Generic placeholder image

Letters in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-1786
ISSN (Online): 1875-6255

Letter Article

Correlations between Quantum Calculations and the Contribution of Factors Affecting the Structural Stability and Electronic Properties of Vinyl Azide and Vinyl Isocyanate

Author(s): Hengameh Fallah, Hooshang Atabaki*, Leila Moharrery, Neda Hasanzadeh* and Hooriye Yahyaei

Volume 20, Issue 10, 2023

Published on: 04 May, 2023

Page: [893 - 901] Pages: 9

DOI: 10.2174/1570178620666230320113756

Price: $65

conference banner
Abstract

The conformational features of vinyl isocyanate (1) and vinyl azide (2) have been analyzed using G4MP2, CCSD(T)/6-311+G**, B3LYP/6-311+G** and LC-ωPBE/6-311+G** theory levels. Published experimental data indicate that the stability of the cis-isomer of vinyl azide (2) is more than the trans-isomer. This is consistent with the findings attained using G4MP2 and LC-ωPBE/6- 311+G** levels, whereas B3LYP/6-311+G** and CCSD (T)/6-311+G** levels provide false energetic outcomes. Natural Bond Orbital (NBO) interpretation is used to interpret the reason for the stability of the cis stereoisomer of compound 2 and the structural features of compound 1. Dipole-dipole interactions, steric effects, and resonance energies on the structural behaviors of compounds 1 and 2 are also investigated using NBO analysis. The results showed that the stability of the cis conformer of compound 2 compared to its trans conformer could be explained using the steric effect (Pauli Exchange Type Repulsion or PETR). Dipole moments of the cis conformer of compound 2 are evaluated experimentally (from Rotational Spectroscopy) and theoretically. The experimental (from Rotational Spectroscopy) and theoretically evaluated dipole moments of trans-conformation of compound 2 are slightly greater than that in cis-conformation, which is in favor of the cis-conformation, while dipoledipole interactions are in favor of the cis-conformation of compound 1. Accordingly, the electrostatic interactions associated with dipole-dipole interactions do not explain the conformational behaviors of compound 1. The stabilization energies related to the delocalization of electrons are in favor of the cis-conformation of compound 1, whereas it has no considerable effect on compound 2’s conformational behavior.

Keywords: Vinyl azide, vinyl isocyanate, Natural Bond Orbital (NBO), pauli exchange type repulsion, PETR, dipole moments.

Next »
Graphical Abstract
[1]
Vila, A.; Mosquera, R.A. J. Comput. Chem., 2007, 28(9), 1516-1530.
[http://dx.doi.org/10.1002/jcc.20585] [PMID: 17330885]
[2]
Juaristi, E.; Notario, R. J. Org. Chem., 2015, 80(5), 2879-2883.
[http://dx.doi.org/10.1021/jo5029425] [PMID: 25688925]
[3]
Freitas, M.P. Org. Biomol. Chem., 2013, 11(17), 2885-2890.
[http://dx.doi.org/10.1039/c3ob40187a] [PMID: 23515623]
[4]
Wang, C.; Chen, Z.; Wu, W.; Mo, Y. Chemistry, 2013, 19(4), 1436-1444.
[http://dx.doi.org/10.1002/chem.201203429] [PMID: 23225166]
[5]
Hasanzadeh, N.; Nori-Shargh, D.; Farzipour, M.; Ahmadi, B. Org. Biomol. Chem., 2015, 13(25), 6965-6976.
[http://dx.doi.org/10.1039/C5OB00585J] [PMID: 26022618]
[6]
Hasanzadeh, N.; Nori-Shargh, D.; Yahyaei, H.; Mousavi, S.N.; Kamrava, S. J. Phys. Chem. A, 2017, 121(29), 5548-5560.
[http://dx.doi.org/10.1021/acs.jpca.7b04447] [PMID: 28661674]
[7]
Hasanzadeh, N.; Nori-Shargh, D. Comput. Theor. Chem., 2015, 1051, 1-9.
[http://dx.doi.org/10.1016/j.comptc.2014.10.018]
[8]
Atabaki, H.; Nori-Shargh, D.; Momen-Heravi, M. RSC Advances, 2017, 7(37), 22757-22770.
[http://dx.doi.org/10.1039/C7RA00520B]
[9]
Kirby, C.; Kroto, H.W. J. Mol. Spectrosc., 1978, 70(2), 216-228.
[http://dx.doi.org/10.1016/0022-2852(78)90156-X]
[10]
Bouchy, A.; Roussy, G. J. Mol. Spectrosc., 1977, 68(1), 156-165.
[http://dx.doi.org/10.1016/0022-2852(77)90431-3]
[11]
Ford, R.G. J. Mol. Spectrosc., 1977, 65(2), 273-279.
[http://dx.doi.org/10.1016/0022-2852(77)90195-3]
[12]
Curtiss, L.A.; Redfern, P.C.; Raghavachari, K. J. Chem. Phys., 2007, 127(12), 124105.
[http://dx.doi.org/10.1063/1.2770701] [PMID: 17902891]
[13]
Urban, M.; Noga, J.; Cole, S.J.; Bartlett, R.J. J. Chem. Phys., 1985, 83(8), 4041-4046.
[http://dx.doi.org/10.1063/1.449067]
[14]
Vydrov, O.A.; Scuseria, G.E. J. Chem. Phys., 2006, 125(23), 234109.
[http://dx.doi.org/10.1063/1.2409292] [PMID: 17190549]
[15]
Krishnan, R.; Binkley, J.S.; Seeger, R.; Pople, J.A. J. Chem. Phys., 1980, 72(1), 650-654.
[http://dx.doi.org/10.1063/1.438955]
[16]
McLean, A.D.; Chandler, G.S. J. Chem. Phys., 1980, 72(10), 5639-5648.
[http://dx.doi.org/10.1063/1.438980]
[17]
Blaudeau, J.P.; McGrath, M.P.; Curtiss, L.A.; Radom, L. J. Chem. Phys., 1997, 107(13), 5016-5021.
[http://dx.doi.org/10.1063/1.474865]
[18]
Curtiss, L.A.; McGrath, M.P.; Blaudeau, J.P.; Davis, N.E.; Binning, R.C., Jr; Radom, L. J. Chem. Phys., 1995, 103(14), 6104-6113.
[http://dx.doi.org/10.1063/1.470438]
[19]
Thatcher, G.R.J. The anomeric effect and associated stereoelectronic effects; American Chemical Society: Washington, DC, 1993.
[http://dx.doi.org/10.1021/bk-1993-0539]
[20]
Eliel, E.L.; Wilen, S.H. Stereochemistry of organic compounds; John Wiley & Sons: New York, 1994.
[21]
Cramer, C.J.; Truhlar, D.G.; French, A.D. Carbohydr. Res., 1997, 298(1-2), 1-14.
[http://dx.doi.org/10.1016/S0008-6215(96)00297-2]
[22]
Weinhold, F. Encyclopedia of computational chemistry; Wiley, 2002.
[http://dx.doi.org/10.1002/0470845015.cna009]
[23]
Badenhoop, J.K.; Weinhold, F. J. Chem. Phys., 1997, 107(14), 5406-5421.
[http://dx.doi.org/10.1063/1.474248]
[24]
Weinhold, F. In: Encyclopedia of Computational Chemistry; Wiley: Chichester, UK, 1998.
[25]
Badenhoop, J.K.; Weinhold, F. J. Chem. Phys., 1997, 107(14), 5422-5432.
[http://dx.doi.org/10.1063/1.475149]
[26]
Badenhoop, J.K.; Weinhold, F. Int. J. Quantum Chem., 1999, 72(4), 269-280.
[http://dx.doi.org/10.1002/(SICI)1097-461X(1999)72:4<269:AID-QUA9>3.0.CO;2-8]
[27]
Weisskopf, V.F. Science, 1975, 187(4177), 605-612.
[http://dx.doi.org/10.1126/science.187.4177.605] [PMID: 17810052]
[28]
Radom, L.; Hehre, W.J.; Pople, J.A. J. Am. Chem. Soc., 1972, 94(7), 2371-2381.
[http://dx.doi.org/10.1021/ja00762a030]
[29]
Perrin, C.L.; Armstrong, K.B.; Fabian, M.A. J. Am. Chem. Soc., 1994, 116(2), 715-722.
[http://dx.doi.org/10.1021/ja00081a037]
[30]
Christiansen, P.A.; Palke, W.E. J. Chem. Phys., 1977, 67(1), 57-63.
[http://dx.doi.org/10.1063/1.434541]
[31]
Frisch, M.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. Gaussian 09, revision D. 01; Gaussian, Inc.: Wallingford, CT, 2009.
[32]
Glendening, E.; Badenhoop, J.; Reed, A.; Carpenter, J.; Bohmann, J.; Morales, C.; Weinhold, F. Google Scholar There is no corresponding record for this reference, 2004.
[33]
Nori-Shargh, D.; Mousavi, S.N.; Kayi, H. J. Mol. Model., 2014, 20(5), 2249.
[http://dx.doi.org/10.1007/s00894-014-2249-x] [PMID: 24817665]
[34]
Dionne, P.; St-Jacques, M. J. Am. Chem. Soc., 1987, 109(9), 2616-2623.
[http://dx.doi.org/10.1021/ja00243a012]
[35]
Epiotis, N.D.; Yates, R.L.; Larson, J.R.; Kirmaier, C.R.; Bernardi, F. J. Am. Chem. Soc., 1977, 99(26), 8379-8388.
[http://dx.doi.org/10.1021/ja00468a001]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy