Generic placeholder image

Letters in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-1786
ISSN (Online): 1875-6255

Short Communication

First Synthesis of 2-Bromogentisyl Alcohol from Cultures of Penicillium Concentricum

Author(s): Shaojun Shan*, Xiumei Lian, Jingxuan Li and Wensen Zhong

Volume 20, Issue 10, 2023

Published on: 17 April, 2023

Page: [991 - 994] Pages: 4

DOI: 10.2174/1570178620666230315140839

Price: $65

conference banner
Abstract

The first synthesis of 2-bromogentisyl alcohol, a halogenated compound cytotoxicity to breast cancer cell line, was achieved in four steps. Key steps include (i) formylation of aromatic compound, (ii) bromination, (iii) demethylation and (iv) reduction. Compound 3 was prepared from 4- methoxyphenol (2) in 92% yield in the presence of MgCl2 and Et3N, then intermediate 4 was obtained by bromination of 3 in 78% yield. Subsequently, the direct demethylation of 4 with BBr3 afforded the intermediate 5 in 72% yield. Finally, title compound 1 was prepared by the reduction of 5 using NaBH4 in 87% yield. The overall yield is 45% from 4-methoxyphenol. This method is simple and the reaction conditions are mild.

Keywords: 2-bromogentisyl alcohol, synthesis, penicillium, concentricum, cytotoxicity, breast cancer, 4-methoxyphenol.

« Previous
[1]
Christelle, E.H.; Chrystian, Z.S.; Nadia, T.; Andre, E.K.; Ali, A.; Isabelle, P.O.; Olivier, P.; Sophie, L. Int. J. Mol. Sci., 2020, 21(24), 9462-9486.
[http://dx.doi.org/10.3390/ijms21249462] [PMID: 33322713]
[2]
Koul, M.; Singh, S. Anticancer Drugs, 2017, 28(1), 11-30.
[http://dx.doi.org/10.1097/CAD.0000000000000423] [PMID: 27552492]
[3]
Sharna, k.D.; Geoffre, A.C. J.Nat. Prod, 2021, 84(3), 871-897.
[http://dx.doi.org/10.1021/acs.jnatprod.0c01195]
[4]
Deshmukh, S.K.; Verekar, S.A.; Bhave, S.V. Front. Microbiol., 2015, 5, 715-757.
[http://dx.doi.org/10.3389/fmicb.2014.00715] [PMID: 25620957]
[5]
Faviola, C.M.; José, M.R.; Ana, R.D.; Jose, D.; Claudia, C.; Marc, D.; Mercedes, C. Org. Biomol. Chem., 2015, 13, 7248-7256.
[http://dx.doi.org/10.1039/C5OB00773A] [PMID: 26055397]
[6]
Tehane, A.; Masanori, I.; Hee, B.C.; Thomas, W.; Chad, R.; Harinantenaina, R.L. J. Nat. Prod., 2017, 80(5), 1397-1403.
[http://dx.doi.org/10.1021/acs.jnatprod.6b01069] [PMID: 28409637]
[7]
Ratsch, F.; Strache, J.P.; Schlundt, W.; Neudörfl, J.M.; Adler, A.; Aziz, S.; Goldfuss, B.; Schmalz, H.G. Chem. Eur. J., 2021, 27(14), 4640-4652.
[http://dx.doi.org/10.1002/chem.202004843]
[8]
Wang, Z.; Yang, Y. RSC Advances, 2020, 10(49), 29263-29267.
[http://dx.doi.org/10.1039/D0RA04816J] [PMID: 35521106]
[9]
Zhu, Q.; Teng, B.; Chen, Y.; Su, F.; Li, Y.; Yang, Q.; Yao, C. RSC Advances, 2022, 12(18), 11100-11103.
[http://dx.doi.org/10.1039/D2RA01385A] [PMID: 35425053]
[10]
Amit, B.; Sandip, V.M.; Rodney, A. Asian J. Org. Chem., 2019, 8(8), 1534-1538.
[http://dx.doi.org/10.1002/ajoc.201900211]
[11]
Saleta, V.R.; Santiago, V.; Sonja, K.; Kari, N.K.; Eugenio, U.; Fernanda, B.; Maria, J.M. Molecules, 2020, 25, 4306-4310.
[http://dx.doi.org/10.3390/molecules25184306] [PMID: 32961824]
[12]
Murugesh, N.; Karvembu, R.; Vedachalam, S. ChemistrySelect, 2020, 5(44), 13916-13918.
[http://dx.doi.org/10.1002/slct.202003553]
[13]
Shao, L.D.; Wu, Y.N.; Xu, J.; He, J.; Zhao, Y.; Peng, L.Y.; Li, Y.; Yang, Y.R.; Xia, C.F.; Zhao, Q.S. Nat. Prod. Bioprospect., 2014, 4(3), 181-188.
[http://dx.doi.org/10.1007/s13659-014-0022-6] [PMID: 24955300]
[14]
Huang, G.; Ren, J.; Zheng, X.; Wu, F.; Wu, J. Youji Huaxue, 2019, 39(12), 3475-3482.
[http://dx.doi.org/10.6023/cjoc201905051]
[15]
McGarrigle, E.M.; Murphy, D.M.; Gilheany, D.G. Tetrahedron Asymmetry, 2004, 15(8), 1343-1354.
[http://dx.doi.org/10.1016/j.tetasy.2004.03.010]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy