Review Article

基于生物活性内源性和外源性配位化合物的治疗和诊断药物

卷 31, 期 3, 2024

发表于: 28 April, 2023

页: [358 - 386] 页: 29

弟呕挨: 10.2174/0929867330666230321110018

价格: $65

摘要

金属配位化合物由于其不同的结构排列和在医学上的重要应用,在生物无机化学中具有非常特殊的地位。该领域的快速进展日益使得金属基药剂的靶向设计和合成成为可能,这些药剂可发挥作为诊断或治疗剂的重要作用。各种配位化合物具有重要的生物学功能,包括最初存在于体内的(内源性)和从外部环境进入生物体的(外源性):维生素、药物、有毒物质等。在治疗和诊断实践中,两者都至关重要。对于所有生物体,微量金属用于含金属配位化合物。在当前的综述中,最重要的功能性生物活性化合物根据元素在周期表中的位置进行了分组。

关键词: 金属基配位复合物,治疗和诊断剂,生物学和药用意义,外源性,生物活性,金属基化合物。

« Previous
[1]
Franz, K.J.; Metzler-Nolte, N. Introduction: Metals in medicine. Chem. Rev., 2019, 119(2), 727-729.
[http://dx.doi.org/10.1021/acs.chemrev.8b00685] [PMID: 30990707]
[2]
Heuer-Jungemann, A.; Feliu, N.; Bakaimi, I.; Hamaly, M.; Alkilany, A.; Chakraborty, I.; Masood, A.; Casula, M.F.; Kostopoulou, A.; Oh, E.; Susumu, K.; Stewart, M.H.; Medintz, I.L.; Stratakis, E.; Parak, W.J.; Kanaras, A.G. The role of ligands in the chemical synthesis and applications of inorganic nanoparticles. Chem. Rev., 2019, 119(8), 4819-4880.
[http://dx.doi.org/10.1021/acs.chemrev.8b00733] [PMID: 30920815]
[3]
Barry, N.P.E.; Sadler, P.J. Exploration of the medical periodic table: towards new targets. Chem. Commun., 2013, 49(45), 5106-5131.
[http://dx.doi.org/10.1039/c3cc41143e] [PMID: 23636600]
[4]
Barry, N.P.E.; Sadler, P.J. 100 years of metal coordination chemistry: From Alfred Werner to anticancer metallodrugs. Pure Appl. Chem., 2014, 86(12), 1897-1910.
[http://dx.doi.org/10.1515/pac-2014-0504]
[5]
Boros, E.; Dyson, P.J.; Gasser, G. Classification of metal-based drugs according to their mechanisms of action. Chem., 2020, 6(1), 41-60.
[http://dx.doi.org/10.1016/j.chempr.2019.10.013] [PMID: 32864503]
[6]
Wang, Z.; Sun, Q.; Liu, B.; Kuang, Y.; Gulzar, A.; He, F.; Gai, S.; Yang, P.; Lin, J. Recent advances in porphyrin-based MOFs for cancer therapy and diagnosis therapy. Coord. Chem. Rev., 2021, 439, 213945.
[http://dx.doi.org/10.1016/j.ccr.2021.213945]
[7]
Nandanwar, S.K.; Kim, H.J. Anticancer and antibacterial activity of transition metal complexes. Chemist. Select, 2019, 4(5), 1706-1721.
[http://dx.doi.org/10.1002/slct.201803073]
[8]
Gasser, G. Metal complexes and medicine: A successful combination. Chimia, 2015, 69(7-8), 442-446.
[http://dx.doi.org/10.2533/chimia.2015.442]
[9]
Shekhar, S.; Khan, A.M.; Sharma, S.; Sharma, B.; Sarkar, A. Schiff base metallodrugs in antimicrobial and anticancer chemotherapy applications: A comprehensive review. Emergent Mater., 2022, 5(2), 279-293.
[http://dx.doi.org/10.1007/s42247-021-00234-1]
[10]
Mjos, K.D.; Orvig, C. Metallodrugs in medicinal inorganic chemistry. Chem. Rev., 2014, 114(8), 4540-4563.
[http://dx.doi.org/10.1021/cr400460s] [PMID: 24456146]
[11]
Simpson, P.V.; Desai, N.M.; Casari, I.; Massi, M.; Falasca, M. Metal-based antitumor compounds: Beyond cisplatin. Future Med. Chem., 2019, 11(2), 119-135.
[http://dx.doi.org/10.4155/fmc-2018-0248] [PMID: 30644327]
[12]
Zhang, Z.; Sang, W.; Xie, L.; Dai, Y. Metal-organic frameworks for multimodal bioimaging and synergistic cancer chemotherapy. Coord. Chem. Rev., 2019, 399, 213022.
[http://dx.doi.org/10.1016/j.ccr.2019.213022]
[13]
Wang, X.; Wang, X.; Jin, S.; Muhammad, N.; Guo, Z. Stimuli-responsive therapeutic metallodrugs. Chem. Rev., 2019, 119(2), 1138-1192.
[http://dx.doi.org/10.1021/acs.chemrev.8b00209] [PMID: 30299085]
[14]
Chohan, Z.H.; Shad, H.A.; Youssoufi, M.H.; Ben Hadda, T. Some new biologically active metal-based sulfonamide. Eur. J. Med. Chem., 2010, 45(7), 2893-2901.
[http://dx.doi.org/10.1016/j.ejmech.2010.03.014] [PMID: 20362358]
[15]
Frei, A.; Zuegg, J.; Elliott, A.G.; Baker, M.; Braese, S.; Brown, C.; Chen, F.; G Dowson, C.; Dujardin, G.; Jung, N.; King, A.P.; Mansour, A.M.; Massi, M.; Moat, J.; Mohamed, H.A.; Renfrew, A.K.; Rutledge, P.J.; Sadler, P.J.; Todd, M.H.; Willans, C.E.; Wilson, J.J.; Cooper, M.A.; Blaskovich, M.A.T. Metal complexes as a promising source for new antibiotics. Chem. Sci., 2020, 11(10), 2627-2639.
[http://dx.doi.org/10.1039/C9SC06460E] [PMID: 32206266]
[16]
Kostova, I.; Soni, R.K. Bioinorganic Chemistry; Ed.; Shree Publishers & Distributors: Delhi, India, 2011, ISBN: 978- 81-8329-420-1. Available from: https://www.researchgate.net/publication/265421074_BIOINORGANIC_CHEMISTRY
[17]
Goswami, A.K.; Kostova, I. Medicinal and Biological Inorganic Chemistry; De Gruyter: Berlin, Boston, 2022.
[http://dx.doi.org/10.1515/9781501516115]
[18]
Daniel, C.; Gourlaouen, C. Structural and optical properties of metal-nitrosyl complexes. Molecules, 2019, 24(20), 3638.
[http://dx.doi.org/10.3390/molecules24203638] [PMID: 31600965]
[19]
Stepanenko, I.; Zalibera, M.; Schaniel, D.; Telser, J.; Arion, V.B. Ruthenium-nitrosyl complexes as NO-releasing molecules, potential anticancer drugs, and photoswitches based on linkage isomerism. Dalton Trans., 2022, 51(14), 5367-5393.
[http://dx.doi.org/10.1039/D2DT00290F] [PMID: 35293410]
[20]
Wu, W.Y.; Liaw, W.F. Nitric oxide reduction forming hyponitrite triggered by metal-containing complexes. J. Chin. Chem. Soc., 2020, 67(2), 206-212.
[http://dx.doi.org/10.1002/jccs.201900473]
[21]
Roskoski, R. Jr Properties of FDA-approved small molecule protein kinase inhibitors. Pharmacol. Res., 2019, 144, 19-50.
[http://dx.doi.org/10.1016/j.phrs.2019.03.006] [PMID: 30877063]
[22]
Chen, K.; Arnold, F.H. Engineering new catalytic activities in enzymes. Nat. Catal., 2020, 3(3), 203-213.
[http://dx.doi.org/10.1038/s41929-019-0385-5]
[23]
Schlenk, R.F.; Weber, D.; Fiedler, W.; Salih, H.R.; Wulf, G.; Salwender, H.; Schroeder, T.; Kindler, T.; Lübbert, M.; Wolf, D.; Westermann, J.; Kraemer, D.; Götze, K.S.; Horst, H.A.; Krauter, J.; Girschikofsky, M.; Ringhoffer, M.; Südhoff, T.; Held, G.; Derigs, H.G.; Schroers, R.; Greil, R.; Grießhammer, M.; Lange, E.; Burchardt, A.; Martens, U.; Hertenstein, B.; Marretta, L.; Heuser, M.; Thol, F.; Gaidzik, V.I.; Herr, W.; Krzykalla, J.; Benner, A.; Döhner, K.; Ganser, A.; Paschka, P.; Döhner, H. Midostaurin added to chemotherapy and continued single-agent maintenance therapy in acute myeloid leukemia with FLT3-ITD. Blood, 2019, 133(8), 840-851.
[http://dx.doi.org/10.1182/blood-2018-08-869453] [PMID: 30563875]
[24]
Silva, A.; Alexandre, J.; Souza, J.; Neto, J.; de Sousa Júnior, P.; Rocha, M.; dos Santos, J. The chemistry and applications of metal–organic frameworks (MOFs) as industrial enzyme immobilization systems. Molecules, 2022, 27(14), 4529.
[http://dx.doi.org/10.3390/molecules27144529] [PMID: 35889401]
[25]
Kumar, S.; Rulhania, S.; Jaswal, S.; Monga, V. Recent advances in the medicinal chemistry of carbonic anhydrase inhibitors. Eur. J. Med. Chem., 2021, 209, 112923.
[http://dx.doi.org/10.1016/j.ejmech.2020.112923] [PMID: 33121862]
[26]
Priamvada, G.S.; Divyadarshini, D.S.; Voora, R. Use of thiazides to treat hypertension and advanced CKD. Curr. Cardiol. Rep., 2022, 24(12), 2131-2137.
[http://dx.doi.org/10.1007/s11886-022-01817-y] [PMID: 36301404]
[27]
Bhuyan, B.J.; Mugesh, G. Synthesis, characterization and antioxidant activity of angiotensin converting enzyme inhibitors. Org. Biomol. Chem., 2011, 9(5), 1356-1365.
[http://dx.doi.org/10.1039/C0OB00823K] [PMID: 21186397]
[28]
Joyner, J.C.; Hocharoen, L.; Cowan, J.A. Targeted catalytic inactivation of angiotensin converting enzyme by lisinopril-coupled transition-metal chelates. J. Am. Chem. Soc., 2012, 134(7), 3396-3410.
[http://dx.doi.org/10.1021/ja208791f] [PMID: 22200082]
[29]
Gomes, L.M.F.; Bataglioli, J.C.; Storr, T. Metal complexes that bind to the amyloid-β peptide of relevance to Alzheimer’s disease. Coord. Chem. Rev., 2020, 412, 213255.
[http://dx.doi.org/10.1016/j.ccr.2020.213255]
[30]
Wong, R.J.; Vreman, H.J.; Schulz, S.; Kalish, F.S.; Pierce, N.W.; Stevenson, D.K. In vitro inhibition of heme oxygenase isoenzymes by metalloporphyrins. J. Perinatol., 2011, 31(S1), S35-S41.
[http://dx.doi.org/10.1038/jp.2010.173] [PMID: 21448202]
[31]
Shurlygina, A.V.; Rachkovskaya, L.N.; Robinson, M.V.; Kotlyarova, A.A.; Korolev, M.A.; Letyagin, A.Y. The possibilities of safe lithium therapy in the treatment of neurological and psychoemotional disorders. CNS Neurol. Disord., 2021, 9, 171.
[32]
Wierońska, J.M.; Cieślik, P.; Kalinowski, L. Nitric oxide-dependent pathways as critical factors in the consequences and recovery after brain ischemic hypoxia. Biomolecules, 2021, 11(8), 1097.
[http://dx.doi.org/10.3390/biom11081097] [PMID: 34439764]
[33]
Rao, R.N.; Chanda, K. 2-Aminopyridine – an unsung hero in drug discovery. Chem. Commun., 2022, 58(3), 343-382.
[http://dx.doi.org/10.1039/D1CC04602K] [PMID: 34904599]
[34]
Liang, J.; Sun, D.; Yang, Y.; Li, M.; Li, H.; Chen, L. Discovery of metal-based complexes as promising antimicrobial agents. Eur. J. Med. Chem., 2021, 224, 113696.
[http://dx.doi.org/10.1016/j.ejmech.2021.113696] [PMID: 34274828]
[35]
Mirzadeh, N.; Reddy, T.S.; Bhargava, S.K. Advances in diphosphine ligand-containing gold complexes as anticancer agents. Coord. Chem. Rev., 2019, 388, 343-359.
[http://dx.doi.org/10.1016/j.ccr.2019.02.027]
[36]
Martins, P.G.A.; Mori, M.; Chiaradia-Delatorre, L.D.; Menegatti, A.C.O.; Mascarello, A.; Botta, B.; Benítez, J.; Gambino, D.; Terenzi, H. Exploring Oxidovanadium(IV) Complexes as YopH Inhibitors: Mechanism of Action and Modeling Studies. ACS Med. Chem. Lett., 2015, 6(10), 1035-1040.
[http://dx.doi.org/10.1021/acsmedchemlett.5b00267] [PMID: 26617957]
[37]
Ayipo, Y.O.; Osunniran, W.A.; Babamale, H.F.; Ayinde, M.O.; Mordi, M.N. Metalloenzyme mimicry and modulation strategies to conquer antimicrobial resistance: Metalligand coordination perspectives. Coord. Chem. Rev., 2022, 453, 214317.
[http://dx.doi.org/10.1016/j.ccr.2021.214317]
[38]
Tang, Q.; Cao, S.; Ma, T.; Xiang, X.; Luo, H.; Borovskikh, P.; Rodriguez, R.D.; Guo, Q.; Qiu, L.; Cheng, C. Engineering biofunctional enzyme-mimics for catalytic therapeutics and diagnostics. Adv. Funct. Mater., 2021, 31(7), 2007475.
[http://dx.doi.org/10.1002/adfm.202007475]
[39]
Wang, J.; Bao, M.; Wei, T.; Wang, Z.; Dai, Z. Bimetallic metal–organic framework for enzyme immobilization by biomimetic mineralization: Constructing a mimic enzyme and simultaneously immobilizing natural enzymes. Anal. Chim. Acta, 2020, 1098, 148-154.
[http://dx.doi.org/10.1016/j.aca.2019.11.039] [PMID: 31948578]
[40]
Völker, T.; Meggers, E. Transition-metal-mediated uncaging in living human cells — an emerging alternative to photolabile protecting groups. Curr. Opin. Chem. Biol., 2015, 25, 48-54.
[http://dx.doi.org/10.1016/j.cbpa.2014.12.021] [PMID: 25561021]
[41]
Wen, J.; Sawmiller, D.; Wheeldon, B.; Tan, J. A review for lithium: Pharmacokinetics, drug design, and toxicity. CNS Neurol. Disord. Drug Targets, 2019, 18(10), 769-778.
[http://dx.doi.org/10.2174/1871527318666191114095249] [PMID: 31724518]
[42]
Doeppner, T.R.; Haupt, M.; Bähr, M. Lithium beyond psychiatric indications: the reincarnation of a new old drug. Neural Regen. Res., 2021, 16(12), 2383-2387.
[http://dx.doi.org/10.4103/1673-5374.313015] [PMID: 33907010]
[43]
Krasnovskaya, O.; Naumov, A.; Guk, D.; Gorelkin, P.; Erofeev, A.; Beloglazkina, E.; Majouga, A. Copper coordination compounds as biologically active agents. Int. J. Mol. Sci., 2020, 21(11), 3965.
[http://dx.doi.org/10.3390/ijms21113965] [PMID: 32486510]
[44]
Ge, E.J.; Bush, A.I.; Casini, A.; Cobine, P.A.; Cross, J.R.; DeNicola, G.M.; Dou, Q.P.; Franz, K.J.; Gohil, V.M.; Gupta, S.; Kaler, S.G.; Lutsenko, S.; Mittal, V.; Petris, M.J.; Polishchuk, R.; Ralle, M.; Schilsky, M.L.; Tonks, N.K.; Vahdat, L.T.; Van Aelst, L.; Xi, D.; Yuan, P.; Brady, D.C.; Chang, C.J. Connecting copper and cancer: From transition metal signalling to metalloplasia. Nat. Rev. Cancer, 2022, 22(2), 102-113.
[http://dx.doi.org/10.1038/s41568-021-00417-2] [PMID: 34764459]
[45]
Trammell, R.; Rajabimoghadam, K.; Garcia-Bosch, I. Copper-promoted functionalization of organic molecules: from biologically relevant Cu/O2 model systems to organometallic transformations. Chem. Rev., 2019, 119(4), 2954-3031.
[http://dx.doi.org/10.1021/acs.chemrev.8b00368] [PMID: 30698952]
[46]
Hussain, A.; AlAjmi, M.F.; Rehman, M.T.; Amir, S.; Husain, F.M.; Alsalme, A.; Siddiqui, M.A.; AlKhedhairy, A.A.; Khan, R.A. Copper(II) complexes as potential anticancer and Nonsteroidal anti-inflammatory agents: In vitro and in vivo studies. Sci. Rep., 2019, 9(1), 5237.
[http://dx.doi.org/10.1038/s41598-019-41063-x] [PMID: 30918270]
[47]
Boulguemh, I.E.; Beghidja, A.; Khattabi, L.; Long, J.; Beghidja, C. Monomeric and dimeric copper (II) complexes based on bidentate Nʹ-(propan-2-ylidene) thiophene carbohydrazide Schiff base ligand: Synthesis, structure, magnetic properties, antioxidant and anti-Alzheimer activities. Inorg. Chim. Acta, 2020, 507, 119519.
[http://dx.doi.org/10.1016/j.ica.2020.119519]
[48]
Ayipo, Y.O.; Obaleye, J.A.; Badeggi, U.M. Novel metal complexes of mixed piperaquine-acetaminophen and piperaquine-acetylsalicylic acid: Synthesis, characterization and antimicrobial activities. J. Turkish Chem. Soc., Section A. Chemistry, 2016, 4(1), 313-326.
[http://dx.doi.org/10.18596/jotcsa.287331]
[49]
Saddam Hossain, M.; Zakaria, C.M.; Kudrat-E-Zahan, M. Metal complexes as potential antimicrobial agent: A review. American J. Heterocyc. Chemist., 2018, 4(1), 1-21.
[http://dx.doi.org/10.11648/j.ajhc.20180401.11]
[50]
El-Ghamry, H.A.; Fathalla, S.K.; Gaber, M. Synthesis, structural characterization and molecular modelling of bidentate azo dye metal complexes: DNA interaction to antimicrobial and anticancer activities. Appl. Organomet. Chem., 2018, 32(3), e4136.
[http://dx.doi.org/10.1002/aoc.4136]
[51]
Gomes da Silva Dantas, F.; Araújo de Almeida-Apolonio, A.; Pires de Araújo, R.; Regiane Vizolli Favarin, L.; Fukuda de Castilho, P.; de Oliveira Galvão, F.; Inez Estivalet Svidzinski, T.; Antônio Casagrande, G.; Mari Pires de Oliveira, K. Promising copper(II) complex as antifungal and antibiofilm drug against yeast infection. Molecules, 2018, 23(8), 1856.
[http://dx.doi.org/10.3390/molecules23081856] [PMID: 30049937]
[52]
Kukushkina, E.A.; Hossain, S.I.; Sportelli, M.C.; Ditaranto, N.; Picca, R.A.; Cioffi, N. Ag-based synergistic antimicrobial composites. A critical review. Nanomaterials, 2021, 11(7), 1687.
[http://dx.doi.org/10.3390/nano11071687] [PMID: 34199123]
[53]
Khan, S.; Alhumaydhi, F.A.; Ibrahim, M.M.; Alqahtani, A.; Alshamrani, M.; Alruwaili, A.S.; Khan, S. Recent advances and therapeutic journey of Schiff base complexes with selected metals (Pt, Pd, Ag, Au) as potent anticancer agents: A review. Anti-Cancer. Agents Med. Chem., 2022, 22(18), 3086-3096.
[54]
Trotter, K.D.; Owojaiye, O.; Meredith, S.P.; Keating, P.E.; Spicer, M.D.; Reglinski, J.; Spickett, C.M. The interaction of silver(II) complexes with biological macromolecules and antioxidants. Biometals, 2019, 32(4), 627-640.
[http://dx.doi.org/10.1007/s10534-019-00198-0] [PMID: 31098734]
[55]
Liang, X.; Luan, S.; Yin, Z.; He, M.; He, C.; Yin, L.; Zou, Y.; Yuan, Z.; Li, L.; Song, X.; Lv, C.; Zhang, W. Recent advances in the medical use of silver complex. Eur. J. Med. Chem., 2018, 157, 62-80.
[http://dx.doi.org/10.1016/j.ejmech.2018.07.057] [PMID: 30075403]
[56]
Yuan, Q.; Zhao, Y.; Cai, P.; He, Z.; Gao, F.; Zhang, J.; Gao, X. Dose-dependent efficacy of gold clusters on rheumatoid arthritis therapy. ACS Omega, 2019, 4(9), 14092-14099.
[http://dx.doi.org/10.1021/acsomega.9b02003] [PMID: 31497728]
[57]
Souza Pereira, C.; Costa Quadros, H.; Magalhaes Moreira, D.R.; Castro, W.; Santos De Deus Da Silva, R.I.; Botelho Pereira Soares, M.; Fontinha, D.; Prudêncio, M.; Schmitz, V.; Dos Santos, H.F.; Gendrot, M.; Fonta, I.; Mosnier, J.; Pradines, B.; Navarro, M. A novel hybrid of chloroquine and primaquine linked by gold (I): Multitarget and multiphase antiplasmodial agent. Chem. Med. Chem., 2021, 16(4), 662-678.
[http://dx.doi.org/10.1002/cmdc.202000653] [PMID: 33231370]
[58]
Yeo, C.; Ooi, K.; Tiekink, E. Gold-based medicine: A paradigm shift in anti-cancer therapy? Molecules, 2018, 23(6), 1410.
[http://dx.doi.org/10.3390/molecules23061410] [PMID: 29891764]
[59]
Kostova, I. Gold coordination complexes as anticancer agents. Anticancer. Agents Med. Chem., 2006, 6(1), 19-32.
[http://dx.doi.org/10.2174/187152006774755500] [PMID: 16475924]
[60]
Mora, M.; Gimeno, M.C.; Visbal, R. Recent advances in gold–NHC complexes with biological properties. Chem. Soc. Rev., 2019, 48(2), 447-462.
[http://dx.doi.org/10.1039/C8CS00570B] [PMID: 30474097]
[61]
Schmidt, C.; Karge, B.; Misgeld, R.; Prokop, A.; Franke, R.; Brönstrup, M.; Ott, I. Gold(I) NHC complexes: antiproliferative activity, cellular uptake, inhibition of mammalian and bacterial thioredoxin reductases, and Gram-positive directed antibacterial effects. Chemistry, 2017, 23(8), 1869-1880.
[http://dx.doi.org/10.1002/chem.201604512] [PMID: 27865002]
[62]
Svahn, N.; Moro, A.J.; Roma-Rodrigues, C.; Puttreddy, R.; Rissanen, K.; Baptista, P.V.; Fernandes, A.R.; Lima, J.C.; Rodríguez, L. The important role of the nuclearity, rigidity, and solubility of phosphane ligands in the biological activity of gold (I) complexes. Chemistry, 2018, 24(55), 14654-14667.
[http://dx.doi.org/10.1002/chem.201802547] [PMID: 30063270]
[63]
Gil-Rubio, J.; Vicente, J. The coordination and supramolecular chemistry of gold metalloligands. Chemistry, 2018, 24(1), 32-46.
[http://dx.doi.org/10.1002/chem.201703574] [PMID: 29027722]
[64]
Schwalfenberg, G.K.; Genuis, S.J. The importance of magnesium in clinical healthcare. Scientifica, 2017, 2017, 4179326.
[http://dx.doi.org/10.1155/2017/4179326] [PMID: 29093983]
[65]
Glasdam, S.M.; Glasdam, S.; Peters, G.H. The Importance of magnesium in the human body: A systematic literature review. Adv. Clin. Chem., 2016, 73, 169-193.
[http://dx.doi.org/10.1016/bs.acc.2015.10.002] [PMID: 26975973]
[66]
Case, D.R.; Zubieta, J.; P. Doyle, R. The coordination chemistry of bio-relevant ligands and their magnesium complexes. Molecules, 2020, 25(14), 3172.
[http://dx.doi.org/10.3390/molecules25143172] [PMID: 32664540]
[67]
Aiello, D.; Carnamucio, F.; Cordaro, M.; Foti, C.; Napoli, A.; Giuffrè, O. Ca2+ complexation with relevant bioligands in aqueous solution: A speciation study with implications for biological fluids. Front Chem., 2021, 9, 640219.
[http://dx.doi.org/10.3389/fchem.2021.640219] [PMID: 33718329]
[68]
Kochańczyk, T.; Drozd, A.; Krężel, A. Relationship between the architecture of zinc coordination and zinc binding affinity in proteins – insights into zinc regulation. Metallomics, 2015, 7(2), 244-257.
[http://dx.doi.org/10.1039/C4MT00094C] [PMID: 25255078]
[69]
Arise, R.O.; Elizabeth, S.N.; Farohunbi, S.T.; Nafiu, M.O.; Tella, A.C. Mechanochemical synthesis, in vivo anti-malarial and safety evaluation of amodiaquine-zinc complex. Acta Facultat. Medic. Naissensis, 2017, 34(3), 221-233.
[http://dx.doi.org/10.1515/afmnai-2017-0024]
[70]
Pellei, M.; Del Bello, F.; Porchia, M.; Santini, C. Zinc coordination complexes as anticancer agents. Coord. Chem. Rev., 2021, 445, 214088.
[http://dx.doi.org/10.1016/j.ccr.2021.214088]
[71]
Govil, N.; Jana, B. A review on aluminum, gallium and indium complexes of (Ph2-nacnac) ligand. Inorg. Chim. Acta, 2021, 515, 120037.
[http://dx.doi.org/10.1016/j.ica.2020.120037]
[72]
de Albuquerque Wanderley Sales, V.; Timóteo, T.R.R.; da Silva, N.M.; de Melo, C.G.; Ferreira, A.S.; de Oliveira, M.V.G.; de Oliveira Silva, E.; dos Santos Mendes, L.M.; Rolim, L.A.; Neto, P.J.R. A systematic review of the anti-inflammatory effects of gallium compounds. Curr. Med. Chem., 2021, 28(10), 2062-2076.
[http://dx.doi.org/10.2174/0929867327666200525160556] [PMID: 32484099]
[73]
Peng, X.X.; Gao, S.; Zhang, J.L. Gallium (III) complexes in cancer chemotherapy. Eur. J. Inorg. Chem., 2022, 6, e202100953.
[74]
Choudhary, N.; Guadalupe Jaraquemada-Peláez, M.; Zarschler, K.; Wang, X.; Radchenko, V.; Kubeil, M.; Stephan, H.; Orvig, C. Chelation in one fell swoop: Optimizing ligands for smaller radiometal ions. Inorg. Chem., 2020, 59(8), 5728-5741.
[http://dx.doi.org/10.1021/acs.inorgchem.0c00509] [PMID: 32242663]
[75]
Beraldo, H. Pharmacological applications of non-radioactive indium(III) complexes: A field yet to be explored. Coord. Chem. Rev., 2020, 419, 213375.
[http://dx.doi.org/10.1016/j.ccr.2020.213375]
[76]
Kostova, I. Lanthanides as anticancer agents. Curr. Med. Chem. Anticancer Agents, 2005, 5(6), 591-602.
[http://dx.doi.org/10.2174/156801105774574694] [PMID: 16305481]
[77]
Panichev, A.M. Rare earth elements: Review of medical and biological properties and their abundance in the rock materials and mineralized spring waters in the context of animal and human geophagia reasons evaluation. Achievem. Life Sci., 2015, 9(2), 95-103.
[http://dx.doi.org/10.1016/j.als.2015.12.001]
[78]
Ascenzi, P.; Bettinelli, M.; Boffi, A.; Botta, M.; De Simone, G.; Luchinat, C.; Marengo, E.; Mei, H.; Aime, S. Rare earth elements (REE) in biology and medicine. Rend. Lincei Sci. Fis. Nat., 2020, 31(3), 821-833.
[http://dx.doi.org/10.1007/s12210-020-00930-w]
[79]
Menchikov, L.G.; Ignatenko, M.A. Biological activity of organogermanium compounds (a review). Pharm. Chem. J., 2013, 46(11), 635-638.
[http://dx.doi.org/10.1007/s11094-013-0860-2]
[80]
Shah, S.; Ashfaq, M.; Waseem, A.; Ahmed, M.; Najam, T.; Shaheen, S.; Rivera, G. Synthesis and biological activities of organotin (IV) complexes as antitumoral and antimicrobial agents. A review. Mini Rev. Med. Chem., 2015, 15(5), 406-426.
[http://dx.doi.org/10.2174/138955751505150408142958] [PMID: 25910654]
[81]
Santos, M.M.; Bastos, P.; Catela, I.; Zalewska, K.; Branco, L.C. recent advances of metallocenes for medicinal chemistry. Mini Rev. Med. Chem., 2017, 17(9), 771-784.
[http://dx.doi.org/10.2174/1389557516666161031141620] [PMID: 27804886]
[82]
Fernández-Vega, L.; Ruiz Silva, V.A.; Domínguez-González, T.M.; Claudio-Betancourt, S.; Toro-Maldonado, R.E.; Capre Maso, L.C.; Sanabria Ortiz, K.; Pérez-Verdejo, J.A.; Román González, J.; Rosado-Fraticelli, G.T.; Pagán Meléndez, F.; Betancourt Santiago, F.M.; Rivera-Rivera, D.A.; Martínez Navarro, C.; Bruno Chardón, A.C.; Vera, A.O.; Tinoco, A.D. Evaluating ligand modifications of the titanocene and auranofin moieties for the development of more potent anticancer drugs. Inorganics, 2020, 8(2), 10.
[http://dx.doi.org/10.3390/inorganics8020010] [PMID: 34046448]
[83]
Buettner, K.M.; Valentine, A.M. Bioinorganic chemistry of titanium. Chem. Rev., 2012, 112(3), 1863-1881.
[http://dx.doi.org/10.1021/cr1002886] [PMID: 22074443]
[84]
Arzoumanidis, G.G. New antitumor organotitanium complexes with a pendant biologically active diazo group. Fine Chem. Engin, 2022, 3, 171-P181.
[http://dx.doi.org/10.37256/fce.3220221820]
[85]
Giusti, L.; Landaeta, V.R.; Vanni, M.; Kelly, J.A.; Wolf, R.; Caporali, M. Coordination chemistry of elemental phosphorus. Coord. Chem. Rev., 2021, 441, 213927.
[http://dx.doi.org/10.1016/j.ccr.2021.213927]
[86]
Al Zoubi, W.; Kim, M.J.; Salih Al-Hamdani, A.A.; Kim, Y.G.; Ko, Y.G. Phosphorus-based Schiff bases and their complexes as non-toxic antioxidants: Structure–activity relationship and mechanism of action. Appl. Organomet. Chem., 2019, 33(11), e5210.
[http://dx.doi.org/10.1002/aoc.5210]
[87]
Caminade, A.M.; Ouali, A.; Laurent, R.; Turrin, C.O.; Majoral, J.P. Coordination chemistry with phosphorus dendrimers. Applications as catalysts, for materials, and in biology. Coord. Chem. Rev., 2016, 308, 478-497.
[http://dx.doi.org/10.1016/j.ccr.2015.06.007]
[88]
Galezowska, J.; Gumienna-Kontecka, E. Phosphonates, their complexes and bio-applications: A spectrum of surprising diversity. Coord. Chem. Rev., 2012, 256(1-2), 105-124.
[http://dx.doi.org/10.1016/j.ccr.2011.07.002]
[89]
Zhao, Y.F.; Han, B.; Chen, J.; Jiang, Y. Penta-coordinate phosphorus compounds and biochemistry. Phosphorus Sulfur Silicon Relat. Elem., 2002, 177(6-7), 1391-1396.
[http://dx.doi.org/10.1080/10426500212228]
[90]
Ramaekers, B.L.T.; Riemsma, R.; Grimm, S.; Fayter, D.; Deshpande, S.; Armstrong, N.; Witlox, W.; Pouwels, X.; Duffy, S.; Worthy, G.; Kleijnen, J.; Joore, M.A. Arsenic trioxide for treating acute promyelocytic leukaemia: an evidence review group perspective of a NICE single technology appraisal. Pharmaco. Econ., 2019, 37(7), 887-894.
[http://dx.doi.org/10.1007/s40273-018-0738-y] [PMID: 30426463]
[91]
Shetu, S.A.; Sanchez-Palestino, L.M.; Rivera, G.; Bandyopadhyay, D. Medicinal bismuth: Bismuth-organic frameworks as pharmaceutically privileged compounds. Tetrahedron, 2022, 129, 133117.
[http://dx.doi.org/10.1016/j.tet.2022.133117]
[92]
Ong, Y.C.; Roy, S.; Andrews, P.C.; Gasser, G. Metal compounds against neglected tropical diseases. Chem. Rev., 2019, 119(2), 730-796.
[http://dx.doi.org/10.1021/acs.chemrev.8b00338] [PMID: 30507157]
[93]
Mukherjee, B.; Mukherjee, K.; Nanda, P.; Mukhopadhayay, R.; Ravichandiran, V.; Bhattacharyya, S.N.; Roy, S. Probing the molecular mechanism of aggressive infection by antimony resistant Leishmania donovani. Cytokine, 2021, 145, 155245.
[http://dx.doi.org/10.1016/j.cyto.2020.155245] [PMID: 32861564]
[94]
Treviño, S.; Díaz, A.; Sánchez-Lara, E.; Sanchez-Gaytan, B.L.; Perez-Aguilar, J.M.; González-Vergara, E. Vanadium in biological action: chemical, pharmacological aspects, and metabolic implications in diabetes mellitus. Biol. Trace Elem. Res., 2019, 188(1), 68-98.
[http://dx.doi.org/10.1007/s12011-018-1540-6] [PMID: 30350272]
[95]
Rehder, D. The role of vanadium in biology. Metallomics, 2015, 7(5), 730-742.
[http://dx.doi.org/10.1039/C4MT00304G] [PMID: 25608665]
[96]
Dong, Y.; Stewart, T.; Zhang, Y.; Shi, M.; Tan, C.; Li, X.; Yuan, L.; Mehrotra, A.; Zhang, J.; Yang, X. Anti-diabetic vanadyl complexes reduced Alzheimer’s disease pathology independent of amyloid plaque deposition. Sci. China Life Sci., 2019, 62(1), 126-139.
[http://dx.doi.org/10.1007/s11427-018-9350-1] [PMID: 30136058]
[97]
Arroyo Negrete, M.A.; Wrobel, K.; Yanez Barrientos, E.; Corrales Escobosa, A.R.; Enciso Donis, I.; Wrobel, K. Determination of chromium(III) picolinate in dietary supplements by flow injection - electrospray ionization - tandem mass spectrometry, using cobalt(II) picolinate as internal standard. Talanta, 2022, 240, 123161.
[http://dx.doi.org/10.1016/j.talanta.2021.123161] [PMID: 34953383]
[98]
Bartholomäus, R.; Irwin, J.A.; Shi, L.; Smith, S.M.; Levina, A.; Lay, P.A. Isolation, characterization, and nuclease activity of biologically relevant chromium(V) complexes with monosaccharides and model diols. Likely intermediates in chromium-induced cancers. Inorg. Chem., 2013, 52(8), 4282-4292.
[http://dx.doi.org/10.1021/ic3022408] [PMID: 23531300]
[99]
Pavesi, T.; Moreira, J.C. Mechanisms and individuality in chromium toxicity in humans. J. Appl. Toxicol., 2020, 40(9), 1183-1197.
[http://dx.doi.org/10.1002/jat.3965] [PMID: 32166774]
[100]
DesMarias, T.L.; Costa, M. Mechanisms of chromiuminduced toxicity. Curr. Opin. Toxicol., 2019, 14, 1-7.
[http://dx.doi.org/10.1016/j.cotox.2019.05.003] [PMID: 31511838]
[101]
Maret, W. Chromium supplementation in human health, metabolic syndrome, and diabetes. Met. Ions Life Sci., 2019, 19, 231-252.
[http://dx.doi.org/10.1515/9783110527872-009] [PMID: 30855110]
[102]
Li, Y.; Fang, M.; Xu, Z.; Li, X. Tetrathiomolybdate as an old drug in a new use: As a chemotherapeutic sensitizer for non-small cell lung cancer. J. Inorg. Biochem., 2022, 233, 111865.
[http://dx.doi.org/10.1016/j.jinorgbio.2022.111865] [PMID: 35623139]
[103]
Wang, X.; Wei, S.; Zhao, C.; Li, X.; Jin, J.; Shi, X.; Su, Z.; Li, J.; Wang, J. Promising application of polyoxometalates in the treatment of cancer, infectious diseases and Alzheimer’s disease. Eur. J. Biochem., 2022, 27(4-5), 405-419.
[http://dx.doi.org/10.1007/s00775-022-01942-7] [PMID: 35713714]
[104]
Okamoto, Y.; Kojima, R.; Schwizer, F.; Bartolami, E.; Heinisch, T.; Matile, S.; Fussenegger, M.; Ward, T.R. A cell-penetrating artificial metalloenzyme regulates a gene switch in a designer mammalian cell. Nat. Commun., 2018, 9(1), 1943.
[http://dx.doi.org/10.1038/s41467-018-04440-0] [PMID: 29769518]
[105]
Kitada, M.; Xu, J.; Ogura, Y.; Monno, I.; Koya, D. Manganese superoxide dismutase dysfunction and the pathogenesis of kidney disease. Front. Physiol., 2020, 11, 755.
[http://dx.doi.org/10.3389/fphys.2020.00755] [PMID: 32760286]
[106]
Miriyala, S.; Spasojevic, I.; Tovmasyan, A.; Salvemini, D.; Vujaskovic, Z.; St Clair, D.; Batinic-Haberle, I. Manganese superoxide dismutase, MnSOD and its mimics. Biochim. Biophys. Acta, 2012, 1822(5), 794-814.
[http://dx.doi.org/10.1016/j.bbadis.2011.12.002] [PMID: 22198225]
[107]
Belani, K.G.; Hottinger, D.G.; Beebe, D.S.; Kozhimannil, T.; Prielipp, R.C. Sodium nitroprusside in 2014: A clinical concepts review. J. Anaesthesiol. Clin. Pharmacol., 2014, 30(4), 462-471.
[http://dx.doi.org/10.4103/0970-9185.142799] [PMID: 25425768]
[108]
Ripeckyj, A.; Kosmopoulos, M.; Shekar, K.; Carlson, C.; Kalra, R.; Rees, J.; Aufderheide, T.P.; Bartos, J.A.; Yannopoulos, D. Sodium nitroprusside–enhanced cardiopulmonary resuscitation improves blood flow by pulmonary vasodilation leading to higher oxygen requirements. JACC Basic Transl. Sci., 2020, 5(2), 183-192.
[http://dx.doi.org/10.1016/j.jacbts.2019.11.010] [PMID: 32140624]
[109]
Handtke, S.; Thiele, T. Large and small platelets—(When) do they differ? J. Thromb. Haemost., 2020, 18(6), 1256-1267.
[http://dx.doi.org/10.1111/jth.14788] [PMID: 32108994]
[110]
Jaouen, G.; Vessières, A.; Top, S. Ferrocifen type anti cancer drugs. Chem. Soc. Rev., 2015, 44(24), 8802-8817.
[http://dx.doi.org/10.1039/C5CS00486A] [PMID: 26486993]
[111]
Hagen, H.; Marzenell, P.; Jentzsch, E.; Wenz, F.; Veldwijk, M.R.; Mokhir, A. Aminoferrocene-based prodrugs activated by reactive oxygen species. J. Med. Chem., 2012, 55(2), 924-934.
[http://dx.doi.org/10.1021/jm2014937] [PMID: 22185340]
[112]
Snegur, L.V. Modern trends in bio-organometallic ferrocene chemistry. Inorganics, 2022, 10(12), 226.
[http://dx.doi.org/10.3390/inorganics10120226]
[113]
Peter, S.; Aderibigbe, B.A. Ferrocene-based compounds with antimalaria/anticancer activity. Molecules, 2019, 24(19), 3604.
[http://dx.doi.org/10.3390/molecules24193604] [PMID: 31591298]
[114]
Roux, C.; Biot, C. Ferrocene-based antimalarials. Future Med. Chem., 2012, 4(6), 783-797.
[http://dx.doi.org/10.4155/fmc.12.26] [PMID: 22530641]
[115]
Xiao, J.; Sun, Z.; Kong, F.; Gao, F. Current scenario of ferrocene-containing hybrids for antimalarial activity. Eur. J. Med. Chem., 2020, 185, 111791.
[http://dx.doi.org/10.1016/j.ejmech.2019.111791] [PMID: 31669852]
[116]
Ludwig, B.S.; Correia, J.D.G.; Kühn, F.E. Ferrocene derivatives as anti-infective agents. Coord. Chem. Rev., 2019, 396, 22-48.
[http://dx.doi.org/10.1016/j.ccr.2019.06.004]
[117]
Dubar, F.; Khalife, J.; Brocard, J.; Dive, D.; Biot, C. Ferroquine, an ingenious antimalarial drug: thoughts on the mechanism of action. Molecules, 2008, 13(11), 2900-2907.
[http://dx.doi.org/10.3390/molecules13112900] [PMID: 19020475]
[118]
Dive, D.; Biot, C. Ferroquine as an oxidative shock antimalarial. Curr. Top. Med. Chem., 2014, 14(14), 1684-1692.
[http://dx.doi.org/10.2174/1568026614666140808122329] [PMID: 25116581]
[119]
Herrmann, C.; Salas, P.F.; Cawthray, J.F.; de Kock, C.; Patrick, B.O.; Smith, P.J.; Adam, M.J.; Orvig, C. 1,1′-Disubstituted ferrocenyl carbohydrate chloroquine conjugates as potential antimalarials. Organometallics, 2012, 31(16), 5736-5747.
[http://dx.doi.org/10.1021/om300354x]
[120]
Peigneguy, F.; Allain, M.; Cougnon, C.; Frère, P.; Siegler, B.; Bressy, C.; Gohier, F. Syntheses and NMR and XRD studies of carbo-hydrate–ferrocene conjugates. New J. Chem., 2019, 43(24), 9706-9710.
[http://dx.doi.org/10.1039/C9NJ01563A]
[121]
Patra, M.; Gasser, G.; Metzler-Nolte, N. Small organometallic compounds as antibacterial agents. Dalton Trans., 2012, 41(21), 6350-6358.
[http://dx.doi.org/10.1039/c2dt12460b] [PMID: 22411216]
[122]
Begum, W.; Rai, S.; Banerjee, S.; Bhattacharjee, S.; Mondal, M.H.; Bhattarai, A.; Saha, B. A comprehensive review on the sources, essentiality and toxicological profile of nickel. RSC Advances, 2022, 12(15), 9139-9153.
[http://dx.doi.org/10.1039/D2RA00378C] [PMID: 35424851]
[123]
Maroney, M.J.; Ciurli, S. Nonredox nickel enzymes. Chem. Rev., 2014, 114(8), 4206-4228.
[http://dx.doi.org/10.1021/cr4004488] [PMID: 24369791]
[124]
Boer, J.L.; Mulrooney, S.B.; Hausinger, R.P. Nickel-dependent metalloenzymes. Arch. Biochem. Biophys., 2014, 544, 142-152.
[http://dx.doi.org/10.1016/j.abb.2013.09.002] [PMID: 24036122]
[125]
Das, K.K.; Das, S.N.; Dhundasi, S.A. Nickel, its adverse health effects & oxidative stress. Indian J. Med. Res., 2008, 128(4), 412-425.
[PMID: 19106437]
[126]
Renfrew, A.K.; O’Neill, E.S.; Hambley, T.W.; New, E.J. Harnessing the properties of cobalt coordination complexes for biological application. Coord. Chem. Rev., 2018, 375, 221-233.
[http://dx.doi.org/10.1016/j.ccr.2017.11.027]
[127]
Heffern, M.C.; Yamamoto, N.; Holbrook, R.J.; Eckermann, A.L.; Meade, T.J. Cobalt derivatives as promising therapeutic agents. Curr. Opin. Chem. Biol., 2013, 17(2), 189-196.
[http://dx.doi.org/10.1016/j.cbpa.2012.11.019] [PMID: 23270779]
[128]
Bonaccorso, C.; Marzo, T.; La Mendola, D. Biological applications of thiocarbohydrazones and their metal complexes: A perspective review. Pharmaceuticals, 2019, 13(1), 4.
[http://dx.doi.org/10.3390/ph13010004] [PMID: 31881715]
[129]
Kostova, I. Platinum complexes as anticancer agents. Recent Patents Anticancer Drug Discov., 2006, 1(1), 1-22.
[http://dx.doi.org/10.2174/157489206775246458] [PMID: 18221023]
[130]
Johnstone, T.C.; Suntharalingam, K.; Lippard, S.J. The next generation of platinum drugs: targeted Pt(II) agents, nanoparticle delivery, and Pt(IV) prodrugs. Chem. Rev., 2016, 116(5), 3436-3486.
[http://dx.doi.org/10.1021/acs.chemrev.5b00597] [PMID: 26865551]
[131]
Ghosh, S. Cisplatin: The first metal based anticancer drug. Bioorg. Chem., 2019, 88, 102925.
[http://dx.doi.org/10.1016/j.bioorg.2019.102925] [PMID: 31003078]
[132]
Gibson, D. Platinum(IV) anticancer prodrugs – hypotheses and facts. Dalton Trans., 2016, 45(33), 12983-12991.
[http://dx.doi.org/10.1039/C6DT01414C] [PMID: 27214873]
[133]
Alassadi, S.; Pisani, M.J.; Wheate, N.J. A chemical perspective on the clinical use of platinum-based anticancer drugs. Dalton Trans., 2022, 51(29), 10835-10846.
[http://dx.doi.org/10.1039/D2DT01875F] [PMID: 35781551]
[134]
Evin Eskicioglu, H.; Olgun, Y.; Aktaş, T.C.; Aktas, S.; Kolatan, E.; Serinan, E.; Altun, Z.; Kirkim, G.; Yilmaz, O.; Olgun, N. Comparison of cytotoxic and ototoxic effects of lipoplatin and cisplatin in neuroblastoma in vivo tumor model. J. Int. Adv. Otol., 2022, 18(5), 392-398.
[http://dx.doi.org/10.5152/iao.2022.21268] [PMID: 36063095]
[135]
Jahromi, E.Z.; Divsalar, A.; Saboury, A.A.; Khaleghizadeh, S.; Mansouri-Torshizi, H.; Kostova, I. Palladium complexes: new candidates for anti-cancer drugs. J. Indian Chem. Soc., 2016, 13(5), 967-989.
[http://dx.doi.org/10.1007/s13738-015-0804-8]
[136]
Coverdale, J.; Laroiya-McCarron, T.; Romero-Canelón, I. Designing ruthenium anticancer drugs: What have we learnt from the key drug candidates? Inorganics, 2019, 7(3), 31.
[http://dx.doi.org/10.3390/inorganics7030031]
[137]
Lee, S.Y.; Kim, C.Y.; Nam, T.G. Ruthenium complexes as anticancer agents: A brief history and perspectives. Drug Des. Devel. Ther., 2020, 14, 5375-5392.
[http://dx.doi.org/10.2147/DDDT.S275007] [PMID: 33299303]
[138]
Kenny, R.G.; Marmion, C.J. Toward multi-targeted platinum and ruthenium drugs—a new paradigm in cancer drug treatment regimens? Chem. Rev., 2019, 119(2), 1058-1137.
[http://dx.doi.org/10.1021/acs.chemrev.8b00271] [PMID: 30640441]
[139]
Kostova, I. Ruthenium complexes as anticancer agents. Curr. Med. Chem., 2006, 13(9), 1085-1107.
[http://dx.doi.org/10.2174/092986706776360941] [PMID: 16611086]
[140]
Messori, L.; Camarri, M.; Ferraro, T.; Gabbiani, C.; Franceschini, D. Promising in vitro anti-alzheimer properties for a ruthenium(III) complex. ACS Med. Chem. Lett., 2013, 4(3), 329-332.
[http://dx.doi.org/10.1021/ml3003567] [PMID: 24900669]
[141]
Mbaba, M.; Golding, T.M.; Smith, G.S. Recent advances in the biological investigation of organometallic platinum-group metal (Ir, Ru, Rh, Os, Pd, Pt) complexes as antimalarial agents. Molecules, 2020, 25(22), 5276.
[http://dx.doi.org/10.3390/molecules25225276] [PMID: 33198217]
[142]
Navarro, M.; Castro, W.; Madamet, M.; Amalvict, R.; Benoit, N.; Pradines, B. Metal-chloroquine derivatives as possible anti-malarial drugs: Evaluation of anti-malarial activity and mode of action. Malar. J., 2014, 13(1), 471.
[http://dx.doi.org/10.1186/1475-2875-13-471] [PMID: 25470995]
[143]
Butler, J.A.; Britten, N.S. Ruthenium metallotherapeutics: Novel approaches to combatting parasitic infections. Curr. Med. Chem., 2022, 29(31), 5159-5178.
[http://dx.doi.org/10.2174/0929867329666220401105444] [PMID: 35366762]
[144]
Hubin, T.J.; Amoyaw, P.N.A.; Roewe, K.D.; Simpson, N.C.; Maples, R.D.; Carder Freeman, T.N.; Cain, A.N.; Le, J.G.; Archibald, S.J.; Khan, S.I.; Tekwani, B.L.; Khan, M.O.F. Synthesis and antimalarial activity of metal complexes of cross-bridged tetraazamacrocyclic ligands. Bioorg. Med. Chem., 2014, 22(13), 3239-3244.
[http://dx.doi.org/10.1016/j.bmc.2014.05.003] [PMID: 24857776]
[145]
Kwiatkowski, S.; Knap, B.; Przystupski, D.; Saczko, J.; Kędzierska, E.; Knap-Czop, K.; Kotlińska, J.; Michel, O.; Kotowski, K.; Kulbacka, J. Photodynamic therapy – mechanisms, photosensitizers and combinations. Biomed. Pharmacother., 2018, 106, 1098-1107.
[http://dx.doi.org/10.1016/j.biopha.2018.07.049] [PMID: 30119176]
[146]
Duan, K.; Liu, B.; Li, C.; Zhang, H.; Yu, T.; Qu, J.; Zhou, M.; Chen, L.; Meng, S.; Hu, Y.; Peng, C.; Yuan, M.; Huang, J.; Wang, Z.; Yu, J.; Gao, X.; Wang, D.; Yu, X.; Li, L.; Zhang, J.; Wu, X.; Li, B.; Xu, Y.; Chen, W.; Peng, Y.; Hu, Y.; Lin, L.; Liu, X.; Huang, S.; Zhou, Z.; Zhang, L.; Wang, Y.; Zhang, Z.; Deng, K.; Xia, Z.; Gong, Q.; Zhang, W.; Zheng, X.; Liu, Y.; Yang, H.; Zhou, D.; Yu, D.; Hou, J.; Shi, Z.; Chen, S.; Chen, Z.; Zhang, X.; Yang, X. Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proc. Natl. Acad. Sci. USA, 2020, 117(17), 9490-9496.
[http://dx.doi.org/10.1073/pnas.2004168117] [PMID: 32253318]
[147]
Wiehe, A.; O’Brien, J.M.; Senge, M.O. Trends and targets in antiviral phototherapy. Photochem. Photobiol. Sci., 2019, 18(11), 2565-2612.
[http://dx.doi.org/10.1039/c9pp00211a] [PMID: 31397467]
[148]
Conrado, P.C.V.; Sakita, K.M.; Arita, G.S.; Galinari, C.B.; Gonçalves, R.S.; Lopes, L.D.G.; Lonardoni, M.V.C.; Teixeira, J.J.V.; Bonfim-Mendonça, P.S.; Kioshima, E.S. A systematic review of photodynamic therapy as an antiviral treatment: Potential guidance for dealing with SARS-CoV-2. Photodiagn. Photodyn. Ther., 2021, 34, 102221.
[http://dx.doi.org/10.1016/j.pdpdt.2021.102221] [PMID: 33601001]
[149]
Costa, L.; Faustino, M.A.F.; Neves, M.G.P.M.S.; Cunha, Â.; Almeida, A. Photodynamic inactivation of mammalian viruses and bacteriophages. Viruses, 2012, 4(7), 1034-1074.
[http://dx.doi.org/10.3390/v4071034] [PMID: 22852040]
[150]
Wang, J.; Potocny, A.M.; Rosenthal, J.; Day, E.S. Gold nanoshell-linear tetrapyrrole conjugates for near infrared-activated dual photodynamic and photothermal therapies. ACS Omega, 2020, 5(1), 926-940.
[http://dx.doi.org/10.1021/acsomega.9b04150] [PMID: 31956847]
[151]
Moore, C.M.; Azzouzi, A.R.; Barret, E.; Villers, A.; Muir, G.H.; Barber, N.J.; Bott, S.; Trachtenberg, J.; Arumainayagam, N.; Gaillac, B.; Allen, C.; Schertz, A.; Emberton, M.; Barret, E. Determination of optimal drug dose and light dose index to achieve minimally invasive focal ablation of localised prostate cancer using WST11-vascular-targeted photodynamic (VTP) therapy. BJU Int., 2015, 116(6), 888-896.
[http://dx.doi.org/10.1111/bju.12816] [PMID: 24841929]
[152]
Maggioni, D.; Galli, M.; D’Alfonso, L.; Inverso, D.; Dozzi, M.V.; Sironi, L.; Iannacone, M.; Collini, M.; Ferruti, P.; Ranucci, E.; D’Alfonso, G. A luminescent poly(amidoamine)-iridium complex as a new singlet-oxygen sensitizer for photodynamic therapy. Inorg. Chem., 2015, 54(2), 544-553.
[http://dx.doi.org/10.1021/ic502378z] [PMID: 25554822]
[153]
Abrahamse, H.; Hamblin, M.R. New photosensitizers for photodynamic therapy. Biochem. J., 2016, 473(4), 347-364.
[http://dx.doi.org/10.1042/BJ20150942] [PMID: 26862179]
[154]
Knoll, J.D.; Turro, C. Control and utilization of ruthenium and rhodium metal complex excited states for photoactivated cancer therapy. Coord. Chem. Rev., 2015, 282-283, 110-126.
[http://dx.doi.org/10.1016/j.ccr.2014.05.018] [PMID: 25729089]
[155]
Falk-Mahapatra, R.; Gollnick, S.O. Photodynamic therapy and immunity: An update. Photochem. Photobiol., 2020, 96(3), 550-559.
[http://dx.doi.org/10.1111/php.13253] [PMID: 32128821]
[156]
McKenzie, L.K.; Bryant, H.E.; Weinstein, J.A. Transition metal complexes as photosensitisers in one- and two-photon photodynamic therapy. Coord. Chem. Rev., 2019, 379, 2-29.
[http://dx.doi.org/10.1016/j.ccr.2018.03.020]
[157]
van Straten, D.; Mashayekhi, V.; de Bruijn, H.; Oliveira, S.; Robinson, D. Oncologic photodynamic therapy: basic principles, current clinical status and future directions. Cancers, 2017, 9(12), 19.
[http://dx.doi.org/10.3390/cancers9020019] [PMID: 28218708]
[158]
Monro, S.; Colón, K.L.; Yin, H.; Roque, J., III; Konda, P.; Gujar, S.; Thummel, R.P.; Lilge, L.; Cameron, C.G.; McFarland, S.A. Transition metal complexes and photodynamic therapy from a tumorcentered approach: Challenges, opportunities, and highlights from the development of TLD1433. Chem. Rev., 2019, 119(2), 797-828.
[http://dx.doi.org/10.1021/acs.chemrev.8b00211] [PMID: 30295467]
[159]
Chen, Y.; Guan, R.; Zhang, C.; Huang, J.; Ji, L.; Chao, H. Two-photon luminescent metal complexes for bioimaging and cancer phototherapy. Coord. Chem. Rev., 2016, 310, 16-40.
[http://dx.doi.org/10.1016/j.ccr.2015.09.010]
[160]
Shi, G.; Monro, S.; Colpitts, J.; Fong, J.; Kasimova, K.; Yin, H.; DeCoste, R.; Spencer, C. Ru(II) dyads derived from a-oligothiophenes: a new class of potent and versatile photosensitizers for PDT. Coord. Chem. Rev., 2014, 282–283, 127-138.
[161]
Zhang, P.; Huang, H. Future potential of osmium complexes as anticancer drug candidates, photosensitizers and organelle-targeted probes. Dalton Trans., 2018, 47(42), 14841-14854.
[http://dx.doi.org/10.1039/C8DT03432J] [PMID: 30325378]
[162]
Heinemann, F.; Karges, J.; Gasser, G. Critical overview of the use of Ru(II) polypyridyl complexes as photosensitizers in one-photon and two-photon photodynamic therapy. Acc. Chem. Res., 2017, 50(11), 2727-2736.
[http://dx.doi.org/10.1021/acs.accounts.7b00180] [PMID: 29058879]
[163]
Jakubaszek, M.; Goud, B.; Ferrari, S.; Gasser, G. Mechanisms of action of Ru(II) polypyridyl complexes in living cells upon light irradiation. Chem. Commun., 2018, 54(93), 13040-13059.
[http://dx.doi.org/10.1039/C8CC05928D] [PMID: 30398487]
[164]
Mari, C.; Pierroz, V.; Ferrari, S.; Gasser, G. Combination of Ru(II) complexes and light: new frontiers in cancer therapy. Chem. Sci., 2015, 6(5), 2660-2686.
[http://dx.doi.org/10.1039/C4SC03759F] [PMID: 29308166]
[165]
Poynton, F.E.; Bright, S.A.; Blasco, S.; Williams, D.C.; Kelly, J.M.; Gunnlaugsson, T. The development of ruthenium(II) polypyridyl complexes and conjugates for in vitro cellular and in vivo applications. Chem. Soc. Rev., 2017, 46(24), 7706-7756.
[http://dx.doi.org/10.1039/C7CS00680B] [PMID: 29177281]
[166]
Zeng, L.; Gupta, P.; Chen, Y.; Wang, E.; Ji, L.; Chao, H.; Chen, Z.S. The development of anticancer ruthenium(II) complexes: from single molecule compounds to nanomaterials. Chem. Soc. Rev., 2017, 46(19), 5771-5804.
[http://dx.doi.org/10.1039/C7CS00195A] [PMID: 28654103]
[167]
Huang, H.; Banerjee, S.; Sadler, P.J. Recent advances in the design of targeted iridium(III) photosensitizers for photodynamic therapy. Chem. Bio. Chem, 2018, 19(15), 1574-1589.
[http://dx.doi.org/10.1002/cbic.201800182] [PMID: 30019476]
[168]
Boros, E.; Packard, A.B. Radioactive transition metals for imaging and therapy. Chem. Rev., 2019, 119(2), 870-901.
[http://dx.doi.org/10.1021/acs.chemrev.8b00281] [PMID: 30299088]
[169]
Kostelnik, T.I.; Orvig, C. Radioactive main group and rare earth metals for imaging and therapy. Chem. Rev., 2019, 119(2), 902-956.
[http://dx.doi.org/10.1021/acs.chemrev.8b00294] [PMID: 30379537]
[170]
Price, E.W.; Orvig, C. Matching chelators to radiometals for radiopharmaceuticals. Chem. Soc. Rev., 2014, 43(1), 260-290.
[http://dx.doi.org/10.1039/C3CS60304K] [PMID: 24173525]
[171]
Ayesa, S.L.; Schembri, G.P. Is 67gallium dead? A retrospective review of 67 gallium imaging in a single tertiary referral centre. Nucl. Med. Commun., 2021, 42(4), 378-388.
[http://dx.doi.org/10.1097/MNM.0000000000001342] [PMID: 33323867]
[172]
Harnden, A.C.; Parker, D.; Rogers, N.J. Employing paramagnetic shift for responsive MRI probes. Coord. Chem. Rev., 2019, 383, 30-42.
[http://dx.doi.org/10.1016/j.ccr.2018.12.012]
[173]
Rogosnitzky, M.; Branch, S. Gadolinium-based contrast agent toxicity: a review of known and proposed mechanisms. Biometals, 2016, 29(3), 365-376.
[http://dx.doi.org/10.1007/s10534-016-9931-7] [PMID: 27053146]
[174]
Fatima, A.; Ahmad, M.W.; Al Saidi, A.K.A.; Choudhury, A.; Chang, Y.; Lee, G.H. Recent advances in gadolinium-based contrast agents for bioimaging applications. Nanomaterials, 2021, 11(9), 2449.
[http://dx.doi.org/10.3390/nano11092449] [PMID: 34578765]
[175]
Wahsner, J.; Gale, E.M.; Rodríguez-Rodríguez, A.; Caravan, P. Chemistry of MRI contrast agents: current challenges and new frontiers. Chem. Rev., 2019, 119(2), 957-1057.
[http://dx.doi.org/10.1021/acs.chemrev.8b00363] [PMID: 30350585]
[176]
Boros, E.; Gale, E.M.; Caravan, P. MR imaging probes: Design and applications. Dalton Trans., 2015, 44(11), 4804-4818.
[http://dx.doi.org/10.1039/C4DT02958E] [PMID: 25376893]
[177]
Heffern, M.C.; Matosziuk, L.M.; Meade, T.J. Lanthanide probes for bioresponsive imaging. Chem. Rev., 2014, 114(8), 4496-4539.
[http://dx.doi.org/10.1021/cr400477t] [PMID: 24328202]
[178]
Webster, A.M.; Peacock, A.F.A. De novo designed coiled coils as scaffolds for lanthanides, including novel imaging agents with a twist. Chem. Commun., 2021, 57(56), 6851-6862.
[http://dx.doi.org/10.1039/D1CC02013G] [PMID: 34151325]
[179]
Loving, G.S.; Mukherjee, S.; Caravan, P. Redox-activated manganese-based MR contrast agent. J. Am. Chem. Soc., 2013, 135(12), 4620-4623.
[http://dx.doi.org/10.1021/ja312610j] [PMID: 23510406]
[180]
Bao, G. Lanthanide complexes for drug delivery and therapeutics. J. Lumin., 2020, 228, 117622.
[http://dx.doi.org/10.1016/j.jlumin.2020.117622]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy