Generic placeholder image

Infectious Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5265
ISSN (Online): 2212-3989

Mini-Review Article

SARS CoV-2 Omicron (B. 1.1. 529) Recent Updates and Challenges Worldwide

Author(s): Rina Das, Sherril Yadav, Vishal Sharma, Sumeet Gupta, Anju Goyal and Dinesh Kumar Mehta*

Volume 23, Issue 5, 2023

Published on: 17 April, 2023

Article ID: e240323214950 Pages: 10

DOI: 10.2174/1871526523666230324113146

Price: $65

Open Access Journals Promotions 2
Abstract

The current world is plagued by unpredictability as a result of various COVID-19 variants. The current variants of concern (VOCs) are B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma) and B.1.617/B.1.617.2(Delta). WHO classified two variants, delta (B.1.617.2) and omicron (B.1.1.529), as having highly mutable strikes. The WHO predicted that it would be more dangerous than previous variants due to its mutatable capability. The Omicron variant of coronavirus has caused widespread disruption, with countries struggling to manage the massive number of infections. Due to its unique properties, such as protein structure, symptoms, transmission, and epidemiology, this review aims to compare omicron to other variants. Furthermore, we have highlighted vaccines that have been used to combat this pandemic.

Keywords: COVID-19, omicron, VOCs, mutation, spreadability, vaccine.

Graphical Abstract
[1]
Arora S, Grover V, Saluja P, et al. Literature review of omicron: A grim reality amidst COVID-19. Microorganisms 2022; 10(2): 451.
[http://dx.doi.org/10.3390/microorganisms10020451]
[2]
SARS-CoV-2 Variant Classifications and Definitions Available from : https://www.cdc.gov/coronavirus/2019-ncov/variants/variant-classifications.html
[3]
Epidemiological update: Omicron variant of concern (VOC). Available from : https://www.ecdc.europa.eu/en/news-events/epidemiological-update-omicron-variant-concern-voc-data-14-december-2021
[4]
Bai Y, Du Z, Xu M, et al. Meyers LAJm: International risk of SARS-CoV-2 Omicron variant importations originating in South Africa. medRxiv 2021.
[http://dx.doi.org/10.1101/2021.12.07.21267410]
[5]
Liu L, Iketani S, Guo Y, et al. Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2. Nature 2022; 602(7898): 676-81.
[http://dx.doi.org/10.1038/s41586-021-04388-0]
[6]
COVID-19: Journey of Omicron in India so far 2022. The Economic Times (indiatimes.com).
[7]
Number of SARS-CoV-2 Omicron variant cases worldwide as of Available from : https://www.statista.com/statistics/1279100/number-omicron-variant-worldwide-by-country/
[8]
India managed Omicron surge much better than other countries: Centre. Available from: https://wap.business-standard.com/article-amp/current-affairs/india-managed-omicron-surge-much-better-than-other-coun
[9]
Aleem A. Emerging variants of SARS-CoV-2 and novel therapeutics against coronavirus. In: StatPearls. Treasure Island (FL): StatPearls Publishing 2021.
[10]
Abdool Karim SS. New SARS-CoV-2 variants-clinical, public health, and vaccine implications. N Engl J Med 2021; 384(19): 1866-8.
[http://dx.doi.org/10.1056/NEJMc2100362]
[11]
Thakur V, Kanta Ratho RJ. OMICRON (B.1.1.529): A new SARS-CoV-2 variant of concern mounting worldwide fear. J Med Virol 2022; 94(5): 1821-4.
[http://dx.doi.org/10.1002/jmv.27541]
[12]
Saxena SK, Kumar S, Ansari S, Paweska JT, Maurya VK. Characterization of the novel SARS-CoV-2 Omicron (B.1.1.529) variant of concern and its global perspective. J Med Virol 2022; 94(4): 1738-44.
[http://dx.doi.org/10.1002/jmv.27524]
[13]
Mannar D, Saville JW, Zhu X, et al. SARS-CoV-2 Omicron variant: Antibody evasion and cryo-EM structure of spike protein-ACE2 complex. Science 375(6582): 760-4.
[http://dx.doi.org/10.1126/science.abn7760]
[14]
Dong M, Zhang J, Ma X. ACE2, TMPRSS2 distribution and extrapulmonary organ injury in patients with COVID-19. Biomed Pharmacother 2020; 131: 110678.
[http://dx.doi.org/10.1016/j.biopha.2020.110678]
[15]
Davies NG, Barnard RC, Jarvis CI, et al. Estimated transmissibility and severity of novel SARS-CoV-2. Cold Spring Harbor Laboratory 2020.
[16]
Courjon J, Contenti J, Demonchy E, et al. COVID‑19 patients age, comorbidity profiles and clinical presentation related to the SARS‑CoV‑2 UK‑variant spread in the southeast of France. Sci Rep 2021; 11: 18456.
[http://dx.doi.org/10.1038/s41598-021-95067-7]
[17]
Supasa P, Zhou D, Dejnirattisai W, et al. Reduced neutralization of SARS-CoV-2 B.1.1.7 variant by convalescent and vaccine sera. Cell 2021; 184(8): 2201-2211.e7.
[18]
Funk T, Pharris A, Spiteri G, et al. Characteristics of SARS-CoV- 2 variants of concern B.1.1.7, B.1.351 or P.1: data from seven EU/EEA countries, weeks 38/2020 to 10/2021. Euro Surveill 2021; 26(16): 2100348.
[19]
Singanayagam A, Patel M, Charlett A, et al. Duration of infectiousness and correlation with RT-PCR cycle threshold values in cases of COVID-19, England, January to May 2020. Euro Surveill 2020; 25(32): 2001483.
[20]
Tegally H, Wilkinson E, Giovanetti M, et al. Emergence and rapid spread of a new severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) lineage with multiple spike mutations in South Africa. medRxiv 2020.
[http://dx.doi.org/10.1101/2020.12.21.20248640]
[21]
Boehm E, Kronig I, Neher RA, Eckerle I, Vetter P, Kaiser L. Novel SARS-CoV-2 variants: The pandemics within the pandemic. Clin Microbiol Infect 2021; 27(8): 1109-17.
[http://dx.doi.org/10.1016/j.cmi.2021.05.022] [PMID: 34015535]
[22]
Wibmer CK, Ayres F, Hermanus T, et al. SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma. Nat Med 2021; 27(4): 622-5.
[http://dx.doi.org/10.1038/s41591-021-01285-x] [PMID: 33654292]
[23]
Faria NR, Mellan TA, Whittaker C, et al. Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil. Science 2021; 372(6544): 815-21.
[http://dx.doi.org/10.1126/science.abh2644] [PMID: 33853970]
[24]
Rambaut A, Holmes EC, O’Toole Á, et al. A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology. Nat Microbiol 2020; 5(11): 1403-7.
[http://dx.doi.org/10.1038/s41564-020-0770-5] [PMID: 32669681]
[25]
Dejnirattisai W, Zhou D, Supasa P, et al. Antibody evasion by the P.1 strain of SARS-CoV-2. Cell 2021; 184(11): 2939-2954.e9.
[http://dx.doi.org/10.1016/j.cell.2021.03.055] [PMID: 33852911]
[26]
Mahase E. Delta variant: What is happening with transmission, hospital admissions, and restrictions? BMJ 2021; 373(1513)
[http://dx.doi.org/10.1136/bmj.n1513] [PMID: 34130949]
[27]
Araf Y, Akter F, Tang Y, et al. Omicron variant of SARS‐CoV‐2: Genomics, transmissibility, and responses to current COVID‐19 vaccines. J Med Virol 2022; 94(5): 1825-32.
[http://dx.doi.org/10.1002/jmv.27588] [PMID: 35023191]
[28]
Kreier F. Long-COVID symptoms less likely in vaccinated people, Israeli data say. Nature 2022; 376: o407.
[http://dx.doi.org/10.1038/d41586-022-00177-5] [PMID: 35079170]
[29]
Approved COVID-19 vaccine. 2022. Available from : https://covid19.trackvaccines.org
[30]
Garcia-Beltran WF, St Denis KJ, Hoelzemer A, et al. mRNA-based COVID-19 vaccine boosters induce neutralizing immunity against SARS-CoV-2 Omicron variant. Cell 2022; 185(3): 457-466.e4.
[http://dx.doi.org/10.1016/j.cell.2021.12.033] [PMID: 34995482]
[31]
Jain J, Saurabh S, Kumar P, et al. COVID-19 vaccine hesitancy among medical students in India. Epidemiol Infect 2021; 149: e132.
[http://dx.doi.org/10.1017/S0950268821001205]
[32]
Mattiuzzi C, Lippi G. COVID-19 vaccines efficacy in preventing or limiting SARS-CoV-2 infections. J Infect 2022; 84(5): 722-46.
[http://dx.doi.org/10.1016/j.jinf.2022.01.033] [PMID: 35108600]
[33]
Calvisi L. Hyaluronic acid delayed inflammatory reaction after third dose of SARS‐CoV‐2 vaccine. J Cosmet Dermatol 2022; 21(6): 2315-7.
[http://dx.doi.org/10.1111/jocd.14970] [PMID: 35384252]
[34]
Wang PH, Lee WL, Yang ST, Tsui KH, Chang CC, Lee FK. The impact of COVID-19 in pregnancy: Part II. Vaccination to pregnant women. J Chin Med Assoc 2021; 84(10): 903-10.
[http://dx.doi.org/10.1097/JCMA.0000000000000612] [PMID: 34433191]
[35]
Chong-Valbuena A, De-Jesús-María I, Agurto-Ramírez A, Puchades-Gimeno F, Melero-García M. Safety of Pfizer-BioNTech vaccine in a cohort of healthcare providers: Differences between naïve and previously infected by SARS-CoV-2. Vaccine 2022; 40(28): 3818-20.
[http://dx.doi.org/10.1016/j.vaccine.2022.05.015] [PMID: 35643563]
[36]
Cuschieri S, Hatziyianni A, Kantaris M, Kontemeniotis A, Theodorou M, Pallari E. Different COVID-19 vaccination roll-out rates in two small European Islands: A Comparison between Cyprus and Malta. Health Care 2022; 10(2): 222.
[37]
Banerjee I, Robinson J, Sathian B. COVID-19 vaccines and immunization in the paediatric population. Nepal J Epidemiol 2022; 12(1): 1132-4.
[http://dx.doi.org/10.3126/nje.v12i1.43158] [PMID: 35528456]
[38]
Shay DK, Gee J, Su JR, et al. Safety monitoring of the Janssen (Johnson & Johnson) COVID-19 vaccine-United States, March–April 2021. MMWR Morb Mortal Wkly Rep 2021; 70(18): 680-4.
[http://dx.doi.org/10.15585/mmwr.mm7018e2] [PMID: 33956784]
[39]
Oliver SE, Gargano JW, Scobie H, et al. The advisory committee on immunization practices’ interim recommendation for use of Janssen COVID-19 vaccine-United States, February 2021. MMWR Morb Mortal Wkly Rep 2021; 70(9): 329-32.
[http://dx.doi.org/10.15585/mmwr.mm7009e4] [PMID: 33661860]
[40]
MacNeil JR, Su JR, Broder KR, et al. Updated recommendations from the Advisory Committee on Immunization Practices for use of the Janssen (Johnson & Johnson) COVID-19 vaccine after reports of thrombosis with thrombocytopenia syndrome among vaccine recipients-United States, April 2021. MMWR Morb Mortal Wkly Rep 2021; 70(17): 651-6.
[http://dx.doi.org/10.15585/mmwr.mm7017e4] [PMID: 33914723]
[41]
Oliver SE, Wallace M, See I, et al. Use of the Janssen (Johnson & Johnson) COVID-19 vaccine: Updated interim recommendations from the advisory committee on immunization practices-United States, December 2021. MMWR Morb Mortal Wkly Rep 2022; 71(3): 90-5.
[http://dx.doi.org/10.15585/mmwr.mm7103a4] [PMID: 35051137]
[42]
Francis AI, Ghany S, Gilkes T, Umakanthan S. Review of COVID-19 vaccine subtypes, efficacy and geographical distributions. Postgrad Med J 2022; 98(1159): 389-94.
[http://dx.doi.org/10.1136/postgradmedj-2021-140654] [PMID: 34362856]
[43]
Pramod S, Govindan D, Ramasubramani P, et al. Effectiveness of Covishield vaccine in preventing Covid-19-a test-negative case-control study. Vaccine 2022; 40(24): 3294-7.
[http://dx.doi.org/10.1016/j.vaccine.2022.02.014] [PMID: 35168838]
[44]
Singh AK, Phatak SR, Singh R, et al. Humoral antibody kinetics with ChAdOx1-nCOV (Covishield™) and BBV-152 (Covaxin™) vaccine among Indian Healthcare workers: A 6-month longitudinal cross-sectional Coronavirus vaccine-induced antibody titre (COVAT) study. Diabetes Metab Syndr 2022; 16(2): 102424.
[http://dx.doi.org/10.1016/j.dsx.2022.102424] [PMID: 35150961]
[45]
Chaurasia B, Chavda V, Lu B, Garg K, Montemurro N. Cognitive deficits and memory impairments after COVID-19 (Covishield) vaccination. Brain Behav Immun Health 2022; 22: 100463.
[http://dx.doi.org/10.1016/j.bbih.2022.100463] [PMID: 35496775]
[46]
Mukim M, Sharma P, Patweker M, Patweker F, Kukkar R, Patel R. COVID-19 vaccines available in India. Comb Chem High Throughput Screen 2022; 25(14): 2391-7.
[http://dx.doi.org/10.2174/1386207325666220315115953] [PMID: 35293291]
[47]
Talukder A, Kalita C, Neog N, Goswami C, Sarma MK, Hazarika I. A comparative analysis on the safety and efficacy of Covaxin versus other vaccines against COVID-19: a review. Z Naturforsch C J Biosci 2022; 77(7-8): 351-62.
[http://dx.doi.org/10.1515/znc-2021-0301] [PMID: 35245422]
[48]
Das S, Kar SS, Samanta S, Banerjee J, Giri B, Dash SK. Immunogenic and reactogenic efficacy of Covaxin and Covishield: A comparative review. Immunol Res 2022; 70(3): 289-315.
[http://dx.doi.org/10.1007/s12026-022-09265-0] [PMID: 35192185]
[49]
Edara VV, Patel M, Suthar MS. Covaxin (BBV152) vaccine neutralizes SARS-CoV-2 Delta and Omicron variants. medRxiv 2022.
[http://dx.doi.org/10.1101/2022.01.24.22269189]
[50]
Sapkal G, Deshpande GR, Tilekar B, et al. Antibody responses to Sputnik vaccination in naïve and COVID 19-recovered vaccine recipients, India. J Travel Med 2022; 29(3): taac040.
[http://dx.doi.org/10.1093/jtm/taac040] [PMID: 35325194]
[51]
Dash GC, Subhadra S, Turuk J, et al. Breakthrough SARS‐CoV‐2 infections among BBV‐152 (COVAXIN®) and AZD1222 (COVISHIELDTM) recipients: Report from the eastern state of India. J Med Virol 2022; 94(3): 1201-5.
[http://dx.doi.org/10.1002/jmv.27382] [PMID: 34622961]
[52]
Hasija V, Patial S, Raizada P, Thakur S, Singh P, Hussain CM. The environmental impact of mass coronavirus vaccinations: A point of view on huge COVID-19 vaccine waste across the globe during ongoing vaccine campaigns. Sci Total Environ 2022; 813: 151881.
[http://dx.doi.org/10.1016/j.scitotenv.2021.151881] [PMID: 34826493]
[53]
Jiang Z, Lin H, Zhang H, et al. An integrative analysis of the immune features of inactivated SARS-CoV-2 vaccine (CoronaVac). Vaccines 2022; 10(6): 878.
[http://dx.doi.org/10.3390/vaccines10060878] [PMID: 35746486]
[54]
Dundar B, Karahangil K, Elgormus CS, Topsakal HNH. Efficacy of antibody response following the vaccination of SARS‐CoV‐2 infected and noninfected healthcare workers by two‐dose inactive vaccine against COVID‐19. J Med Virol 2022; 94(6): 2431-7.
[http://dx.doi.org/10.1002/jmv.27649] [PMID: 35128700]
[55]
Rahman MM, Masum MHU, Wajed S, Talukder A, Talukder A. A comprehensive review on COVID-19 vaccines: Development, effectiveness, adverse effects, distribution and challenges. Virusdisease 2022; 33(1): 1-22.
[http://dx.doi.org/10.1007/s13337-022-00755-1] [PMID: 35127995]
[56]
Sabitha S, Shobana N, Prakash P, et al. A review of different vaccines and strategies to combat COVID-19. Vaccines 2022; 10(5): 737.
[http://dx.doi.org/10.3390/vaccines10050737] [PMID: 35632493]
[57]
Arif K, Malhotra S, Mohammad S, Fatima S, Farooqui S, Saleem M. Review of current vaccine development platform to prevent coronavirus disease. Natl J Maxillofac Surg 2022; 13(3): 337-46.
[http://dx.doi.org/10.4103/njms.njms_454_21]
[58]
Sanyaolu A, Okorie C, Marinkovic A, et al. Current advancements and future prospects of COVID-19 vaccines and therapeutics: A narrative review. Ther Adv Vaccines Immunother 2022; 10: 25151355221097559.
[http://dx.doi.org/10.1177/25151355221097559] [PMID: 35664358]
[59]
Selvam SP, Ramani P, Ramya R, Sundar S, Lakshmi TA. COVID-19 vaccines and the efficacy of currently available vaccines against COVID-19 variants. Cureus 2022; 14(5): e24927.
[http://dx.doi.org/10.7759/cureus.24927] [PMID: 35706739]
[60]
Blakney AK, Bekker LG. DNA vaccines join the fight against COVID-19. Lancet 2022; 399(10332): 1281-2.
[http://dx.doi.org/10.1016/S0140-6736(22)00524-4] [PMID: 35366995]
[61]
Shafaati M, Saidijam M, Soleimani M, et al. A brief review on DNA vaccines in the era of COVID-19. Future Virol 2022; 17(1): 49-66.
[http://dx.doi.org/10.2217/fvl-2021-0170] [PMID: 34858516]
[62]
Parthasaradhi A, Ganguly S, Kar BR, et al. Coronavirus disease 2019 vaccination in patients with psoriasis: A position statement from India by SIG psoriasis (IADVL Academy). Indian J Dermatol Venereol Leprol 2022; 88(3): 286-90.
[http://dx.doi.org/10.25259/IJDVL_773_2021] [PMID: 35434988]
[63]
Chauhan N. C MB, Yadav V, Sabbarwal B, Kumar JS, Kumar A. COVID-19 vaccine development in India during Janaury 2021- December 2021: A narrative review. Saudi J Med 2022; 7(2): 118-26.
[http://dx.doi.org/10.36348/sjm.2022.v07i02.006]
[64]
Saxena R, Tiwari K. Role of epigenetics in developing therapeutic strategies against COVID-19. J Clin Diagn Res 2022; 16(2)
[65]
Altmann DM, Boyton RJ. COVID-19 vaccination: The road ahead. Science 2022; 375(6585): 1127-32.
[http://dx.doi.org/10.1126/science.abn1755] [PMID: 35271316]
[66]
Hebbani AV, Pulakuntla S, Pannuru P, Aramgam S, Badri KR, Reddy VD. COVID-19: comprehensive review on mutations and current vaccines. Arch Microbiol 2022; 204(1): 8.
[http://dx.doi.org/10.1007/s00203-021-02606-x] [PMID: 34873656]
[67]
Prakash S. Development of COVID-19 vaccine: A summarized review on global trials, efficacy, and effectiveness on variants. Diabetes Metab Syndr 2022; 16(4): 102482.
[http://dx.doi.org/10.1016/j.dsx.2022.102482] [PMID: 35427915]
[68]
Abdel-Bakky MS, Amin E, Ewees MG, et al. Coagulation system activation for targeting of COVID-19: insights into anticoagulants, vaccine-loaded nanoparticles, and hypercoagulability in COVID-19 vaccines. Viruses 2022; 14(2): 228.
[http://dx.doi.org/10.3390/v14020228] [PMID: 35215822]
[69]
Krasilnikova A. Brief overview of the currently available COVID-19 vaccines. J Clin Health Sci 2022; 7(1): 5-24.
[http://dx.doi.org/10.24191/jchs.v7i1.14658]
[70]
Saeed U, Zahid Piracha Z, Ashraf H, et al. Effectivity analysis of COVID-19 vaccines against emerging variants of SARS-CoV-2. Archiv Clin Biomed Res 2022; 6(1): 209-16.
[http://dx.doi.org/10.26502/acbr.50170236]
[71]
Malik JA, Ahmed S, Mir A, et al. The SARS-CoV-2 mutations versus vaccine effectiveness: New opportunities to new challenges. J Infect Public Health 2022; 15(2): 228-40.
[http://dx.doi.org/10.1016/j.jiph.2021.12.014]
[72]
Sen A, Aggarwal S, Sehgal S, et al. Novel strategies of immunization against COVID-19. J Pure Appl Microbiol 2022; 16(1): 35-49.
[http://dx.doi.org/10.22207/JPAM.16.1.37]
[73]
Kirste I, Hortsch S, Grunert VP, et al. Quantifying the vaccine-induced humoral immune response to spike-receptor binding domain as a surrogate for neutralization testing following mRNA-1273 (Spikevax) vaccination against COVID-19. medRxiv 2022.
[http://dx.doi.org/10.1101/2022.03.09.22271896]
[74]
Knöchel C, Hefner G, Stiehl T, Schmidbauer W. Elevated clozapine blood concentrations after second COVID-19 vaccination With Spikevax (COVID-19 Vaccine Moderna). J Clin Psychopharmacol 2022; 42(3): 317-20.
[http://dx.doi.org/10.1097/JCP.0000000000001522] [PMID: 35091524]
[75]
Wallace M, Moulia D, Blain AE, et al. The advisory committee on immunization practices’ recommendation for use of moderna COVID-19 vaccine in adults aged ≥18 years and considerations for extended intervals for administration of primary series doses of mRNA COVID-19 vaccines-United States, February 2022. MMWR Morb Mortal Wkly Rep 2022; 71(11): 416-21.
[http://dx.doi.org/10.15585/mmwr.mm7111a4] [PMID: 35298454]
[76]
Poukka E, Baum U, Palmu AA, et al. Cohort study of COVID-19 vaccine effectiveness among healthcare workers in Finland, December 2020 - October 2021. Vaccine 2022; 40(5): 701-5.
[http://dx.doi.org/10.1016/j.vaccine.2021.12.032] [PMID: 34953607]
[77]
Maltezou HC, Anastassopoulou C, Hatziantoniou S, Poland GA, Tsakris A. Anaphylaxis rates associated with COVID-19 vaccines are comparable to those of other vaccines. Vaccine 2022; 40(2): 183-6.
[http://dx.doi.org/10.1016/j.vaccine.2021.11.066] [PMID: 34863620]
[78]
Glück V, Grobecker S, Köstler J, et al. Immunity after COVID-19 and vaccination: follow-up study over 1 year among medical personnel. Infection 2022; 50(2): 439-46.
[http://dx.doi.org/10.1007/s15010-021-01703-9] [PMID: 34562263]
[79]
Komissarov AA, Dolzhikova IV, Efimov GA, et al. Boosting of the SARS-CoV-2–Specific immune response after vaccination with single-dose sputnik light vaccine. J Immunol 2022; 208(5): 1139-45.
[http://dx.doi.org/10.4049/jimmunol.2101052] [PMID: 35101893]
[80]
Shkoda AS, Gushchin VA, Ogarkova DA, et al. Sputnik V effectiveness against hospitalization with COVID-19 during Omicron dominance. Vaccines 2022; 10(6): 938.
[http://dx.doi.org/10.3390/vaccines10060938] [PMID: 35746546]
[81]
Kaznadzey A, Tutukina M, Bessonova T, Kireeva M, Mazo I. BNT162b2, mRNA-1273, and Sputnik V vaccines induce comparable immune responses on a par with severe course of COVID-19. Front Immunol 2022; 13: 797918.
[http://dx.doi.org/10.3389/fimmu.2022.797918] [PMID: 35493476]
[82]
Zhang M, Liang Y, Yu D, et al. A systematic review of vaccine breakthrough infections by SARS-CoV-2 delta variant. Int J Biol Sci 2022; 18(2): 889-900.
[http://dx.doi.org/10.7150/ijbs.68973] [PMID: 35002532]
[83]
Zhang Z, Shen Q, Chang H. Vaccines for COVID-19: A systematic review of immunogenicity, current development, and future prospects. Front Immunol 2022; 13: 843928.
[http://dx.doi.org/10.3389/fimmu.2022.843928] [PMID: 35572592]
[84]
Jeewandara C, Fernando S, Pushpakumara PD, et al. Immune responses following the first dose of the Sputnik V (Gam-COVID-Vac). Sci Rep 2022; 12(1): 1727.
[http://dx.doi.org/10.1038/s41598-022-05788-6] [PMID: 35110645]
[85]
Gushchin VA, Tsyganova EV, Ogarkova DA, et al. Sputnik V protection from COVID-19 in people living with HIV under antiretroviral therapy. EClinicalMedicine 2022; 46: 101360.
[http://dx.doi.org/10.1016/j.eclinm.2022.101360] [PMID: 35340627]
[86]
Franchi A, Rauchegger T, Palme C, et al. Two cases of acute macular neuroretinopathy associated with the Adenovirus-based COVID-19 vaccine Vaxzevria (Astrazeneca). Ocul Immunol Inflamm 2022; 30(5): 1234-9.
[http://dx.doi.org/10.1080/09273948.2022.2027463] [PMID: 35050829]
[87]
Khajavirad N, Salehi M, Haji Ghadery A, et al. Serious events following COVID‐19 vaccination with ChAdOx1 nCoV‐19 vaccine (Vaxzevria): A short case series from Iran. Clin Case Rep 2022; 10(2): e05390.
[http://dx.doi.org/10.1002/ccr3.5390] [PMID: 35145690]
[88]
Kim JE, Min YG, Shin JY, et al. Guillain–Barré syndrome and variants following COVID-19 vaccination: Report of 13 Cases. Front Neurol 2022; 12: 820723.
[http://dx.doi.org/10.3389/fneur.2021.820723] [PMID: 35153993]
[89]
Montastruc JL, Biron P, Sommet A. Efficacy of COVID‐19 vaccines: Several modes of expression should be presented in scientific publications. Fundam Clin Pharmacol 2022; 36(1): 218-20.
[http://dx.doi.org/10.1111/fcp.12715] [PMID: 34250637]
[90]
Thuluva S, Paradkar V, Turaga K, et al. Selection of optimum formulation of RBD-based protein sub-unit COVID-19 vaccine (Corbevax) based on safety and immunogenicity in an open-label, randomized Phase-1 and 2 clinical studies. EBioMedicine 2022; 83: 104217.
[http://dx.doi.org/10.1016/j.ebiom.2022.104217]
[91]
Rubin R. Challenges of deciding whether and how to update COVID-19 vaccines to protect against variants. JAMA 2022; 327(23): 2273-5.
[http://dx.doi.org/10.1001/jama.2022.9367] [PMID: 35648442]
[92]
Li L, Honda-Okubo Y, Baldwin J, Bowen R, Bielefeldt-Ohmann H, Petrovsky N. Covax-19/Spikogen® vaccine based on recombinant spike protein extracellular domain with Advax-CpG55.2 adjuvant provides single dose protection against SARS-CoV-2 infection in hamsters. Vaccine 2022; 40(23): 3182-92.
[http://dx.doi.org/10.1016/j.vaccine.2022.04.041] [PMID: 35465982]
[93]
European Medicinal Agency (EMA) Nuvaxoid. Summary of Product Characteristics. Available from : https://www.ema.europa.eu/en/documents/product-information/nuvaxovid-epar-product-information_en.pdf
[94]
Katie LF, Raina CM, Peter BM, Michael RN. SARS-CoV-2 Vaccines: Where Are We Now? J Allergy Clin Immunol Pract 2021; 9(10): 35353543.
[http://dx.doi.org/10.1016/j.jaip.2021.07.016]
[95]
Garib V, Katsamaki S, Turdikulova SU, et al. Milk of cow and goat, immunized by recombinant protein vaccine ZF-UZ-VAC2001 (Zifivax), contains neutralizing antibodies against SARS-CoV-2 and remains active after standard milk pasteurization. Fronters in Nutrition 2022; 9: 901871.
[http://dx.doi.org/10.3389/fnut.2022.901871]
[96]
Zhao Z, Cui T, Huang M, et al. Heterologous boosting with third dose of coronavirus disease recombinant subunit vaccine increases neutralizing antibodies and T cell immunity against different severe acute respiratory syndrome coronavirus 2 variants. Emerg Microbes Infect 2022; 11(1): 829-40.
[http://dx.doi.org/10.1080/22221751.2022.2048969] [PMID: 35230230]
[97]
Milken Institute. Protein Subunit. 2021. Available from: tracker. milkeninstitute.org/ c
[98]
COVID-19 Tracker. COVID-19 vaccine tracker. 2021. Available from: https://covid19.trackvaccines.org/vaccines/
[99]
Logunov DY, Dolzhikova IV, Zubkova OV, et al. Safety and immunogenicity of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine in two formulations: two open, non-randomised phase 1/2 studies from Russia. Lancet 2020; 396(10255): 887-97.
[http://dx.doi.org/10.1016/S0140-6736(20)31866-3] [PMID: 32896291]
[100]
Paul S, Biswas SJ, Halder P, et al. A critical review of COVID-19 vaccines: Past. Present and Future 2022.
[101]
Yaffe H. Cuba's five COVID-19 vaccines: the full story on Soberana 01/02/Plus, Abdala, and Mambisa. LSE Latin America and Caribbean Blog 2021. https://blogs.lse.ac.uk/latamcaribbean/2
[102]
Banihashemi SR, Es-haghi A, Fallah Mehrabadi MH, et al. Safety and efficacy of combined intramuscular/intranasal RAZI-COV PARS vaccine candidate against SARS-CoV-2: A Preclinical Study in several animal models. Front Immunol 2022; 13: 836745.
[http://dx.doi.org/10.3389/fimmu.2022.836745] [PMID: 35693788]
[103]
Ghasemi S, Naderi Saffar K, Ebrahimi F, et al. Development of inactivated FAKHRAVAC® vaccine against SARS-CoV-2 virus: Preclinical study in animal models. Vaccines 2021; 9(11): 1271.
[http://dx.doi.org/10.3390/vaccines9111271] [PMID: 34835202]
[104]
Johnson S. International Rights Affecting the COVID–19 Vaccine Race. Univ Miami Inter-Am Law Rev 2022; 53(2): 145.
[105]
Sun S, He L, Zhao Z, et al. Recombinant vaccine containing an RBD-Fc fusion induced protection against SARS-CoV-2 in nonhuman primates and mice. Cell Mol Immunol 2021; 18(4): 1070-3.
[http://dx.doi.org/10.1038/s41423-021-00658-z] [PMID: 33731916]
[106]
Thakur S, Sasi S, Pillai SG, et al. SARS-CoV-2 mutations and their impact on diagnostics, therapeutics and vaccines. Front Med 2022; 9: 815389.
[http://dx.doi.org/10.3389/fmed.2022.815389] [PMID: 35273977]
[107]
Peacock TP, Goldhill DH, Zhou J, et al. The furin cleavage site in the SARS-CoV-2 spike protein is required for transmission in ferrets. Nat Microbiol 2021; 6(7): 899-909.
[http://dx.doi.org/10.1038/s41564-021-00908-w] [PMID: 33907312]
[108]
Liu Y, Liu J, Plante KS, et al. The N501Y spike substitution enhances SARS-CoV-2 infection and transmission. Nature 2022; 602(7896): 294-9.
[http://dx.doi.org/10.1038/s41586-021-04245-0] [PMID: 34818667]
[109]
Barton MI, MacGowan SA, Kutuzov MA, Dushek O, Barton GJ, van der Merwe PA. Effects of common mutations in the SARS-CoV-2 Spike RBD and its ligand, the human ACE2 receptor on binding affinity and kinetics. eLife 2021; 10: e70658.
[http://dx.doi.org/10.7554/eLife.70658] [PMID: 34435953]
[110]
Harvey WT, Carabelli AM, Jackson B, et al. SARS-CoV-2 variants, spike mutations and immune escape. Nat Rev Microbiol 2021; 19(7): 409-24.
[http://dx.doi.org/10.1038/s41579-021-00573-0]
[111]
Lu RM, Hwang YC, Liu IJ, et al. Development of therapeutic antibodies for the treatment of diseases. J Biomed Sci 2020; 27(1): 1.
[http://dx.doi.org/10.1186/s12929-019-0592-z] [PMID: 31894001]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy