based quantitative proteomic analysis. BioMed Res. Int., 2018, 2018, 1-11.
[http://dx.doi.org/10.1155/2018/5484976] [PMID: 30345303]
[14]
Lee, S.S.; Min, H.J.; Choi, J.Y.; Cho, H.C.; Kim, J.J.; Lee, J.M.; Kim, H.J.; Ha, C.Y.; Kim, H.J.; Kim, T.H.; Kim, J.H.; Lee, O.J. Usefulness of ascitic fluid lactoferrin levels in patients with liver cirrhosis. BMC Gastroenterol., 2016, 16(1), 132.
[http://dx.doi.org/10.1186/s12876-016-0546-9] [PMID: 27733127]
[15]
Sui, Z.; Li, Q.; Zhu, L.; Wang, Z.; Lv, C.; Liu, R.; Xu, H.; He, B.; Li, Z.; Bi, K. An integrative investigation of the toxicity of Aconiti kusnezoffii radix and the attenuation effect of its processed drug using a UHPLC-Q-TOF based rat serum and urine metabolomics strategy. J. Pharm. Biomed. Anal., 2017, 145, 240-247.
[http://dx.doi.org/10.1016/j.jpba.2017.06.049] [PMID: 28668652]
[16]
Wang, X.; Zhang, A.; Sun, H. Power of metabolomics in diagnosis and biomarker discovery of hepatocellular carcinoma. Hepatology, 2013, 57(5), 2072-2077.
[http://dx.doi.org/10.1002/hep.26130] [PMID: 23150189]
[17]
Jiang, M.; Lu, C.; Zhang, C.; Yang, J.; Tan, Y.; Lu, A.; Chan, K. Syndrome differentiation in modern research of traditional Chinese medicine. J. Ethnopharmacol., 2012, 140(3), 634-642.
[http://dx.doi.org/10.1016/j.jep.2012.01.033] [PMID: 22322251]
[18]
Zira, A.N.; Theocharis, S.E.; Mitropoulos, D.; Migdalis, V.; Mikros, E. (1)H NMR metabonomic analysis in renal cell carcinoma: A possible diagnostic tool. J. Proteome Res., 2010, 9(8), 4038-4044.
[http://dx.doi.org/10.1021/pr100226m] [PMID: 20527959]
[19]
Lu, X.; Zhao, X.; Bai, C.; Zhao, C.; Lu, G.; Xu, G. LC–MS-based metabonomics analysis. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2008, 866(1-2), 64-76.
[http://dx.doi.org/10.1016/j.jchromb.2007.10.022] [PMID: 17983864]
[20]
Jiang, W.; Qiu, Y.; Ni, Y.; Su, M.; Jia, W.; Du, X. An automated data analysis pipeline for GC-TOF-MS metabonomics studies. J. Proteome Res., 2010, 9(11), 5974-5981.
[http://dx.doi.org/10.1021/pr1007703] [PMID: 20825247]
[21]
Safaei, A.; Arefi Oskouie, A.; Mohebbi, S.R.; Rezaei-Tavirani, M.; Mahboubi, M.; Peyvandi, M.; Okhovatian, F.; Zamanian-Azodi, M. Metabolomic analysis of human cirrhosis, hepatocellular carcinoma, non-alcoholic fatty liver disease and non-alcoholic steatohepatitis diseases. Gastroenterol. Hepatol. Bed Bench, 2016, 9(3), 158-173.
[PMID: 27458508]
[22]
Cui, W.; Zhang, J.; Wu, D.; Zhang, J.; Zhou, H.; Rong, Y.; Liu, F.; Wei, B.; Xu, X. Ponicidin suppresses pancreatic cancer growth by inducing ferroptosis: Insight gained by mass spectrometry-based metabolomics. Phytomedicine, 2022, 98, 153943.
[http://dx.doi.org/10.1016/j.phymed.2022.153943] [PMID: 35104766]
[23]
Zhang, H.; Bian, S.; Xu, Z.; Gao, M.; Wang, H.; Zhang, J.; Zhang, M.; Ke, Y.; Wang, W.; Chen, Z.S.; Xu, H. The effect and mechanistic study of encequidar on reversing the resistance of SW620/AD300 cells to doxorubicin. Biochem. Pharmacol., 2022, 205, 115258.
[http://dx.doi.org/10.1016/j.bcp.2022.115258] [PMID: 36179932]
[24]
Jha, V.K.; Shenoy, G.; Borpujari, P.J.; Banerjee, M. Biomarkers of malignant ascites-a myth or reality. Med. J. Armed Forces India, 2011, 67(4), 398.
[http://dx.doi.org/10.1016/S0377-1237(11)60100-7] [PMID: 27365864]
[25]
Coloff, J.L.; Murphy, J.P.; Braun, C.R.; Harris, I.S.; Shelton, L.M.; Kami, K.; Gygi, S.P.; Selfors, L.M.; Brugge, J.S. Differential glutamate metabolism in proliferating and quiescent mammary epithelial cells. Cell Metab., 2016, 23(5), 867-880.
[http://dx.doi.org/10.1016/j.cmet.2016.03.016] [PMID: 27133130]
[26]
Prickett, T.D.; Samuels, Y. Molecular pathways: Dysregulated glutamatergic signaling pathways in cancer. Clin. Cancer Res., 2012, 18(16), 4240-4246.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-1217] [PMID: 22648273]
[27]
Matsuda, K. Novel susceptibility loci for hepatocellular carcinoma in chronic HBV carriers. Hepatobiliary Surg. Nutr., 2012, 1(1), 59-60.
[PMID: 24570905]
[28]
Nahon, P.; Amathieu, R.; Triba, M.N.; Bouchemal, N.; Nault, J.C.; Ziol, M.; Seror, O.; Dhonneur, G.; Trinchet, J.C.; Beaugrand, M.; Le Moyec, L. Identification of serum proton NMR metabolomic fingerprints associated with hepatocellular carcinoma in patients with alcoholic cirrhosis. Clin. Cancer Res., 2012, 18(24), 6714-6722.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-1099] [PMID: 23136190]
[29]
Han, M.; Xie, M.; Han, J.; Yuan, D.; Yang, T.; Xie, Y. Development and validation of a rapid, selective, and sensitive LC–MS/MS method for simultaneous determination of d- and l-amino acids in human serum: application to the study of hepatocellular carcinoma. Anal. Bioanal. Chem., 2018, 410(10), 2517-2531.
[http://dx.doi.org/10.1007/s00216-018-0883-3] [PMID: 29492623]
[30]
Keshet, R.; Szlosarek, P.; Carracedo, A.; Erez, A. Rewiring urea cycle metabolism in cancer to support anabolism. Nat. Rev. Cancer, 2018, 18(10), 634-645.
[http://dx.doi.org/10.1038/s41568-018-0054-z] [PMID: 30194362]
[31]
Kim, D.; Cho, E.; Yu, K.S.; Jang, I.J.; Yoon, J.H.; Park, T.; Cho, J.Y. Comprehensive metabolomic search for biomarkers to differentiate early stage hepatocellular carcinoma from cirrhosis. Cancers, 2019, 11(10), 1497.
[http://dx.doi.org/10.3390/cancers11101497] [PMID: 31590436]
[32]
Spinelli, J.B.; Yoon, H.; Ringel, A.E.; Jeanfavre, S.; Clish, C.B.; Haigis, M.C. Metabolic recycling of ammonia via glutamate dehydrogenase supports breast cancer biomass. Science, 2017, 358(6365), 941-946.
[http://dx.doi.org/10.1126/science.aam9305] [PMID: 29025995]
[33]
Brosnan, M.E.; Brosnan, J.T. Hepatic glutamate metabolism: A tale of 2 hepatocytes. Am. J. Clin. Nutr., 2009, 90(3), 857S-861S.
[http://dx.doi.org/10.3945/ajcn.2009.27462Z] [PMID: 19625684]
[34]
Mian, A.; Lee, B. Urea-cycle disorders as a paradigm for inborn errors of hepatocyte metabolism. Trends Mol. Med., 2002, 8(12), 583-589.
[http://dx.doi.org/10.1016/S1471-4914(02)02437-1] [PMID: 12470992]
[35]
Gong, Z.G.; Zhao, W.; Zhang, J.; Wu, X.; Hu, J.; Yin, G.C.; Xu, Y.J. Metabolomics and eicosanoid analysis identified serum biomarkers for distinguishing hepatocellular carcinoma from hepatitis B virus-related cirrhosis. Oncotarget, 2017, 8(38), 63890-63900.
[http://dx.doi.org/10.18632/oncotarget.19173] [PMID: 28969038]
[36]
Yang, F.; Li, J.; Deng, H.; Wang, Y.; Lei, C.; Wang, Q.; Xiang, J.; Liang, L.; Xia, J.; Pan, X.; Li, X.; Long, Q.; Chang, L.; Xu, P.; Huang, A.; Wang, K.; Tang, N. GSTZ 1-1 deficiency activates NRF 2/ IGF 1R Axis in HCC via accumulation of oncometabolite succinylacetone. EMBO J., 2019, 38(15), e101964.
[http://dx.doi.org/10.15252/embj.2019101964] [PMID: 31267557]
[37]
Linkous, A.G.; Yazlovitskaya, E.M.; Hallahan, D.E. Cytosolic phospholipase A2 and lysophospholipids in tumor angiogenesis. J. Natl. Cancer Inst., 2010, 102(18), 1398-1412.
[http://dx.doi.org/10.1093/jnci/djq290] [PMID: 20729478]
[38]
Jee, S.H.; Kim, M.; Kim, M.; Yoo, H.J.; Kim, H.; Jung, K.J.; Hong, S.; Lee, J.H. Metabolomics profiles of hepatocellular carcinoma in a Korean prospective cohort: The Korean cancer prevention study-II. Cancer Prev. Res. (Phila.), 2018, 11(5), 303-312.
[http://dx.doi.org/10.1158/1940-6207.CAPR-17-0249] [PMID: 29500188]
[39]
Sun, X.M.; Dong, W.G.; Yu, B.P.; Luo, H.S.; Yu, J.P. Detection of type IV collagenase activity in malignant ascites. World J. Gastroenterol., 2003, 9(11), 2592-2595.
[http://dx.doi.org/10.3748/wjg.v9.i11.2592] [PMID: 14606104]
[40]
Kountouras, J.; Boura, P.; Tsapas, G.; Charisis, K.; Magoula, I.; Tsakiri, I. Value of ascitic fluid ferritin in the differential diagnosis of malignant ascites. Anticancer Res., 1993, 13(6B), 2441-2445.
[PMID: 8135481]
[41]
Wang, X.; Lin, G.; Huang, Y. Study on biomarkers of serum and ascites in patients with liver cirrhosis or liver cancer. World Chin. Digestion J., 1999, 7, 642-643.
[42]
Xu, P.; Zhu, B. Clinical significance of serum and ascites α-L-fucosylase in liver cancer. Jiangsu Med., 1990, 16(2), 91-92.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy