Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

Current Perspectives on Nanoparticle-based Targeted Drug Delivery Approaches in Breast Cancer Treatment

Author(s): Pratibha Pandey, Fahad Khan*, Ramish Maqsood and Tarun Kumar Upadhyay

Volume 23, Issue 10, 2023

Published on: 18 May, 2023

Page: [1291 - 1302] Pages: 12

DOI: 10.2174/1871530323666230315145332

Price: $65

Open Access Journals Promotions 2
Abstract

Breast cancer is avertible yet one of the most widespread carcinomas globally. Though periodic screening and monitoring have resulted in reduced incidences, the malignancy claims increased death rates across the globe. Due to the non-specific and aggressive nature of available conventional cancer therapeutics, there is a crucial need for better treatment paradigms. Recent advancements in nanotechnology have aided in this by utilizing nanocarriers in targeted drug delivery approaches. Optimized nanoparticles have been used to enhance the circulation time and target the efficacy of conventional therapeutic drugs. Passive targeting comprises surface modulation to avoid drug elimination via a standard body defense system. Active targeting includes chemical interaction with various genes, receptors, and antigens overexpressed during cancer progression. Therefore, the present review recapitulates drug delivery approaches and nanoparticle-based targeting that can potentially overcome the limitations of conventional drug therapies.

Keywords: Nanocarriers, breast cancer, targeted drug delivery, nanoparticles, drug delivery approaches dendrimers, carcinomas.

Graphical Abstract
[1]
Akram, M.; Iqbal, M.; Daniyal, M.; Khan, A.U. Awareness and current knowledge of breast cancer. Biol. Res., 2017, 50(1), 33.
[http://dx.doi.org/10.1186/s40659-017-0140-9] [PMID: 28969709]
[2]
Marinkovic, M.; Djordjevic, N.; Djordjevic, L.; Ignjatovic, N.; Djordjevic, M.; Karanikolic, V. Assessment of the quality of life in breast cancer depending on the surgical treatment. Support. Care Cancer, 2021, 29(6), 3257-3266.
[http://dx.doi.org/10.1007/s00520-020-05838-7] [PMID: 33099655]
[3]
Akinyemiju, T.F.; Vin-Raviv, N.; Chavez-Yenter, D.; Zhao, X.; Budhwani, H. Race/ethnicity and socio-economic differences in breast cancer surgery outcomes. Cancer Epidemiol., 2015, 39(5), 745-751.
[4]
Tao, J.J.; Visvanathan, K.; Wolff, A.C. Long term side effects of adjuvant chemotherapy in patients with early breast cancer. Breast, 2015, 24(S2), S149-S153.
[http://dx.doi.org/10.1016/j.breast.2015.07.035] [PMID: 26299406]
[5]
Schmidt, M.E.; Scherer, S.; Wiskemann, J.; Steindorf, K. Return to work after breast cancer: The role of treatment‐related side effects and potential impact on quality of life. Eur. J. Cancer Care, 2019, 28(4), e13051.
[http://dx.doi.org/10.1111/ecc.13051] [PMID: 31033073]
[6]
Martin, H.L.; Laura, S.; Darren, C.T. Multidrug-resistant breast cancer: Current perspectives. Breast Cancer, 2014, 6, 1-13.
[http://dx.doi.org/10.2147/BCTT.S37638] [PMID: 24648765]
[7]
Singh, S.; Singh, S.; Lillard, J.W., Jr; Singh, R. Drug delivery approaches for breast cancer. Int. J. Nanomedicine, 2017, 12, 6205-6218.
[http://dx.doi.org/10.2147/IJN.S140325] [PMID: 28883730]
[8]
Din, F.; Aman, W.; Ullah, I.; Qureshi, O.S.; Mustapha, O.; Shafique, S.; Zeb, A. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int. J. Nanomedicine, 2017, 12, 7291-7309.
[http://dx.doi.org/10.2147/IJN.S146315]
[9]
Zamani, M.; Aghajanzadeh, M.; Sharafi, A.; Rostamizadeh, K.; Danafar, H. Targeted drug delivery via folate decorated nanocarriers based on linear polymer for treatment of breast cancer. Pharm. Dev. Technol., 2022, 27(1), 19-24.
[http://dx.doi.org/10.1080/10837450.2021.2018457] [PMID: 34895033]
[10]
Edis, Z.; Wang, J.; Waqas, M.K.; Ijaz, M.; Ijaz, M. Nanocarriers-mediated drug delivery systems for anticancer agents: an overview and perspectives. Int. J. Nanomedicine, 2021, 16, 1313-1330.
[http://dx.doi.org/10.2147/IJN.S289443] [PMID: 33628022]
[11]
Parhi, P.; Mohanty, C.; Sahoo, S.K. Nanotechnology-based combinational drug delivery: An emerging approach for cancer therapy. Drug Discov. Today, 2012, 17(17-18), 1044-1052.
[http://dx.doi.org/10.1016/j.drudis.2012.05.010] [PMID: 22652342]
[12]
Wijdeven, R.H.; Pang, B.; Assaraf, Y.G.; Neefjes, J. Old drugs, novel ways out: Drug resistance toward cytotoxic chemotherapeutics. Drug Resist. Updat., 2016, 28, 65-81.
[http://dx.doi.org/10.1016/j.drup.2016.07.001] [PMID: 27620955]
[13]
Pérez-Herrero, E.; Fernández-Medarde, A. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur. J. Pharm. Biopharm., 2015, 93, 52-79.
[http://dx.doi.org/10.1016/j.ejpb.2015.03.018] [PMID: 25813885]
[14]
Agrahari, V.; Burnouf, P.A.; Burnouf, T.; Agrahari, V. Nanoformulation properties, characterization, and behavior in complex biological matrices: Challenges and opportunities for brain-targeted drug delivery applications and enhanced translational potential. Adv. Drug Deliv. Rev., 2019, 148, 146-180.
[http://dx.doi.org/10.1016/j.addr.2019.02.008] [PMID: 30797956]
[15]
Zhao, Z.; Ukidve, A.; Krishnan, V.; Mitragotri, S. Effect of physicochemical and surface properties on In vivo fate of drug nanocarriers. Adv. Drug Deliv. Rev., 2019, 143, 3-21.
[http://dx.doi.org/10.1016/j.addr.2019.01.002] [PMID: 30639257]
[16]
Senapati, S.; Mahanta, A.K.; Kumar, S.; Maiti, P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct. Target. Ther., 2018, 3(1), 7.
[http://dx.doi.org/10.1038/s41392-017-0004-3] [PMID: 29560283]
[17]
Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2021. CA Cancer J. Clin., 2021, 71(1), 7-33.
[http://dx.doi.org/10.3322/caac.21654] [PMID: 33433946]
[18]
Mukama, T.; Fallah, M.; Brenner, H.; Xu, X.; Sundquist, K.; Sundquist, J.; Kharazmi, E. Risk of invasive breast cancer in relatives of patients with breast carcinoma in situ: a prospective cohort study. BMC Med., 2020, 18(1), 295.
[http://dx.doi.org/10.1186/s12916-020-01772-x] [PMID: 33148280]
[19]
Kuchenbaecker, K.B.; Hopper, J.L.; Barnes, D.R.; Phillips, K.A.; Mooij, T.M.; Roos-Blom, M.J.; Jervis, S.; van Leeuwen, F.E.; Milne, R.L.; Andrieu, N.; Goldgar, D.E.; Terry, M.B.; Rookus, M.A.; Easton, D.F.; Antoniou, A.C.; McGuffog, L.; Evans, D.G.; Barrowdale, D.; Frost, D.; Adlard, J.; Ong, K.; Izatt, L.; Tischkowitz, M.; Eeles, R.; Davidson, R.; Hodgson, S.; Ellis, S.; Nogues, C.; Lasset, C.; Stoppa-Lyonnet, D.; Fricker, J.P.; Faivre, L.; Berthet, P.; Hooning, M.J.; van der Kolk, L.E.; Kets, C.M.; Adank, M.A.; John, E.M.; Chung, W.K.; Andrulis, I.L.; Southey, M.; Daly, M.B.; Buys, S.S.; Osorio, A.; Engel, C.; Kast, K.; Schmutzler, R.K.; Caldes, T.; Jakubowska, A.; Simard, J.; Friedlander, M.L.; McLachlan, S.A.; Machackova, E.; Foretova, L.; Tan, Y.Y.; Singer, C.F.; Olah, E.; Gerdes, A.M.; Arver, B.; Olsson, H. Risks of breast, ovarian, and contralateral breast cancer for BRCA1 and BRCA2 mutation carriers. JAMA, 2017, 317(23), 2402-2416.
[http://dx.doi.org/10.1001/jama.2017.7112] [PMID: 28632866]
[20]
Lei, S.; Zheng, R.; Zhang, S.; Chen, R.; Wang, S.; Sun, K.; Zeng, H.; Wei, W.; He, J. Breast cancer incidence and mortality in women in China: temporal trends and projections to 2030. Cancer Biol. Med., 2021, 18(3), 900-909.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2020.0523] [PMID: 34002584]
[21]
Morgan, E.; Arnold, M.; Camargo, M.C.; Gini, A.; Kunzmann, A.T.; Matsuda, T.; Meheus, F.; Verhoeven, R.H.A.; Vignat, J.; Laversanne, M.; Ferlay, J.; Soerjomataram, I. The current and future incidence and mortality of gastric cancer in 185 countries, 2020–40: A population-based modelling study. EClinicalMedicine, 2022, 47, 101404.
[http://dx.doi.org/10.1016/j.eclinm.2022.101404] [PMID: 35497064]
[22]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin., 2020, 70(1), 7-30.
[http://dx.doi.org/10.3322/caac.21590] [PMID: 31912902]
[23]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[24]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[25]
Houghton, S.C.; Hankinson, S.E. Cancer Progress and Priorities: Breast Cancer. Cancer Epidemiol. Biomarkers Prev., 2021, 30(5), 822-844.
[http://dx.doi.org/10.1158/1055-9965.EPI-20-1193] [PMID: 33947744]
[26]
Torre, L.A.; Islami, F.; Siegel, R.L.; Ward, E.M.; Jemal, A. Global Cancer in Women: Burden and Trends. Cancer Epidemiol. Biomarkers Prev., 2017, 26(4), 444-457.
[http://dx.doi.org/10.1158/1055-9965.EPI-16-0858] [PMID: 28223433]
[27]
Klæstad, E.; Opdahl, S.; Raj, S.X.; Bofin, A.M.; Valla, M. Long term trends of breast cancer incidence according to proliferation status. BMC Cancer, 2022, 22(1), 1340.
[http://dx.doi.org/10.1186/s12885-022-10438-1]
[28]
Sun, N.; Gao, P.; Li, Y.; Yan, Z.; Peng, Z.; Zhang, Y.; Han, F.; Qi, X. Screening and identification of key common and specific genes and their prognostic roles in different molecular subtypes of breast cancer. Front. Mol. Biosci., 2021, 11(8), 619110.
[http://dx.doi.org/10.3389/fmolb.2021.619110]
[29]
Prat, A.; Pineda, E.; Adamo, B.; Galván, P.; Fernández, A.; Gaba, L.; Díez, M.; Viladot, M.; Arance, A.; Muñoz, M. Clinical implications of the intrinsic molecular subtypes of breast cancer. Breast, 2015, 24(24), S26-S35.
[http://dx.doi.org/10.1016/j.breast.2015.07.008] [PMID: 26253814]
[30]
Lundgren, C.; Bendahl, P.O.; Borg, Å.; Ehinger, A.; Hegardt, C.; Larsson, C.; Loman, N.; Malmberg, M.; Olofsson, H.; Saal, L.H.; Sjöblom, T.; Lindman, H.; Klintman, M.; Häkkinen, J.; Vallon-Christersson, J.; Fernö, M.; Rydén, L.; Ekholm, M. Agreement between molecular subtyping and surrogate subtype classification: A contemporary population-based study of ER-positive/HER2-negative primary breast cancer. Breast Cancer Res. Treat., 2019, 178(2), 459-467.
[http://dx.doi.org/10.1007/s10549-019-05378-7] [PMID: 31432367]
[31]
Reeder-Hayes, K.E.; Anderson, B.O. Breast cancer disparities at home and abroad: A review of the challenges and opportunities for system-level change. Clin. Cancer Res., 2017, 23(11), 2655-2664.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-2630] [PMID: 28572260]
[32]
Wang, J.M.; Wang, J.; Zhao, H.G.; Liu, T.T.; Wang, F.Y. Reproductive risk factors associated with breast cancer molecular subtypes among young women in Northern China. BioMed Res. Int., 2020, 2020, 1-9.
[http://dx.doi.org/10.1155/2020/5931529] [PMID: 32337260]
[33]
Sisti, J.S.; Collins, L.C.; Beck, A.H.; Tamimi, R.M.; Rosner, B.A.; Eliassen, A.H. Reproductive risk factors in relation to molecular subtypes of breast cancer: Results from the nurses’ health studies. Int. J. Cancer, 2016, 138(10), 2346-2356.
[http://dx.doi.org/10.1002/ijc.29968] [PMID: 26684063]
[34]
Lehmann, B.D.; Bauer, J.A.; Chen, X.; Sanders, M.E.; Chakravarthy, A.B.; Shyr, Y.; Pietenpol, J.A. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J. Clin. Invest., 2011, 121(7), 2750-2767.
[http://dx.doi.org/10.1172/JCI45014] [PMID: 21633166]
[35]
Sakach, E.; O’Regan, R.; Meisel, J.; Li, X. Molecular classification of triple negative breast cancer and the emergence of targeted therapies. Clin. Breast Cancer, 2021, 21(6), 509-520.
[http://dx.doi.org/10.1016/j.clbc.2021.09.003] [PMID: 34629314]
[36]
Nanjwade, B.K.; Patel, D.J.; Udhani, R.A.; Manvi, F.V. Functions of lipids for enhancement of oral bioavailability of poorly water-soluble drugs. Sci. Pharm., 2011, 79(4), 705-727.
[http://dx.doi.org/10.3797/scipharm.1105-09] [PMID: 22145101]
[37]
Amoabediny, G.; Haghiralsadat, F.; Naderinezhad, S.; Helder, M.N.; Akhoundi, K.E.; Mohammadnejad, A.J.; Zandieh-Doulabi, B. Overview of preparation methods of polymeric and lipid-based (niosome, solid lipid, liposome) nanoparticles: A comprehensive review. Int. J. Polym. Mater., 2018, 67(6), 383-400.
[http://dx.doi.org/10.1080/00914037.2017.1332623]
[38]
Olusanya, T.; Haj Ahmad, R.; Ibegbu, D.; Smith, J.; Elkordy, A. Liposomal drug delivery systems and anticancer drugs. Molecules, 2018, 23(4), 907.
[http://dx.doi.org/10.3390/molecules23040907] [PMID: 29662019]
[39]
Jaafar-Maalej, C.; Charcosset, C.; Fessi, H. A new method for liposome preparation using a membrane contactor. J. Liposome Res., 2011, 21(3), 213-220.
[http://dx.doi.org/10.3109/08982104.2010.517537] [PMID: 20860451]
[40]
Mishra, H.; Chauhan, V.; Kumar, K.; Teotia, D. A comprehensive review on Liposomes: A novel drug delivery system. J. Drug Deliv. Ther., 2018, 8(6), 400-404.
[http://dx.doi.org/10.22270/jddt.v8i6.2071]
[41]
El-Hammadi, M.M.; Arias, J.L. An update on liposomes in drug delivery: A patent review (2014-2018). Expert Opin. Ther. Pat., 2019, 29(11), 891-907.
[http://dx.doi.org/10.1080/13543776.2019.1679767] [PMID: 31603360]
[42]
Gubernator, J. Active methods of drug loading into liposomes: Recent strategies for stable drug entrapment and increased In vivo activity. Expert Opin. Drug Deliv., 2011, 8(5), 565-580.
[http://dx.doi.org/10.1517/17425247.2011.566552] [PMID: 21492058]
[43]
Ngan, Y.H.; Gupta, M. A comparison between liposomal and nonliposomal formulations of doxorubicin in the treatment of cancer: An updated review. Arch. Pharm. Pract., 2016, 7(1)
[44]
Rau, K.M.; Lin, Y.C.; Chen, Y.Y.; Chen, J.S.; Lee, K.D.; Wang, C.H.; Chang, H.K. Pegylated liposomal doxorubicin (Lipo-Dox®) combined with cyclophosphamide and 5-fluorouracil is effective and safe as salvage chemotherapy in taxane-treated metastatic breast cancer: An open-label, multi-center, non-comparative phase II study. BMC Cancer, 2015, 15(1), 423.
[http://dx.doi.org/10.1186/s12885-015-1433-4] [PMID: 25994543]
[45]
Cheng, S.; Lu, Z.; Feng, Y.; Zhao, X.; Zhao, R.; Qiu, Z.; Jia, C.; Chen, L.; Yuan, Y.; Li, X.; Gao, Q.; Xu, J.; Shu, Z.; Duan, W.; Xiao, L.; Nie, G.; Hou, Y. A novel navigated doxorubicin delivery formulation to breast cancer therapy. Materials Today Advances, 2022, 14, 100235.
[http://dx.doi.org/10.1016/j.mtadv.2022.100235]
[46]
Jiang, Y.; Jiang, Z.; Wang, M.; Ma, L. Current understandings and clinical translation of nanomedicines for breast cancer therapy. Adv. Drug Deliv. Rev., 2022, 180, 114034.
[http://dx.doi.org/10.1016/j.addr.2021.114034] [PMID: 34736986]
[47]
Behravan, N.; Zahedipour, F.; Jaafari, M.R.; Johnston, T.P.; Sahebkar, A. Lipid-based nanoparticulate delivery systems for HER2-positive breast cancer immunotherapy. Life Sci., 2022, 291, 120294.
[http://dx.doi.org/10.1016/j.lfs.2021.120294] [PMID: 34998838]
[48]
Mojarad-Jabali, S.; Mahdinloo, S.; Farshbaf, M.; Sarfraz, M.; Fatahi, Y.; Atyabi, F.; Valizadeh, H. Transferrin receptor-mediated liposomal drug delivery: Recent trends in targeted therapy of cancer. Expert Opin. Drug Deliv., 2022, 19(6), 685-705.
[http://dx.doi.org/10.1080/17425247.2022.2083106] [PMID: 35698794]
[49]
Paliwal, S.R.; Paliwal, R.; Mishra, N.; Mehta, A.; Vyas, S.P. A novel cancer targeting approach based on estrone anchored stealth liposome for site-specific breast cancer therapy. Curr. Cancer Drug Targets, 2010, 10(3), 343-353.
[http://dx.doi.org/10.2174/156800910791190210] [PMID: 20370682]
[50]
Alven, S.; Aderibigbe, B.A. The therapeutic efficacy of dendrimer and micelle formulations for breast cancer treatment. Pharmaceutics, 2020, 12(12), 1212.
[http://dx.doi.org/10.3390/pharmaceutics12121212] [PMID: 33333778]
[51]
Siemann, D.W.; Horsman, M.R. Modulation of the tumor vasculature and oxygenation to improve therapy. Pharmacol. Ther., 2015, 153, 107-124.
[http://dx.doi.org/10.1016/j.pharmthera.2015.06.006] [PMID: 26073310]
[52]
Mandal, A.K. Dendrimers in targeted drug delivery applications: A review of diseases and cancer. Int. J. Polym. Mater., 2021, 70(4), 287-297.
[http://dx.doi.org/10.1080/00914037.2020.1713780]
[53]
Kalomiraki, M.; Thermos, K.; Chaniotakis, N.A. Dendrimers as tunable vectors of drug delivery systems and biomedical and ocular applications. Int. J. Nanomedicine, 2015, 11, 1-12.
[PMID: 26730187]
[54]
Paleos, C.M.; Tsiourvas, D.; Sideratou, Z.; Tziveleka, L.A. Drug delivery using multifunctional dendrimers and hyperbranched polymers. Expert Opin. Drug Deliv., 2010, 7(12), 1387-1398.
[http://dx.doi.org/10.1517/17425247.2010.534981] [PMID: 21080860]
[55]
Duan, X.; He, C.; Kron, S.J.; Lin, W. Nanoparticle formulations of cisplatin for cancer therapy. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2016, 8(5), 776-791.
[http://dx.doi.org/10.1002/wnan.1390] [PMID: 26848041]
[56]
Wang, N.; Cheng, X.; Li, N.; Wang, H.; Chen, H. Nanocarriers and their loading strategies. Adv. Healthc. Mater., 2019, 8(6), 1801002.
[http://dx.doi.org/10.1002/adhm.201801002] [PMID: 30450761]
[57]
Sharma, A.; Jain, N.; Sareen, R. Nanocarriers for diagnosis and targeting of breast cancer. BioMed Res. Int., 2013, 2013, 1-10.
[http://dx.doi.org/10.1155/2013/960821] [PMID: 23865076]
[58]
Tunki, L.; Kulhari, H.; Bhargava, S.K.; Pooja, D. Pharmacokinetic considerations in design of dendrimer-based nanomedicines.Pharmaceutical Applications of Dendrimers; Chauhan, A; Kulhari, H., Ed.; Elsevier Science B. V: Amsterdam, 2020, pp. 93-106.
[http://dx.doi.org/10.1016/B978-0-12-814527-2.00004-4]
[59]
Dubey, S.K.; Kali, M.; Hejmady, S.; Saha, R.N.; Alexander, A.; Kesharwani, P. Recent advances of dendrimers as multifunctional nano-carriers to combat breast cancer. Eur. J. Pharm. Sci., 2021, 164, 105890.
[http://dx.doi.org/10.1016/j.ejps.2021.105890] [PMID: 34087355]
[60]
Fulfager, A.D.; Yadav, K.S. Understanding the implications of co-delivering therapeutic agents in a nanocarrier to combat multidrug resistance (MDR) in breast cancer. J. Drug Deliv. Sci. Technol., 2021, 62, 102405.
[http://dx.doi.org/10.1016/j.jddst.2021.102405]
[61]
Yuan, Y.; Cai, T.; Xia, X.; Zhang, R.; Chiba, P.; Cai, Y. Nanoparticle delivery of anticancer drugs overcomes multidrug resistance in breast cancer. Drug Deliv., 2016, 23(9), 3350-3357.
[http://dx.doi.org/10.1080/10717544.2016.1178825] [PMID: 27098896]
[62]
Majidinia, M.; Mirza-Aghazadeh-Attari, M.; Rahimi, M.; Mihanfar, A.; Karimian, A.; Safa, A.; Yousefi, B. Overcoming multidrug resistance in cancer: Recent progress in nanotechnology and new horizons. IUBMB Life, 2020, 72(5), 855-871.
[http://dx.doi.org/10.1002/iub.2215] [PMID: 31913572]
[63]
Miyata, K.; Christie, R.J.; Kataoka, K. Polymeric micelles for nano-scale drug delivery. React. Funct. Polym., 2011, 71(3), 227-234.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2010.10.009]
[64]
Hari, S.K.; Gauba, A.; Shrivastava, N.; Tripathi, R.M.; Jain, S.K.; Pandey, A.K. Polymeric micelles and cancer therapy: An ingenious multimodal tumor-targeted drug delivery system. Drug Deliv. Transl. Res., 2023, 13(1), 135-163.
[http://dx.doi.org/10.1007/s13346-022-01197-4] [PMID: 35727533]
[65]
Han, X.; Chen, D.; Sun, J.; Zhou, J.; Li, D.; Gong, F.; Shen, Y. A novel cabazitaxel-loaded polymeric micelle system with superior in vitro stability and long blood circulation time. J. Biomater. Sci. Polym. Ed., 2016, 27(7), 626-642.
[http://dx.doi.org/10.1080/09205063.2016.1146980] [PMID: 26914063]
[66]
Wei, T.; Chen, C.; Liu, J.; Liu, C.; Posocco, P.; Liu, X.; Cheng, Q.; Huo, S.; Liang, Z.; Fermeglia, M.; Pricl, S.; Liang, X.J.; Rocchi, P.; Peng, L. Anticancer drug nanomicelles formed by self-assembling amphiphilic dendrimer to combat cancer drug resistance. Proc. Natl. Acad. Sci., 2015, 112(10), 2978-2983.
[http://dx.doi.org/10.1073/pnas.1418494112] [PMID: 25713374]
[67]
Sun, Y.; Zou, W.; Bian, S.; Huang, Y.; Tan, Y.; Liang, J.; Fan, Y.; Zhang, X. Bioreducible PAA-g-PEG graft micelles with high doxorubicin loading for targeted antitumor effect against mouse breast carcinoma. Biomaterials, 2013, 34(28), 6818-6828.
[http://dx.doi.org/10.1016/j.biomaterials.2013.05.032] [PMID: 23764117]
[68]
Zheng, L.; Gou, M.; Zhou, S.; Yi, T.; Zhong, Q.; Li, Z.; He, X.; Chen, X.; Zhou, L.; Wei, Y.; Qian, Z.; Zhao, X. Antitumor activity of monomethoxy poly(ethylene glycol)-poly (ε-caprolactone) micelle-encapsulated doxorubicin against mouse melanoma. Oncol. Rep., 2011, 25(6), 1557-1564.
[PMID: 21455590]
[69]
Von Hoff, D.D.; Mita, M.M.; Ramanathan, R.K.; Weiss, G.J.; Mita, A.C.; LoRusso, P.M.; Burris, H.A.; Hart, L.L.; Low, S.C.; Parsons, D.M.; Zale, S.E.; Phase, I. Study of PSMA-targeted docetaxel-containing nanoparticle BIND-014 in patients with advanced solid tumorsbind-014 nanoparticle in solid tumors. Clin. Cancer Res., 2016, 22(13), 3157-3163.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-2548] [PMID: 26847057]
[70]
Martín-Sabroso, C.; Fraguas-Sánchez, A.I.; Raposo-González, R.; Torres-Suárez, A.I. Perspectives in breast and ovarian cancer chemotherapy by nanomedicine approach: Nanoformulations in clinical research. Curr. Med. Chem., 2021, 28(17), 3271-3286.
[http://dx.doi.org/10.2174/1875533XMTA5CMjgx3] [PMID: 32814522]
[71]
Fujiwara, Y.; Mukai, H.; Saeki, T.; Ro, J.; Lin, Y.C.; Nagai, S.E.; Lee, K.S.; Watanabe, J.; Ohtani, S.; Kim, S.B.; Kuroi, K.; Tsugawa, K.; Tokuda, Y.; Iwata, H.; Park, Y.H.; Yang, Y.; Nambu, Y. A multi-national, randomised, open-label, parallel, phase III non-inferiority study comparing NK105 and paclitaxel in metastatic or recurrent breast cancer patients. Br. J. Cancer, 2019, 120(5), 475-480.
[http://dx.doi.org/10.1038/s41416-019-0391-z] [PMID: 30745582]
[72]
Karabasz, A.; Szczepanowicz, K.; Cierniak, A.; Mezyk-Kopec, R.; Dyduch, G. Szczę;ch, M.; Bereta, J.; Bzowska, M. In vivo studies on pharmacokinetics, toxicity and immunogenicity of polyelectrolyte nanocapsules functionalized with two different polymers: poly-L-glutamic acid or PEG. Int. J. Nanomedicine, 2019, 14, 9587-9602.
[http://dx.doi.org/10.2147/IJN.S230865] [PMID: 31824153]
[73]
Turecek, P.L.; Bossard, M.J.; Schoetens, F.; Ivens, I.A. PEGylation of biopharmaceuticals: A review of chemistry and nonclinical safety information of approved drugs. J. Pharm. Sci., 2016, 105(2), 460-475.
[http://dx.doi.org/10.1016/j.xphs.2015.11.015] [PMID: 26869412]
[74]
Ribeiro, L.N.; Alcantara, A.; Rodrigues da Silva, G.H.; Franz-Montan, M.; Nista, S.V.; Castro, S.R.; Couto, V.M.; Guilherme, V.A.; de Paula, E. Advances in hybrid polymer-based materials for sustained drug release. Int. J. Polym. Sci., 2017, 2017
[http://dx.doi.org/10.1155/2017/1231464]
[75]
Li, W.; Zhan, P.; De Clercq, E.; Lou, H.; Liu, X. Current drug research on PEGylation with small molecular agents. Prog. Polym. Sci., 2013, 38(3-4), 421-444.
[http://dx.doi.org/10.1016/j.progpolymsci.2012.07.006]
[76]
Ulldemolins, A.; Seras-Franzoso, J.; Andrade, F.; Rafael, D.; Abasolo, I.; Gener, P.; Schwartz, S., Jr Perspectives of nano-carrier drug delivery systems to overcome cancer drug resistance in the clinics. Cancer Drug Resist., 2021, 4(1), 44-68.
[http://dx.doi.org/10.20517/cdr.2020.59] [PMID: 35582007]
[77]
He, H.; Liu, L.; Morin, E.E.; Liu, M.; Schwendeman, A. Survey of clinical translation of cancer nanomedicines—lessons learned from successes and failures. Acc. Chem. Res., 2019, 52(9), 2445-2461.
[http://dx.doi.org/10.1021/acs.accounts.9b00228] [PMID: 31424909]
[78]
O’Shaughnessy, J.A.; Osborne, C.R.C.; Steinberg, M.A.; Holmes, F.A.; Kim, H.S.; Kocs, D.M.; Richards, P.D.; Vukelja, S.J.; Berkowitz, N.; Buchbinder, A. P3-16-18: Phase 2, open-label study of EZN-2208 (PEG-SN38) in patients with previously treated metastatic breast cancer. Cancer Res., 2011, 71(24_Supplement)(Suppl.), P3-16-18.
[http://dx.doi.org/10.1158/0008-5472.SABCS11-P3-16-18]
[79]
Fallah, J.; Rini, B.I. HIF inhibitors: Status of current clinical development. Curr. Oncol. Rep., 2019, 21(1), 6.
[http://dx.doi.org/10.1007/s11912-019-0752-z] [PMID: 30671662]
[80]
Radford, D.C.; Yang, J.; Doan, M.C.; Li, L.; Dixon, A.S.; Owen, S.C. Kopeček, J. Multivalent HER2-binding polymer conjugates facilitate rapid endocytosis and enhance intracellular drug delivery. J. Control. Release, 2020, 319, 285-299.
[http://dx.doi.org/10.1016/j.jconrel.2019.12.049] [PMID: 31899273]
[81]
Randárová, E. Kudláčová, J.; Etrych, T. HPMA copolymer-antibody constructs in neoplastic treatment: an overview of therapeutics, targeted diagnostics, and drug-free systems. J. Control. Release, 2020, 325, 304-322.
[http://dx.doi.org/10.1016/j.jconrel.2020.06.040] [PMID: 32652110]
[82]
Alven, S.; Nqoro, X.; Buyana, B.; Aderibigbe, B.A. Polymer-drug conjugate, a potential therapeutic to combat breast and lung cancer. Pharmaceutics, 2020, 12(5), 406.
[http://dx.doi.org/10.3390/pharmaceutics12050406] [PMID: 32365495]
[83]
Duncan, R.; Vicent, M.J. Do HPMA copolymer conjugates have a future as clinically useful nanomedicines? A critical overview of current status and future opportunities. Adv. Drug Deliv. Rev., 2010, 62(2), 272-282.
[http://dx.doi.org/10.1016/j.addr.2009.12.005] [PMID: 20005271]
[84]
Bakhtiar, R. Antibody drug conjugates. Biotechnol. Lett., 2016, 38(10), 1655-1664.
[http://dx.doi.org/10.1007/s10529-016-2160-x] [PMID: 27334710]
[85]
Ma, P.; Mumper, R.J. Anthracycline nano-delivery systems to overcome multiple drug resistance: A comprehensive review. Nano Today, 2013, 8(3), 313-331.
[http://dx.doi.org/10.1016/j.nantod.2013.04.006] [PMID: 23888183]
[86]
Chytil, P.; Kostka, L.; Etrych, T. HPMA copolymer-based nanomedicines in controlled drug delivery. J. Pers. Med., 2021, 11(2), 115.
[http://dx.doi.org/10.3390/jpm11020115] [PMID: 33578756]
[87]
Si, P.; Razmi, N.; Nur, O.; Solanki, S.; Pandey, C.M.; Gupta, R.K.; Malhotra, B.D.; Willander, M.; de la Zerda, A. Gold nanomaterials for optical biosensing and bioimaging. Nanoscale Adv., 2021, 3(10), 2679-2698.
[http://dx.doi.org/10.1039/D0NA00961J] [PMID: 36134176]
[88]
Radaic, A.; Joo, N.E.; Jeong, S.H.; Yoo, S.I.I.; Kotov, N.; Kapila, Y.L. Phosphatidylserine-gold nanoparticles (PS-AuNP) induce prostate and breast cancer cell apoptosis. Pharmaceutics, 2021, 13(7), 1094.
[http://dx.doi.org/10.3390/pharmaceutics13071094] [PMID: 34371784]
[89]
Emami, F.; Banstola, A.; Jeong, J.H.; Yook, S. Cetuximab-anchored gold nanorod mediated photothermal ablation of breast cancer cell in spheroid model embedded with tumor associated macrophage. J. Ind. Eng. Chem., 2022, 106, 177-188.
[http://dx.doi.org/10.1016/j.jiec.2021.10.029]
[90]
Engel, S.; Fritz, E.C.; Ravoo, B.J. New trends in the functionalization of metallic gold: from organosulfur ligands to N-heterocyclic carbenes. Chem. Soc. Rev., 2017, 46(8), 2057-2075.
[http://dx.doi.org/10.1039/C7CS00023E] [PMID: 28272608]
[91]
Reimers, J.R.; Ford, M.J.; Marcuccio, S.M.; Ulstrup, J.; Hush, N.S. Competition of van der waals and chemical forces on gold–sulfur surfaces and nanoparticles. Nat. Rev. Chem., 2017, 1(2), 0017.
[http://dx.doi.org/10.1038/s41570-017-0017]
[92]
Hammami, I.; Alabdallah, N.M. jomaa, A.A.; kamoun, M. Gold nanoparticles: Synthesis properties and applications. J. King Saud Univ. Sci., 2021, 33(7), 101560.
[http://dx.doi.org/10.1016/j.jksus.2021.101560]
[93]
Beik, J.; Khateri, M.; Khosravi, Z.; Kamrava, S.K.; Kooranifar, S.; Ghaznavi, H.; Shakeri-Zadeh, A. Gold nanoparticles in combinatorial cancer therapy strategies. Coord. Chem. Rev., 2019, 387, 299-324.
[http://dx.doi.org/10.1016/j.ccr.2019.02.025]
[94]
Huo, S.; Gong, N.; Jiang, Y.; Chen, F.; Guo, H.; Gan, Y.; Wang, Z.; Herrmann, A.; Liang, X.J. Gold-DNA nanosunflowers for efficient gene silencing with controllable transformation. Sci. Adv., 2019, 5(10), eaaw6264.
[http://dx.doi.org/10.1126/sciadv.aaw6264] [PMID: 31616782]
[95]
Kour, S.; Sharma, R.K.; Jasrotia, R.; Singh, V.P. A brief review on the synthesis of maghemite (γ-Fe2O3) for medical diagnostic and solar energy applications. InAIP Conference Proceedings 2019, 2019, 2142(1), p. 090007.
[96]
Talluri, S.; Malla, R.R. Superparamagnetic iron oxide nanoparticles (SPIONs) for diagnosis and treatment of breast, ovarian and cervical Cancers. Curr. Drug Metab., 2020, 20(12), 942-945.
[http://dx.doi.org/10.2174/1389200220666191016124958] [PMID: 31622217]
[97]
Shetty, K.; Bhandari, A.; Yadav, K.S. Nanoparticles incorporated in nanofibers using electrospinning: A novel nano-in-nano delivery system. J. Control. Release, 2022, 350, 421-434.
[http://dx.doi.org/10.1016/j.jconrel.2022.08.035] [PMID: 36002053]
[98]
Attari, E.; Nosrati, H.; Danafar, H.; Kheiri Manjili, H. Methotrexate anticancer drug delivery to breast cancer cell lines by iron oxide magnetic based nanocarrier. J. Biomed. Mater. Res. A, 2019, 107(11), 2492-2500.
[http://dx.doi.org/10.1002/jbm.a.36755] [PMID: 31298774]
[99]
Kankala, R.K.; Han, Y.H.; Na, J.; Lee, C.H.; Sun, Z.; Wang, S.B.; Kimura, T.; Ok, Y.S.; Yamauchi, Y.; Chen, A.Z.; Wu, K.C.W. Nanoarchitectured structure and surface biofunctionality of mesoporous silica nanoparticles. Adv. Mater., 2020, 32(23), 1907035.
[http://dx.doi.org/10.1002/adma.201907035] [PMID: 32319133]
[100]
Dhritlahre, R.K.; Saneja, A. Recent advances in HER2-targeted delivery for cancer therapy. Drug Discov. Today, 2021, 26(5), 1319-1329.
[http://dx.doi.org/10.1016/j.drudis.2020.12.014] [PMID: 33359114]
[101]
Tsai, C.P.; Chen, C.Y.; Hung, Y.; Chang, F.H.; Mou, C.Y. Monoclonal antibody-functionalized mesoporous silica nanoparticles (MSN) for selective targeting breast cancer cells. J. Mater. Chem., 2009, 19(32), 5737-5743.
[http://dx.doi.org/10.1039/b905158a]
[102]
Zhou, X.; Chen, L.; Nie, W.; Wang, W.; Qin, M.; Mo, X.; Wang, H.; He, C. Dual-responsive mesoporous silica nanoparticles mediated codelivery of doxorubicin and Bcl-2 SiRNA for targeted treatment of breast cancer. J. Phys. Chem. C, 2016, 120(39), 22375-22387.
[http://dx.doi.org/10.1021/acs.jpcc.6b06759]
[103]
Milgroom, A.; Intrator, M.; Madhavan, K.; Mazzaro, L.; Shandas, R.; Liu, B.; Park, D. Mesoporous silica nanoparticles as a breast-cancer targeting ultrasound contrast agent. Colloids Surf. B Biointerfaces, 2014, 116, 652-657.
[http://dx.doi.org/10.1016/j.colsurfb.2013.10.038] [PMID: 24269054]
[104]
Ji, F.; Sun, H.; Qin, Z.; Zhang, E.; Cui, J.; Wang, J.; Li, S.; Yao, F. Engineering polyzwitterion and polydopamine decorated doxorubicin-loaded mesoporous silica nanoparticles as a pH-sensitive drug delivery. Polymers, 2018, 10(3), 326.
[http://dx.doi.org/10.3390/polym10030326] [PMID: 30966361]
[105]
Eatemadi, A.; Daraee, H.; Karimkhanloo, H.; Kouhi, M.; Zarghami, N.; Akbarzadeh, A.; Abasi, M.; Hanifehpour, Y.; Joo, S.W. Carbon nanotubes: Properties, synthesis, purification, and medical applications. Nanoscale Res. Lett., 2014, 9(1), 393.
[http://dx.doi.org/10.1186/1556-276X-9-393] [PMID: 25170330]
[106]
Rakovich, T.Y.; Mahfoud, O.K.; Mohamed, B.M.; Prina-Mello, A.; Crosbie-Staunton, K.; Van Den Broeck, T.; De Kimpe, L.; Sukhanova, A.; Baty, D.; Rakovich, A.; Maier, S.A.; Alves, F.; Nauwelaers, F.; Nabiev, I.; Chames, P.; Volkov, Y. Highly sensitive single domain antibody-quantum dot conjugates for detection of HER2 biomarker in lung and breast cancer cells. ACS Nano, 2014, 8(6), 5682-5695.
[http://dx.doi.org/10.1021/nn500212h] [PMID: 24873349]
[107]
Shao, W.; Paul, A.; Zhao, B.; Lee, C.; Rodes, L.; Prakash, S. Carbon nanotube lipid drug approach for targeted delivery of a chemotherapy drug in a human breast cancer xenograft animal model. Biomaterials, 2013, 34(38), 10109-10119.
[http://dx.doi.org/10.1016/j.biomaterials.2013.09.007] [PMID: 24060420]
[108]
Poudel, I.; Ahiwale, R.; Pawar, A.; Mahadik, K.; Bothiraja, C. Development of novel biotinylated chitosan-decorated docetaxel-loaded nanocochleates for breast cancer targeting. Artif. Cells Nanomed. Biotechnol., 2018, 46(S2), 229-240.
[http://dx.doi.org/10.1080/21691401.2018.1453831]
[109]
Pardo, J.; Peng, Z.; Leblanc, R. Cancer targeting and drug delivery using carbon-based quantum dots and nanotubes. Molecules, 2018, 23(2), 378.
[http://dx.doi.org/10.3390/molecules23020378] [PMID: 29439409]
[110]
Ogbodu, R.O.; Limson, J.L.; Prinsloo, E.; Nyokong, T. Photophysical properties and photodynamic therapy effect of zinc phthalocyanine-spermine-single walled carbon nanotube conjugate on MCF-7 breast cancer cell line. Synth. Met., 2015, 204, 122-132.
[http://dx.doi.org/10.1016/j.synthmet.2015.03.011]
[111]
Ashique, S.; Almohaywi, B.; Haider, N.; Yasmin, S.; Hussain, A.; Mishra, N.; Garg, A. siRNA-based nanocarriers for targeted drug delivery to control breast cancer. Advances in Cancer Biology-Metastasis, 2022, 4, 100047.
[http://dx.doi.org/10.1016/j.adcanc.2022.100047]
[112]
Bulcha, J.T.; Wang, Y.; Ma, H.; Tai, P.W.L.; Gao, G. Viral vector platforms within the gene therapy landscape. Signal Transduct. Target. Ther., 2021, 6(1), 53.
[http://dx.doi.org/10.1038/s41392-021-00487-6] [PMID: 33558455]
[113]
Rawal, S.; Patel, M.M. Threatening cancer with nanoparticle aided combination oncotherapy. J. Control. Release, 2019, 301(301), 76-109.
[http://dx.doi.org/10.1016/j.jconrel.2019.03.015] [PMID: 30890445]
[114]
Lu, P.Y.; Xie, F.; Woodle, M.C. In vivo application of RNA interference: From functional genomics to therapeutics. Adv. Genet., 2005, 54, 115-142.
[http://dx.doi.org/10.1016/S0065-2660(05)54006-9] [PMID: 16096010]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy