Review Article

长链非编码rna依赖性调节心力衰竭和心脏肥厚的新见解:从分子功能到诊断和治疗

卷 31, 期 11, 2024

发表于: 15 May, 2023

页: [1404 - 1426] 页: 23

弟呕挨: 10.2174/0929867330666230306143351

价格: $65

conference banner
摘要

心力衰竭(HF)是一个公共卫生问题,给医疗保健系统带来了高昂的成本。尽管心衰的治疗和预防取得了重大进展,但它仍然是世界范围内发病率和死亡率的主要原因。目前的临床诊断或预后生物标志物,以及治疗策略,有一些局限性。遗传和表观遗传因素已被确定为心衰发病机制的核心。因此,它们可能为心衰提供新的诊断和治疗方法。长链非编码RNA (Long non-coding RNA, lncRNAs)是一类由RNA聚合酶II产生的RNA。这些分子在不同的细胞生物学过程中发挥重要作用,如转录和基因表达调节。LncRNAs可以通过靶向生物分子或多种不同的细胞机制影响不同的信号通路。在包括心衰在内的不同类型的心血管疾病中,已经报道了它们表达的改变,这支持了它们在心脏病的发生和进展中起重要作用的理论。因此,这些分子可以作为心衰的诊断、预后和治疗生物标志物。在这篇综述中,我们总结了不同的lncrna作为心衰的诊断、预后和治疗生物标志物。此外,我们强调了HF中不同lncrna失调的各种分子机制。

关键词: 心力衰竭,长链非编码RNA, microRNA,分子机制,生物标志物,呼吸困难。

« Previous
[1]
Hoffman, T.M. Chronic heart failure. Pediatr. Crit. Care Med., 2016, 17(8), S119-S123.
[http://dx.doi.org/10.1097/PCC.0000000000000755] [PMID: 27490589]
[2]
McMurray, J.J.V. Clinical practice. Systolic heart failure. N. Engl. J. Med., 2010, 362(3), 228-238.
[http://dx.doi.org/10.1056/NEJMcp0909392] [PMID: 20089973]
[3]
Khatibzadeh, S.; Farzadfar, F.; Oliver, J.; Ezzati, M.; Moran, A. Worldwide risk factors for heart failure: A systematic review and pooled analysis. Int. J. Cardiol., 2013, 168(2), 1186-1194.
[http://dx.doi.org/10.1016/j.ijcard.2012.11.065] [PMID: 23201083]
[4]
Yang, J.; Xu, W.W.; Hu, S.J. Heart failure: Advanced development in genetics and epigenetics. Biomed Res Int, 2015, 2015, 352734.
[http://dx.doi.org/10.1155/2015/352734] [PMID: 25949994]
[5]
Segura, A.M.; Frazier, O.H.; Buja, L.M. Fibrosis and heart failure. Heart Fail. Rev., 2014, 19(2), 173-185.
[http://dx.doi.org/10.1007/s10741-012-9365-4] [PMID: 23124941]
[6]
Oremus, M.; McKelvie, R.; Don-Wauchope, A.; Santaguida, P.L.; Ali, U.; Balion, C.; Hill, S.; Booth, R.; Brown, J.A.; Bustamam, A.; Sohel, N.; Raina, P. A systematic review of BNP and NT-proBNP in the management of heart failure: Overview and methods. Heart Fail. Rev., 2014, 19(4), 413-419.
[http://dx.doi.org/10.1007/s10741-014-9440-0] [PMID: 24953975]
[7]
Sato, Y.; Fujiwara, H.; Takatsu, Y. Cardiac troponin and heart failure in the era of high-sensitivity assays. J. Cardiol., 2012, 60(3), 160-167.
[http://dx.doi.org/10.1016/j.jjcc.2012.06.007] [PMID: 22867801]
[8]
Henriksen, J.H.; Gøtze, J.P.; Fuglsang, S.; Christensen, E.; Bendtsen, F.; Møller, S. Increased circulating pro-brain natriuretic peptide (proBNP) and brain natriuretic peptide (BNP) in patients with cirrhosis: Relation to cardiovascular dysfunction and severity of disease. Gut, 2003, 52(10), 1511-1517.
[http://dx.doi.org/10.1136/gut.52.10.1511] [PMID: 12970147]
[9]
Burke, M.A.; Cotts, W.G. Interpretation of B-type natriuretic peptide in cardiac disease and other comorbid conditions. Heart Fail. Rev., 2007, 12(1), 23-36.
[http://dx.doi.org/10.1007/s10741-007-9002-9] [PMID: 17345160]
[10]
Fonseca, C. Diagnosis of heart failure in primary care. Heart Fail. Rev., 2006, 11(2), 95-107.
[http://dx.doi.org/10.1007/s10741-006-9481-0] [PMID: 16937029]
[11]
McNally, E.M.; Barefield, D.Y.; Puckelwartz, M.J. The genetic landscape of cardiomyopathy and its role in heart failure. Cell Metab., 2015, 21(2), 174-182.
[http://dx.doi.org/10.1016/j.cmet.2015.01.013] [PMID: 25651172]
[12]
Han, P.; Li, W.; Lin, C.H.; Yang, J.; Shang, C.; Nurnberg, S.T.; Jin, K.K.; Xu, W.; Lin, C.Y.; Lin, C.J.; Xiong, Y.; Chien, H.C.; Zhou, B.; Ashley, E.; Bernstein, D.; Chen, P.S.; Chen, H.S.V.; Quertermous, T.; Chang, C.P. A long noncoding RNA protects the heart from pathological hypertrophy. Nature, 2014, 514(7520), 102-106.
[http://dx.doi.org/10.1038/nature13596] [PMID: 25119045]
[13]
Dirkx, E.; da Costa Martins, P.A.; De Windt, L.J. Regulation of fetal gene expression in heart failure. Biochim. Biophys. Acta Mol. Basis Dis., 2013, 1832(12), 2414-2424.
[http://dx.doi.org/10.1016/j.bbadis.2013.07.023]
[14]
Greco, S.; Zaccagnini, G.; Perfetti, A.; Fuschi, P.; Valaperta, R.; Voellenkle, C.; Castelvecchio, S.; Gaetano, C.; Finato, N.; Beltrami, A.P.; Menicanti, L.; Martelli, F. Long noncoding RNA dysregulation in ischemic heart failure. J. Transl. Med., 2016, 14(1), 183.
[http://dx.doi.org/10.1186/s12967-016-0926-5] [PMID: 27317124]
[15]
Dick, S.A.; Epelman, S. Chronic heart failure and inflammation: What do we really know? Circ. Res., 2016, 119(1), 159-176.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.308030] [PMID: 27340274]
[16]
Tsutsui, H.; Kinugawa, S.; Matsushima, S. Oxidative stress and heart failure. Am. J. Physiol. Heart Circ. Physiol., 2011, 301(6), H2181-H2190.
[http://dx.doi.org/10.1152/ajpheart.00554.2011] [PMID: 21949114]
[17]
Costa, S.; Reina-Couto, M.; Albino-Teixeira, A.; Sousa, T. Statins and oxidative stress in chronic heart failure. Rev. Port. Cardiol., 2016, 35(1), 41-57.
[http://dx.doi.org/10.1016/j.repc.2015.09.006] [PMID: 26763895]
[18]
Bridges, M.C.; Daulagala, A.C.; Kourtidis, A. LNCcation: lncRNA localization and function. J. Cell Biol., 2021, 220(2), e202009045.
[http://dx.doi.org/10.1083/jcb.202009045] [PMID: 33464299]
[19]
Engreitz, J.M.; Pandya-Jones, A.; McDonel, P.; Shishkin, A.; Sirokman, K.; Surka, C.; Kadri, S.; Xing, J.; Goren, A.; Lander, E.S.; Plath, K.; Guttman, M. The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome. Science, 2013, 341(6147), 1237973.
[http://dx.doi.org/10.1126/science.1237973] [PMID: 23828888]
[20]
Khorkova, O.; Hsiao, J.; Wahlestedt, C. Basic biology and therapeutic implications of lncRNA. Adv. Drug Deliv. Rev., 2015, 87, 15-24.
[http://dx.doi.org/10.1016/j.addr.2015.05.012] [PMID: 26024979]
[21]
Quinn, J.J.; Chang, H.Y. Unique features of long non-coding RNA biogenesis and function. Nat. Rev. Genet., 2016, 17(1), 47-62.
[http://dx.doi.org/10.1038/nrg.2015.10] [PMID: 26666209]
[22]
Archer, K.; Broskova, Z.; Bayoumi, A.; Teoh, J.; Davila, A.; Tang, Y.; Su, H.; Kim, I. Long non-coding RNAs as master regulators in cardiovascular diseases. Int. J. Mol. Sci., 2015, 16(10), 23651-23667.
[http://dx.doi.org/10.3390/ijms161023651] [PMID: 26445043]
[23]
Greco, S.; Salgado Somoza, A.; Devaux, Y.; Martelli, F. Long noncoding RNAs and cardiac disease. Antioxid. Redox Signal., 2018, 29(9), 880-901.
[http://dx.doi.org/10.1089/ars.2017.7126] [PMID: 28699361]
[24]
Uchida, S.; Dimmeler, S. Long noncoding RNAs in cardiovascular diseases. Circ. Res., 2015, 116(4), 737-750.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.302521] [PMID: 25677520]
[25]
Yan, Y.; Song, D.; Song, X.; Song, C. The role of lncRNA MALAT1 in cardiovascular disease. IUBMB Life, 2020, 72(3), 334-342.
[http://dx.doi.org/10.1002/iub.2210] [PMID: 31856403]
[26]
Liu, L.; An, X.; Li, Z.; Song, Y.; Li, L.; Zuo, S.; Liu, N.; Yang, G.; Wang, H.; Cheng, X.; Zhang, Y.; Yang, X.; Wang, J. The H19 long noncoding RNA is a novel negative regulator of cardiomyocyte hypertrophy. Cardiovasc. Res., 2016, 111(1), 56-65.
[http://dx.doi.org/10.1093/cvr/cvw078] [PMID: 27084844]
[27]
Wang, K.; Liu, C.Y.; Zhou, L.Y.; Wang, J.X.; Wang, M.; Zhao, B.; Zhao, W.K.; Xu, S.J.; Fan, L.H.; Zhang, X.J.; Feng, C.; Wang, C.Q.; Zhao, Y.F.; Li, P.F. APF lncRNA regulates autophagy and myocardial infarction by targeting miR-188-3p. Nat. Commun., 2015, 6(1), 6779.
[http://dx.doi.org/10.1038/ncomms7779] [PMID: 25858075]
[28]
Ismail, N.; Abdullah, N.; Abdul Murad, N.A.; Jamal, R.; Sulaiman, S.A. Long non-coding RNAs (lncRNAs) in cardiovascular disease complication of type 2 diabetes. Diagnostics, 2021, 11(1), 145.
[http://dx.doi.org/10.3390/diagnostics11010145] [PMID: 33478141]
[29]
Bunch, H. Gene regulation of mammalian long non-coding RNA. Mol. Genet. Genomics, 2018, 293(1), 1-15.
[http://dx.doi.org/10.1007/s00438-017-1370-9] [PMID: 28894972]
[30]
Statello, L.; Guo, C.J.; Chen, L.L.; Huarte, M. Gene regulation by long non-coding RNAs and its biological functions. Nat. Rev. Mol. Cell Biol., 2021, 22(2), 96-118.
[http://dx.doi.org/10.1038/s41580-020-00315-9] [PMID: 33353982]
[31]
Moran, V.A.; Perera, R.J.; Khalil, A.M. Emerging functional and mechanistic paradigms of mammalian long non-coding RNAs. Nucleic Acids Res., 2012, 40(14), 6391-6400.
[http://dx.doi.org/10.1093/nar/gks296] [PMID: 22492512]
[32]
Rybak-Wolf, A.; Stottmeister, C.; Glažar, P.; Jens, M.; Pino, N.; Giusti, S.; Hanan, M.; Behm, M.; Bartok, O.; Ashwal-Fluss, R.; Herzog, M.; Schreyer, L.; Papavasileiou, P.; Ivanov, A.; Öhman, M.; Refojo, D.; Kadener, S.; Rajewsky, N. Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol. Cell, 2015, 58(5), 870-885.
[http://dx.doi.org/10.1016/j.molcel.2015.03.027] [PMID: 25921068]
[33]
Yin, Q.F.; Yang, L.; Zhang, Y.; Xiang, J.F.; Wu, Y.W.; Carmichael, G.G.; Chen, L.L. Long noncoding RNAs with snoRNA ends. Mol. Cell, 2012, 48(2), 219-230.
[http://dx.doi.org/10.1016/j.molcel.2012.07.033] [PMID: 22959273]
[34]
Zhang, H.; Liu, B.; Shi, X.; Sun, X. Long noncoding RNAs: Potential therapeutic targets in cardiocerebrovascular diseases. Pharmacol. Ther., 2021, 221, 107744.
[http://dx.doi.org/10.1016/j.pharmthera.2020.107744] [PMID: 33181193]
[35]
Wang, Z.; Gerstein, M.; Snyder, M. RNA-Seq: A revolutionary tool for transcriptomics. Nat. Rev. Genet., 2009, 10(1), 57-63.
[http://dx.doi.org/10.1038/nrg2484] [PMID: 19015660]
[36]
Jarroux, J.; Morillon, A.; Pinskaya, M. History, discovery, and classification of lncRNAs. Adv. Exp. Med. Biol., 2017, 1008, 1-46.
[http://dx.doi.org/10.1007/978-981-10-5203-3_1] [PMID: 28815535]
[37]
Mattick, J.S.; Rinn, J.L. Discovery and annotation of long noncoding RNAs. Nat. Struct. Mol. Biol., 2015, 22(1), 5-7.
[http://dx.doi.org/10.1038/nsmb.2942] [PMID: 25565026]
[38]
Wong, L.S.; Wong, C.M. Decoding the roles of long noncoding RNAs in hepatocellular carcinoma. Int. J. Mol. Sci., 2021, 22(6), 3137.
[http://dx.doi.org/10.3390/ijms22063137] [PMID: 33808647]
[39]
Cabili, M.N.; Dunagin, M.C.; McClanahan, P.D.; Biaesch, A.; Padovan-Merhar, O.; Regev, A.; Rinn, J.L.; Raj, A. Localization and abundance analysis of human lncRNAs at single-cell and single-molecule resolution. Genome Biol., 2015, 16(1), 20.
[http://dx.doi.org/10.1186/s13059-015-0586-4] [PMID: 25630241]
[40]
He, X.; Ou, C.; Xiao, Y.; Han, Q.; Li, H.; Zhou, S. LncRNAs: Key players and novel insights into diabetes mellitus. Oncotarget, 2017, 8(41), 71325-71341.
[http://dx.doi.org/10.18632/oncotarget.19921] [PMID: 29050364]
[41]
Bermúdez, M.; Aguilar-Medina, M.; Lizárraga-Verdugo, E.; Avendaño-Félix, M.; Silva-Benítez, E.; López-Camarillo, C.; Ramos-Payán, R. LncRNAs as regulators of autophagy and drug resistance in colorectal cancer. Front. Oncol., 2019, 9, 1008.
[http://dx.doi.org/10.3389/fonc.2019.01008] [PMID: 31632922]
[42]
Xu, Q.; Song, Z.; Zhu, C.; Tao, C.; Kang, L.; Liu, W.; He, F.; Yan, J.; Sang, T. Systematic comparison of lncRNAs with protein coding mRNAs in population expression and their response to environmental change. BMC Plant Biol., 2017, 17(1), 42.
[http://dx.doi.org/10.1186/s12870-017-0984-8] [PMID: 28193161]
[43]
Liu, H.; Wan, J.; Chu, J. Long non-coding RNAs and endometrial cancer. Biomed. Pharmacother., 2019, 119, 109396.
[http://dx.doi.org/10.1016/j.biopha.2019.109396] [PMID: 31505425]
[44]
Jiang, M-C.; Ni, J-J.; Cui, W-Y.; Wang, B-Y.; Zhuo, W. Emerging roles of lncRNA in cancer and therapeutic opportunities. Am. J. Cancer Res., 2019, 9(7), 1354-1366.
[PMID: 31392074]
[45]
Begolli, R.; Sideris, N.; Giakountis, A. LncRNAs as chromatin regulators in cancer: From molecular function to clinical potential. Cancers, 2019, 11(10), 1524.
[http://dx.doi.org/10.3390/cancers11101524] [PMID: 31658672]
[46]
Martens-Uzunova, E.S.; Böttcher, R.; Croce, C.M.; Jenster, G.; Visakorpi, T.; Calin, G.A. Long noncoding RNA in prostate, bladder, and kidney cancer. Eur. Urol., 2014, 65(6), 1140-1151.
[http://dx.doi.org/10.1016/j.eururo.2013.12.003] [PMID: 24373479]
[47]
Liu, Y.; Ding, W.; Yu, W.; Zhang, Y.; Ao, X.; Wang, J. Long non-coding RNAs: Biogenesis, functions, and clinical significance in gastric cancer. Mol. Ther. Oncolytics, 2021, 23, 458-476.
[http://dx.doi.org/10.1016/j.omto.2021.11.005] [PMID: 34901389]
[48]
Schmitz, S.U.; Grote, P.; Herrmann, B.G. Mechanisms of long noncoding RNA function in development and disease. Cell. Mol. Life Sci., 2016, 73(13), 2491-2509.
[http://dx.doi.org/10.1007/s00018-016-2174-5] [PMID: 27007508]
[49]
Wang, K.C.; Chang, H.Y. Molecular mechanisms of long noncoding RNAs. Mol. Cell, 2011, 43(6), 904-914.
[http://dx.doi.org/10.1016/j.molcel.2011.08.018] [PMID: 21925379]
[50]
Flynn, R.A.; Chang, H.Y. Long noncoding RNAs in cell-fate programming and reprogramming. Cell Stem Cell, 2014, 14(6), 752-761.
[http://dx.doi.org/10.1016/j.stem.2014.05.014] [PMID: 24905165]
[51]
Cabili, M.N.; Trapnell, C.; Goff, L.; Koziol, M.; Tazon-Vega, B.; Regev, A.; Rinn, J.L. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev., 2011, 25(18), 1915-1927.
[http://dx.doi.org/10.1101/gad.17446611] [PMID: 21890647]
[52]
Pandey, R.R.; Mondal, T.; Mohammad, F.; Enroth, S.; Redrup, L.; Komorowski, J.; Nagano, T.; Mancini-DiNardo, D.; Kanduri, C. Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol. Cell, 2008, 32(2), 232-246.
[http://dx.doi.org/10.1016/j.molcel.2008.08.022] [PMID: 18951091]
[53]
Gong, C.; Maquat, L.E. lncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3′ UTRs via Alu elements. Nature, 2011, 470(7333), 284-288.
[http://dx.doi.org/10.1038/nature09701] [PMID: 21307942]
[54]
Ørom, U.A.; Derrien, T.; Beringer, M.; Gumireddy, K.; Gardini, A.; Bussotti, G.; Lai, F.; Zytnicki, M.; Notredame, C.; Huang, Q.; Guigo, R.; Shiekhattar, R. Long noncoding RNAs with enhancer-like function in human cells. Cell, 2010, 143(1), 46-58.
[http://dx.doi.org/10.1016/j.cell.2010.09.001] [PMID: 20887892]
[55]
Guttman, M.; Amit, I.; Garber, M.; French, C.; Lin, M.F.; Feldser, D.; Huarte, M.; Zuk, O.; Carey, B.W.; Cassady, J.P.; Cabili, M.N.; Jaenisch, R.; Mikkelsen, T.S.; Jacks, T.; Hacohen, N.; Bernstein, B.E.; Kellis, M.; Regev, A.; Rinn, J.L.; Lander, E.S. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature, 2009, 458(7235), 223-227.
[http://dx.doi.org/10.1038/nature07672] [PMID: 19182780]
[56]
Pontier, D.B.; Gribnau, J. Xist regulation and function eXplored. Hum. Genet., 2011, 130(2), 223-236.
[http://dx.doi.org/10.1007/s00439-011-1008-7] [PMID: 21626138]
[57]
Tsagakis, I.; Douka, K.; Birds, I.; Aspden, J.L. Long non-coding RNAs in development and disease: Conservation to mechanisms. J. Pathol., 2020, 250(5), 480-495.
[http://dx.doi.org/10.1002/path.5405] [PMID: 32100288]
[58]
Chen, Y.; Li, Z.; Chen, X.; Zhang, S. Long non-coding RNAs: From disease code to drug role. Acta Pharm. Sin. B, 2021, 11(2), 340-354.
[http://dx.doi.org/10.1016/j.apsb.2020.10.001] [PMID: 33643816]
[59]
DiStefano, J.K.; Gerhard, G.S. Long noncoding RNAs and human liver disease. Annu. Rev. Pathol., 2022, 17(1), 1-21.
[http://dx.doi.org/10.1146/annurev-pathol-042320-115255] [PMID: 34416820]
[60]
Azzalin, C.M.; Reichenbach, P.; Khoriauli, L.; Giulotto, E.; Lingner, J. Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends. Science, 2007, 318(5851), 798-801.
[http://dx.doi.org/10.1126/science.1147182] [PMID: 17916692]
[61]
Guenther, M.G.; Levine, S.S.; Boyer, L.A.; Jaenisch, R.; Young, R.A. A chromatin landmark and transcription initiation at most promoters in human cells. Cell, 2007, 130(1), 77-88.
[http://dx.doi.org/10.1016/j.cell.2007.05.042] [PMID: 17632057]
[62]
Redon, S.; Reichenbach, P.; Lingner, J. The non-coding RNA TERRA is a natural ligand and direct inhibitor of human telomerase. Nucleic Acids Res., 2010, 38(17), 5797-5806.
[http://dx.doi.org/10.1093/nar/gkq296] [PMID: 20460456]
[63]
Kino, T.; Hurt, D.E.; Ichijo, T.; Nader, N.; Chrousos, G.P. Noncoding RNA gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor. Sci. Signal., 2010, 3(107), ra8-ra8.
[http://dx.doi.org/10.1126/scisignal.2000568] [PMID: 20124551]
[64]
Sun, Q.; Hao, Q.; Prasanth, K.V. Nuclear long noncoding RNAs: Key regulators of gene expression. Trends Genet., 2018, 34(2), 142-157.
[http://dx.doi.org/10.1016/j.tig.2017.11.005] [PMID: 29249332]
[65]
Tripathi, V.; Ellis, J.D.; Shen, Z.; Song, D.Y.; Pan, Q.; Watt, A.T.; Freier, S.M.; Bennett, C.F.; Sharma, A.; Bubulya, P.A.; Blencowe, B.J.; Prasanth, S.G.; Prasanth, K.V. The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol. Cell, 2010, 39(6), 925-938.
[http://dx.doi.org/10.1016/j.molcel.2010.08.011] [PMID: 20797886]
[66]
Hung, T.; Chang, H.Y. Long noncoding RNA in genome regulation. RNA Biol., 2010, 7(5), 582-585.
[http://dx.doi.org/10.4161/rna.7.5.13216] [PMID: 20930520]
[67]
Wang, K.C.; Yang, Y.W.; Liu, B.; Sanyal, A.; Corces-Zimmerman, R.; Chen, Y.; Lajoie, B.R.; Protacio, A.; Flynn, R.A.; Gupta, R.A.; Wysocka, J.; Lei, M.; Dekker, J.; Helms, J.A.; Chang, H.Y. A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature, 2011, 472(7341), 120-124.
[http://dx.doi.org/10.1038/nature09819] [PMID: 21423168]
[68]
Wang, Y.; Dang, Y.; Liu, J.; Ouyang, X. The function of homeobox genes and lncRNAs in cancer. Oncol. Lett., 2016, 12(3), 1635-1641.
[http://dx.doi.org/10.3892/ol.2016.4901] [PMID: 27588114]
[69]
Sun, Y.; Zhou, Y.; Bai, Y.; Wang, Q.; Bao, J.; Luo, Y.; Guo, Y.; Guo, L. A long non-coding RNA HOTTIP expression is associated with disease progression and predicts outcome in small cell lung cancer patients. Mol. Cancer, 2017, 16(1), 162.
[http://dx.doi.org/10.1186/s12943-017-0729-1] [PMID: 29041935]
[70]
Spitale, R.C.; Tsai, M.C.; Chang, H.Y. RNA templating the epigenome. Epigenetics, 2011, 6(5), 539-543.
[http://dx.doi.org/10.4161/epi.6.5.15221] [PMID: 21393997]
[71]
Collins, K. Physiological assembly and activity of human telomerase complexes. Mech. Ageing Dev., 2008, 129(1-2), 91-98.
[http://dx.doi.org/10.1016/j.mad.2007.10.008] [PMID: 18054989]
[72]
Zheng, M.; Zhao, L.; Yang, X. Expression profiles of long noncoding RNA and mRNA in epicardial adipose tissue in patients with heart failure. Biomed Res Int, 2019, 2019, 3945475.
[http://dx.doi.org/10.1155/2019/3945475]
[73]
Gao, W.; Wang, Z.M.; Zhu, M.; Lian, X.Q.; Zhao, H.; Zhao, D.; Yang, Z.J.; Lu, X.; Wang, L.S. Altered long noncoding RNA expression profiles in the myocardium of rats with ischemic heart failure. J. Cardiovasc. Med., 2015, 16(7), 473-479.
[http://dx.doi.org/10.2459/JCM.0b013e32836499cd] [PMID: 26002832]
[74]
Cao, Y.; Yang, Y.; Wang, L.; Li, L.; Zhang, J.; Gao, X.; Dai, S.; Zhang, Y.; Guo, Q.; Peng, Y.G.; Wang, E. Analyses of long non-coding RNA and mRNA profiles in right ventricle myocardium of acute right heart failure in pulmonary arterial hypertension rats. Biomed. Pharmacother., 2018, 106, 1108-1115.
[http://dx.doi.org/10.1016/j.biopha.2018.07.057] [PMID: 30119177]
[75]
Di Salvo, T.G.; Guo, Y.; Su, Y.R.; Clark, T.; Brittain, E.; Absi, T.; Maltais, S.; Hemnes, A. Right ventricular long noncoding RNA expression in human heart failure. Pulm. Circ., 2015, 5(1), 135-161.
[http://dx.doi.org/10.1086/679721] [PMID: 25992278]
[76]
Tavener, S.A.; Long, E.M.; Robbins, S.M.; McRae, K.M.; Van Remmen, H.; Kubes, P. Immune cell toll-like receptor 4 is required for cardiac myocyte impairment during endotoxemia. Circ. Res., 2004, 95(7), 700-707.
[http://dx.doi.org/10.1161/01.RES.0000144175.70140.8c] [PMID: 15358664]
[77]
Wang, K.; Long, B.; Zhou, L.Y.; Liu, F.; Zhou, Q.Y.; Liu, C.Y.; Fan, Y.Y.; Li, P.F. CARL lncRNA inhibits anoxia-induced mitochondrial fission and apoptosis in cardiomyocytes by impairing miR-539-dependent PHB2 downregulation. Nat. Commun., 2014, 5(1), 3596.
[http://dx.doi.org/10.1038/ncomms4596] [PMID: 24710105]
[78]
Yu, C.J.; Liang, C.; Li, Y.X.; Hu, Q.Q.; Zheng, W.W.; Niu, N.; Yang, X.; Wang, Z.R.; Yu, X.D.; Zhang, B.L.; Song, B.L.; Zhang, Z.R. ZNF307 (Zinc Finger Protein 307) acts as a negative regulator of pressure overload–induced cardiac hypertrophy. Hypertension, 2017, 69(4), 615-624.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.116.08500] [PMID: 28223477]
[79]
Ghafouri-Fard, S.; Taheri, M. Nuclear enriched abundant transcript 1 (NEAT1): A long non-coding RNA with diverse functions in tumorigenesis. Biomed. Pharmacother., 2019, 111, 51-59.
[http://dx.doi.org/10.1016/j.biopha.2018.12.070] [PMID: 30576934]
[80]
Chen, J.; Zhang, J.; Gao, Y.; Li, Y.; Feng, C.; Song, C.; Ning, Z.; Zhou, X.; Zhao, J.; Feng, M.; Zhang, Y.; Wei, L.; Pan, Q.; Jiang, Y.; Qian, F.; Han, J.; Yang, Y.; Wang, Q.; Li, C. LncSEA: A platform for long non-coding RNA related sets and enrichment analysis. Nucleic Acids Res., 2021, 49(D1), D969-D980.
[http://dx.doi.org/10.1093/nar/gkaa806] [PMID: 33045741]
[81]
Huang, W.; Huang, F.; Zhang, R.; Luo, H. LncRNA Neat1 expedites the progression of liver fibrosis in mice through targeting miR-148a-3p and miR-22-3p to upregulate Cyth3. Cell Cycle, 2021, 20(5-6), 490-507.
[http://dx.doi.org/10.1080/15384101.2021.1875665] [PMID: 33550894]
[82]
Li, C.; Liu, Y.F.; Huang, C.; Chen, Y.X.; Xu, C.Y.; Chen, Y. Long noncoding RNA NEAT1 sponges miR-129 to modulate renal fibrosis by regulation of collagen type I. Am. J. Physiol. Renal Physiol., 2020, 319(1), F93-F105.
[http://dx.doi.org/10.1152/ajprenal.00552.2019] [PMID: 32475133]
[83]
Ge, Z.; Yin, C.; Li, Y.; Tian, D.; Xiang, Y.; Li, Q.; Tang, Y.; Zhang, Y. Long noncoding RNA NEAT1 promotes cardiac fibrosis in heart failure through increased recruitment of EZH2 to the Smad7 promoter region. J. Transl. Med., 2022, 20(1), 7.
[http://dx.doi.org/10.1186/s12967-021-03211-8] [PMID: 34980170]
[84]
Wei, Q.; Zhou, H.Y.; Shi, X.D.; Cao, H.Y.; Qin, L. Long noncoding RNA NEAT1 promotes myocardiocyte apoptosis and suppresses proliferation through regulation of miR-129-5p. J. Cardiovasc. Pharmacol., 2019, 74(6), 535-541.
[http://dx.doi.org/10.1097/FJC.0000000000000741] [PMID: 31815867]
[85]
Xiao, N.; Zhang, J.; Chen, C.; Wan, Y.; Wang, N.; Yang, J. miR-129-5p improves cardiac function in rats with chronic heart failure through targeting HMGB1. Mamm. Genome, 2019, 30(9-10), 276-288.
[http://dx.doi.org/10.1007/s00335-019-09817-0] [PMID: 31646380]
[86]
Zhang, H.; Zhang, N.; Jiang, W.; Lun, X. Clinical significance of the long non-coding RNA NEAT1/miR-129-5p axis in the diagnosis and prognosis for patients with chronic heart failure. Exp. Ther. Med., 2021, 21(5), 512.
[http://dx.doi.org/10.3892/etm.2021.9943] [PMID: 33791021]
[87]
Sun, Y.; Ma, L. New insights into long non-coding RNA MALAT1 in cancer and metastasis. Cancers, 2019, 11(2), 216.
[http://dx.doi.org/10.3390/cancers11020216] [PMID: 30781877]
[88]
Liu, L.; Tan, L.; Yao, J.; Yang, L. Long non-coding RNA MALAT1 regulates cholesterol accumulation in ox-LDL-induced macrophages via the microRNA-17-5p/ABCA1 axis. Mol. Med. Rep., 2020, 21(4), 1761-1770.
[http://dx.doi.org/10.3892/mmr.2020.10987] [PMID: 32319624]
[89]
Zhao, P.; Wang, Y.; Zhang, L.; Zhang, J.; Liu, N.; Wang, H. Mechanism of long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 in lipid metabolism and inflammation in heart failure. Int. J. Mol. Med., 2021, 47(3), 1-1.
[PMID: 33448307]
[90]
Hu, L.; Xu, Y.N.; Wang, Q.; Liu, M.J.; Zhang, P.; Zhao, L.T.; Liu, F.; Zhao, D.Y.; Pei, H.N.; Yao, X.B.; Hu, H.G. Aerobic exercise improves cardiac function in rats with chronic heart failure through inhibition of the long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1). Ann. Transl. Med., 2021, 9(4), 340.
[http://dx.doi.org/10.21037/atm-20-8250] [PMID: 33708967]
[91]
Kumarswamy, R.; Bauters, C.; Volkmann, I.; Maury, F.; Fetisch, J.; Holzmann, A.; Lemesle, G.; de Groote, P.; Pinet, F.; Thum, T. Circulating long noncoding RNA, LIPCAR, predicts survival in patients with heart failure. Circ. Res., 2014, 114(10), 1569-1575.
[http://dx.doi.org/10.1161/CIRCRESAHA.114.303915] [PMID: 24663402]
[92]
Santer, L.; López, B.; Ravassa, S.; Baer, C.; Riedel, I.; Chatterjee, S.; Moreno, M.U.; González, A.; Querejeta, R.; Pinet, F.; Thum, T.; Díez, J. Circulating long noncoding RNA LIPCAR predicts heart failure outcomes in patients without chronic kidney disease. Hypertension, 2019, 73(4), 820-828.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.118.12261] [PMID: 30686085]
[93]
Wang, H.; Song, T.; Zhao, Y.; Zhao, J.; Wang, X.; Fu, X. Long non-coding RNA LICPAR regulates atrial fibrosis via TGF-β/Smad pathway in atrial fibrillation. Tissue Cell, 2020, 67, 101440.
[http://dx.doi.org/10.1016/j.tice.2020.101440] [PMID: 32971457]
[94]
Shahryari, A.; Jazi, M.S.; Samaei, N.M.; Mowla, S.J. Long non-coding RNA SOX2OT: Expression signature, splicing patterns, and emerging roles in pluripotency and tumorigenesis. Front. Genet., 2015, 6, 196.
[http://dx.doi.org/10.3389/fgene.2015.00196] [PMID: 26136768]
[95]
Tu, J.; Ma, L.; Zhang, M.; Zhang, J. Long non-coding RNA SOX2 overlapping transcript aggravates H9c2 cell injury via the miR-215-5p/ZEB2 axis and promotes ischemic heart failure in a rat model. Tohoku J. Exp. Med., 2021, 254(3), 221-231.
[http://dx.doi.org/10.1620/tjem.254.221] [PMID: 34321385]
[96]
Jahan, F.; Landry, N.; Rattan, S.; Dixon, I.; Wigle, J. The functional role of zinc finger E box-binding homeobox 2 (Zeb2) in promoting cardiac fibroblast activation. Int. J. Mol. Sci., 2018, 19(10), 3207.
[http://dx.doi.org/10.3390/ijms19103207] [PMID: 30336567]
[97]
Sun, Y.; Jin, S.D.; Zhu, Q.; Han, L.; Feng, J.; Lu, X.Y.; Wang, W.; Wang, F.; Guo, R.H. Long non-coding RNA LUCAT1 is associated with poor prognosis in human non-small cell lung cancer and regulates cell proliferation via epigenetically repressing p21 and p57 expression. Oncotarget, 2017, 8(17), 28297-28311.
[http://dx.doi.org/10.18632/oncotarget.16044] [PMID: 28423699]
[98]
Zheng, A.; Song, X.; Zhang, L.; Zhao, L.; Mao, X.; Wei, M.; Jin, F. Long non-coding RNA LUCAT1/miR- 5582-3p/TCF7L2 axis regulates breast cancer stemness via Wnt/β-catenin pathway. J. Exp. Clin. Cancer Res., 2019, 38(1), 305.
[http://dx.doi.org/10.1186/s13046-019-1315-8] [PMID: 31300015]
[99]
Lou, Y.; Yu, Y.; Xu, X.; Zhou, S.; Shen, H.; Fan, T.; Wu, D.; Yin, J.; Li, G. Long non-coding RNA LUCAT1 promotes tumourigenesis by inhibiting ANXA2 phosphorylation in hepatocellular carcinoma. J. Cell. Mol. Med., 2019, 23(3), 1873-1884.
[http://dx.doi.org/10.1111/jcmm.14088] [PMID: 30588744]
[100]
Zheng, Z.; Zhao, F.; Zhu, D.; Han, J.; Chen, H.; Cai, Y.; Chen, Z.; Xie, W. Long non-coding RNA LUCAT1 promotes proliferation and invasion in clear cell renal cell carcinoma through AKT/GSK-3β signaling pathway. Cell. Physiol. Biochem., 2018, 48(3), 891-904.
[http://dx.doi.org/10.1159/000491957] [PMID: 30032137]
[101]
Li, T.; Qian, D.; Guoyan, J.; Lei, Z. Downregulated long noncoding RNA LUCAT1 inhibited proliferation and promoted apoptosis of cardiomyocyte via miR-612/HOXA13 pathway in chronic heart failure. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(1), 385-395.
[PMID: 31957853]
[102]
Zhou, J.; Zhang, H.; Zou, D.; Zhou, Z.; Wang, W.; Luo, Y.; Liu, T. Clinicopathologic and prognostic roles of circular RNA plasmacytoma variant translocation 1 in various cancers. Expert Rev. Mol. Diagn., 2021, 21(10), 1095-1104.
[http://dx.doi.org/10.1080/14737159.2021.1964959] [PMID: 34346262]
[103]
Yu, Y-H.; Hu, Z-Y.; Li, M-H.; Li, B.; Wang, Z-M.; Chen, S-L. Cardiac hypertrophy is positively regulated by long non-coding RNA PVT1. Int. J. Clin. Exp. Pathol., 2015, 8(3), 2582-2589.
[PMID: 26045764]
[104]
Cao, F.; Li, Z.; Ding, W.; Yan, L.; Zhao, Q. LncRNA PVT1 regulates atrial fibrosis via miR-128-3p-SP1-TGF-β1-Smad axis in atrial fibrillation. Mol. Med., 2019, 25(1), 7.
[http://dx.doi.org/10.1186/s10020-019-0074-5] [PMID: 30616543]
[105]
Zheng, J.; Hu, L.; Cheng, J.; Xu, J.; Zhong, Z.; Yang, Y.; Yuan, Z. lncRNA PVT1 promotes the angiogenesis of vascular endothelial cell by targeting miR-26b to activate CTGF/ANGPT2. Int. J. Mol. Med., 2018, 42(1), 489-496.
[http://dx.doi.org/10.3892/ijmm.2018.3595] [PMID: 29620147]
[106]
Sun, B.; Meng, M.; Wei, J.; Wang, S. Long noncoding RNA PVT1 contributes to vascular endothelial cell proliferation via inhibition of miR-190a-5p in diagnostic biomarker evaluation of chronic heart failure. Exp. Ther. Med., 2020, 19(5), 3348-3354.
[http://dx.doi.org/10.3892/etm.2020.8599] [PMID: 32266032]
[107]
Zhang, Z.; Fu, C.; Xu, Q.; Wei, X. Long non-coding RNA CASC7 inhibits the proliferation and migration of colon cancer cells via inhibiting microRNA-21. Biomed. Pharmacother., 2017, 95, 1644-1653.
[http://dx.doi.org/10.1016/j.biopha.2017.09.052] [PMID: 28954383]
[108]
Wang, G.; Duan, P.; Liu, F.; Wei, Z. Long non-coding RNA CASC7 suppresses malignant behaviors of breast cancer by regulating miR-21-5p/FASLG axis. Bioengineered, 2021, 12(2), 11555-11566.
[http://dx.doi.org/10.1080/21655979.2021.2010372] [PMID: 34889164]
[109]
Xu, Y.; Liu, Y.; Cai, R.; He, S.; Dai, R.; Yang, X.; Kong, B.; Qin, Z.; Su, Q. Long non-coding RNA CASC7 is associated with the pathogenesis of heart failure via modulating the expression of miR-30c. J. Cell. Mol. Med., 2020, 24(19), 11500-11511.
[http://dx.doi.org/10.1111/jcmm.15764] [PMID: 32860492]
[110]
Boeckel, J.N.; Perret, M.F.; Glaser, S.F.; Seeger, T.; Heumüller, A.W.; Chen, W.; John, D.; Kokot, K.E.; Katus, H.A.; Haas, J.; Lackner, M.K.; Kayvanpour, E.; Grabe, N.; Dieterich, C.; von Haehling, S.; Ebner, N.; Hünecke, S.; Leuschner, F.; Fichtlscherer, S.; Meder, B.; Zeiher, A.M.; Dimmeler, S.; Keller, T. Identification and regulation of the long non-coding RNA Heat2 in heart failure. J. Mol. Cell. Cardiol., 2019, 126, 13-22.
[http://dx.doi.org/10.1016/j.yjmcc.2018.11.004] [PMID: 30445017]
[111]
Faghihi, M.A.; Modarresi, F.; Khalil, A.M.; Wood, D.E.; Sahagan, B.G.; Morgan, T.E.; Finch, C.E.; St Laurent, G., III; Kenny, P.J.; Wahlestedt, C. Expression of a noncoding RNA is elevated in Alzheimer’s disease and drives rapid feed-forward regulation of beta-secretase. Nat. Med., 2008, 14(7), 723-730.
[http://dx.doi.org/10.1038/nm1784] [PMID: 18587408]
[112]
Li, F.; Wang, Y.; Yang, H.; Xu, Y.; Zhou, X.; Zhang, X.; Xie, Z.; Bi, J. The effect of BACE1-AS on β-amyloid generation by regulating BACE1 mRNA expression. BMC Mol. Biol., 2019, 20(1), 23.
[http://dx.doi.org/10.1186/s12867-019-0140-0] [PMID: 31570097]
[113]
Greco, S.; Zaccagnini, G.; Fuschi, P.; Voellenkle, C.; Carrara, M.; Sadeghi, I.; Bearzi, C.; Maimone, B.; Castelvecchio, S.; Stellos, K.; Gaetano, C.; Menicanti, L.; Martelli, F. Increased BACE1-AS long noncoding RNA and β-amyloid levels in heart failure. Cardiovasc. Res., 2017, 113(5), 453-463.
[http://dx.doi.org/10.1093/cvr/cvx013] [PMID: 28158647]
[114]
Shah, A.K.; Bhullar, S.K.; Elimban, V.; Dhalla, N.S. Oxidative stress as a mechanism for functional alterations in cardiac hypertrophy and heart failure. Antioxidants, 2021, 10(6), 931.
[http://dx.doi.org/10.3390/antiox10060931] [PMID: 34201261]
[115]
Song, C.; Zhang, J.; Liu, Y.; Pan, H.; Qi, H.; Cao, Y.; Zhao, J.; Li, S.; Guo, J.; Sun, H.; Li, C. Construction and analysis of cardiac hypertrophy-associated lncRNA-mRNA network based on competitive endogenous RNA reveal functional lncRNAs in cardiac hypertrophy. Oncotarget, 2016, 7(10), 10827-10840.
[http://dx.doi.org/10.18632/oncotarget.7312] [PMID: 26872060]
[116]
Gao, H.; Li, X.; Zhan, G.; Zhu, Y.; Yu, J.; Wang, J.; Li, L.; Wu, W.; Liu, N.; Guo, X. RETRACTED ARTICLE: Long noncoding RNA MAGI1-IT1 promoted invasion and metastasis of epithelial ovarian cancer via the miR-200a/ZEB axis. Cell Cycle, 2019, 18(12), 1393-1406.
[http://dx.doi.org/10.1080/15384101.2019.1618121] [PMID: 31122127]
[117]
Zhang, G.; Chen, H.X.; Yang, S.N.; Zhao, J. MAGI1-IT1 stimulates proliferation in non-small cell lung cancer by upregulating AKT1 as a ceRNA. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(2), 691-698.
[PMID: 32016970]
[118]
Zhang, Q.; Wang, F.; Wang, F.; Wu, N. Long noncoding RNA MAGI1-IT1 regulates cardiac hypertrophy by modulating miR-302e/DKK1/Wnt/beta-catenin signaling pathway. J. Cell. Physiol., 2020, 235(1), 245-253.
[http://dx.doi.org/10.1002/jcp.28964] [PMID: 31222747]
[119]
Marinou, K.; Christodoulides, C.; Antoniades, C.; Koutsilieris, M. Wnt signaling in cardiovascular physiology. Trends Endocrinol. Metab., 2012, 23(12), 628-636.
[http://dx.doi.org/10.1016/j.tem.2012.06.001] [PMID: 22902904]
[120]
Bergmann, M.W. WNT signaling in adult cardiac hypertrophy and remodeling: Lessons learned from cardiac development. Circ. Res., 2010, 107(10), 1198-1208.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.223768] [PMID: 21071717]
[121]
Yu, J.; Yang, Y.; Xu, Z.; Lan, C.; Chen, C.; Li, C.; Chen, Z.; Yu, C.; Xia, X.; Liao, Q. Long noncoding RNA ahit protects against cardiac hypertrophy through SUZ12-mediated downregulation of MEF2A. Circ. Heart Fail., 2020, 13(1), e006525.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.119.006525] [PMID: 31957467]
[122]
McCalmon, S.A.; Desjardins, D.M.; Ahmad, S.; Davidoff, K.S.; Snyder, C.M.; Sato, K.; Ohashi, K.; Kielbasa, O.M.; Mathew, M.; Ewen, E.P.; Walsh, K.; Gavras, H.; Naya, F.J. Modulation of angiotensin II-mediated cardiac remodeling by the MEF2A target gene Xirp2. Circ. Res., 2010, 106(5), 952-960.
[http://dx.doi.org/10.1161/CIRCRESAHA.109.209007] [PMID: 20093629]
[123]
Gholami, A.; Farhadi, K.; Sayyadipour, F.; Soleimani, M.; Saba, F. Long noncoding RNAs (lncRNAs) in human lymphomas. Genes Dis., 2022, 9(4), 900-914.
[http://dx.doi.org/10.1016/j.gendis.2021.02.001] [PMID: 35685474]
[124]
Cruz-Miranda, G.; Hidalgo-Miranda, A.; Bárcenas-López, D.; Núñez-Enríquez, J.; Ramírez-Bello, J.; Mejía-Aranguré, J.; Jiménez-Morales, S. Long non-coding RNA and acute leukemia. Int. J. Mol. Sci., 2019, 20(3), 735.
[http://dx.doi.org/10.3390/ijms20030735] [PMID: 30744139]
[125]
Zhang, M.; Jiang, Y.; Guo, X.; Zhang, B.; Wu, J.; Sun, J.; Liang, H.; Shan, H.; Zhang, Y.; Liu, J.; Wang, Y.; Wang, L.; Zhang, R.; Yang, B.; Xu, C. Long non-coding RNA cardiac hypertrophy-associated regulator governs cardiac hypertrophy via regulating miR-20b and the downstream PTEN/AKT pathway. J. Cell. Mol. Med., 2019, 23(11), 7685-7698.
[http://dx.doi.org/10.1111/jcmm.14641] [PMID: 31465630]
[126]
Ke, Z.P.; Xu, P.; Shi, Y.; Gao, A.M. MicroRNA-93 inhibits ischemia-reperfusion induced cardiomyocyte apoptosis by targeting PTEN. Oncotarget, 2016, 7(20), 28796-28805.
[http://dx.doi.org/10.18632/oncotarget.8941] [PMID: 27119510]
[127]
Roe, N.D.; Xu, X.; Kandadi, M.R.; Hu, N.; Pang, J.; Weiser-Evans, M.C.M.; Ren, J. Targeted deletion of PTEN in cardiomyocytes renders cardiac contractile dysfunction through interruption of Pink1–AMPK signaling and autophagy. Biochim. Biophys. Acta Mol. Basis Dis., 2015, 1852(2), 290-298.
[http://dx.doi.org/10.1016/j.bbadis.2014.09.002] [PMID: 25229693]
[128]
Yang, X.; Qin, Y.; Shao, S.; Yu, Y.; Zhang, C.; Dong, H.; Lv, G.; Dong, S. MicroRNA-214 inhibits left ventricular remodeling in an acute myocardial infarction rat model by suppressing cellular apoptosis via the phosphatase and tensin homolog (PTEN). Int. Heart J., 2016, 57(2), 247-250.
[http://dx.doi.org/10.1536/ihj.15-293] [PMID: 26973267]
[129]
Yu, L.; Li, F.; Zhao, G.; Yang, Y.; Jin, Z.; Zhai, M.; Yu, W.; Zhao, L.; Chen, W.; Duan, W.; Yu, S. Protective effect of berberine against myocardial ischemia reperfusion injury: Role of Notch1/Hes1-PTEN/Akt signaling. Apoptosis, 2015, 20(6), 796-810.
[http://dx.doi.org/10.1007/s10495-015-1122-4] [PMID: 25824534]
[130]
Braz, J.C.; Gill, R.M.; Corbly, A.K.; Jones, B.D.; Jin, N.; Vlahos, C.J.; Wu, Q.; Shen, W. Selective activation of PI3Kα/Akt/GSK-3β signalling and cardiac compensatory hypertrophy during recovery from heart failure. Eur. J. Heart Fail., 2009, 11(8), 739-748.
[http://dx.doi.org/10.1093/eurjhf/hfp094] [PMID: 19633101]
[131]
Zeng, R.; Xiong, Y.; Zhu, F.; Ma, Z.; Liao, W.; He, Y.; He, J.; Li, W.; Yang, J.; Lu, Q.; Xu, G.; Yao, Y. Fenofibrate attenuated glucose-induced mesangial cells proliferation and extracellular matrix synthesis via PI3K/AKT and ERK1/2. PLoS One, 2013, 8(10), e76836.
[http://dx.doi.org/10.1371/journal.pone.0076836] [PMID: 24130796]
[132]
Wei, F.; Wang, Y.; Zhou, Y.; Li, Y. Long noncoding RNA CYTOR triggers gastric cancer progression by targeting miR-103/RAB10. Acta Biochim. Biophys. Sin., 2021, 53(8), 1044-1054.
[http://dx.doi.org/10.1093/abbs/gmab071] [PMID: 34110382]
[133]
Zhang, J.; Li, W. Long noncoding RNA CYTOR sponges miR-195 to modulate proliferation, migration, invasion and radiosensitivity in nonsmall cell lung cancer cells. Biosci. Rep., 2018, 38(6), BSR20181599.
[http://dx.doi.org/10.1042/BSR20181599] [PMID: 30487160]
[134]
Wang, X.; Yu, H.; Sun, W.; Kong, J.; Zhang, L.; Tang, J.; Wang, J.; Xu, E.; Lai, M.; Zhang, H. The long non-coding RNA CYTOR drives colorectal cancer progression by interacting with NCL and Sam68. Mol. Cancer, 2018, 17(1), 110.
[http://dx.doi.org/10.1186/s12943-018-0860-7] [PMID: 30064438]
[135]
Yuan, Y.; Wang, J.; Chen, Q.; Wu, Q.; Deng, W.; Zhou, H.; Shen, D. Long non-coding RNA cytoskeleton regulator RNA (CYTOR) modulates pathological cardiac hypertrophy through miR-155-mediated IKKi signaling. Biochim. Biophys. Acta Mol. Basis Dis., 2019, 1865(6), 1421-1427.
[http://dx.doi.org/10.1016/j.bbadis.2019.02.014] [PMID: 30794866]
[136]
Dai, J.; Shen, D.F.; Bian, Z.Y.; Zhou, H.; Gan, H.W.; Zong, J.; Deng, W.; Yuan, Y.; Li, F.; Wu, Q.Q.; Gao, L.; Zhang, R.; Ma, Z.G.; Li, H.L.; Tang, Q.Z. IKKi deficiency promotes pressure overload-induced cardiac hypertrophy and fibrosis. PLoS One, 2013, 8(1), e53412.
[http://dx.doi.org/10.1371/journal.pone.0053412] [PMID: 23349709]
[137]
Seok, H.Y.; Chen, J.; Kataoka, M.; Huang, Z.P.; Ding, J.; Yan, J.; Hu, X.; Wang, D.Z. Loss of MicroRNA-155 protects the heart from pathological cardiac hypertrophy. Circ. Res., 2014, 114(10), 1585-1595.
[http://dx.doi.org/10.1161/CIRCRESAHA.114.303784] [PMID: 24657879]
[138]
Wang, K.; Liu, F.; Zhou, L.Y.; Long, B.; Yuan, S.M.; Wang, Y.; Liu, C.Y.; Sun, T.; Zhang, X.J.; Li, P.F. The long noncoding RNA CHRF regulates cardiac hypertrophy by targeting miR-489. Circ. Res., 2014, 114(9), 1377-1388.
[http://dx.doi.org/10.1161/CIRCRESAHA.114.302476] [PMID: 24557880]
[139]
Feng, Y.; Zou, L.; Si, R.; Nagasaka, Y.; Chao, W. Bone marrow MyD88 signaling modulates neutrophil function and ischemic myocardial injury. Am. J. Physiol. Cell Physiol., 2010, 299(4), C760-C769.
[http://dx.doi.org/10.1152/ajpcell.00155.2010] [PMID: 20631245]
[140]
Ha, T.; Hua, F.; Li, Y.; Ma, J.; Gao, X.; Kelley, J.; Zhao, A.; Haddad, G.E.; Williams, D.L.; Browder, I.W.; Kao, R.L.; Li, C. Blockade of MyD88 attenuates cardiac hypertrophy and decreases cardiac myocyte apoptosis in pressure overload-induced cardiac hypertrophy in vivo. Am. J. Physiol. Heart Circ. Physiol., 2006, 290(3), H985-H994.
[http://dx.doi.org/10.1152/ajpheart.00720.2005] [PMID: 16199478]
[141]
Wo, Y.; Guo, J.; Li, P.; Yang, H.; Wo, J. Long non-coding RNA CHRF facilitates cardiac hypertrophy through regulating Akt3 via miR-93. Cardiovasc. Pathol., 2018, 35, 29-36.
[http://dx.doi.org/10.1016/j.carpath.2018.04.003] [PMID: 29747050]
[142]
van Rooij, E.; Sutherland, L.B.; Liu, N.; Williams, A.H.; McAnally, J.; Gerard, R.D.; Richardson, J.A.; Olson, E.N. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc. Natl. Acad. Sci. USA, 2006, 103(48), 18255-18260.
[http://dx.doi.org/10.1073/pnas.0608791103] [PMID: 17108080]
[143]
Heineke, J.; Molkentin, J.D. Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat. Rev. Mol. Cell Biol., 2006, 7(8), 589-600.
[http://dx.doi.org/10.1038/nrm1983] [PMID: 16936699]
[144]
Dorn, G.W., II; Force, T. Protein kinase cascades in the regulation of cardiac hypertrophy. J. Clin. Invest., 2005, 115(3), 527-537.
[http://dx.doi.org/10.1172/JCI24178] [PMID: 15765134]
[145]
Taniyama, Y.; Ito, M.; Sato, K.; Kuester, C.; Veit, K.; Tremp, G.; Liao, R.; Colucci, W.; Ivashchenko, Y.; Walsh, K.; Shiojima, I. Akt3 overexpression in the heart results in progression from adaptive to maladaptive hypertrophy. J. Mol. Cell. Cardiol., 2005, 38(2), 375-385.
[http://dx.doi.org/10.1016/j.yjmcc.2004.12.002] [PMID: 15698844]
[146]
Liao, J.; He, Q.; Li, M.; Chen, Y.; Liu, Y.; Wang, J. LncRNA MIAT: Myocardial infarction associated and more. Gene, 2016, 578(2), 158-161.
[http://dx.doi.org/10.1016/j.gene.2015.12.032] [PMID: 26707210]
[147]
Ishii, N.; Ozaki, K.; Sato, H.; Mizuno, H.; Susumu Saito; Takahashi, A.; Miyamoto, Y.; Ikegawa, S.; Kamatani, N.; Hori, M.; Satoshi, S; Nakamura, Y.; Tanaka, T. Identification of a novel non-coding RNA, MIAT, that confers risk of myocardial infarction. J. Hum. Genet., 2006, 51(12), 1087-1099.
[http://dx.doi.org/10.1007/s10038-006-0070-9] [PMID: 17066261]
[148]
Shen, Y.; Dong, L.F.; Zhou, R.M.; Yao, J.; Song, Y.C.; Yang, H.; Jiang, Q.; Yan, B. Role of long non-coding RNA MIAT in proliferation, apoptosis and migration of lens epithelial cells: A clinical and in vitro study. J. Cell. Mol. Med., 2016, 20(3), 537-548.
[http://dx.doi.org/10.1111/jcmm.12755] [PMID: 26818536]
[149]
Yan, B.; Yao, J.; Liu, J.Y.; Li, X.M.; Wang, X.Q.; Li, Y.J.; Tao, Z.F.; Song, Y.C.; Chen, Q.; Jiang, Q. lncRNA-MIAT regulates microvascular dysfunction by functioning as a competing endogenous RNA. Circ. Res., 2015, 116(7), 1143-1156.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.305510] [PMID: 25587098]
[150]
Liu, W.; Liu, Y.; Zhang, Y.; Zhu, X.; Zhang, R.; Guan, L.; Tang, Q.; Jiang, H.; Huang, C.; Huang, H. MicroRNA-150 protects against pressure overload-induced cardiac hypertrophy. J. Cell. Biochem., 2015, 116(10), 2166-2176.
[http://dx.doi.org/10.1002/jcb.25057] [PMID: 25639779]
[151]
Li, Z.; Liu, Y.; Guo, X.; Sun, G.; Ma, Q.; Dai, Y.; Zhu, G.; Sun, Y. Long noncoding RNA myocardial infarction-associated transcript is associated with the microRNA-150-5p/P300 pathway in cardiac hypertrophy. Int. J. Mol. Med., 2018, 42(3), 1265-1272.
[http://dx.doi.org/10.3892/ijmm.2018.3700] [PMID: 29786749]
[152]
Duan, Y.; Zhou, B.; Su, H.; Liu, Y.; Du, C. miR-150 regulates high glucose-induced cardiomyocyte hypertrophy by targeting the transcriptional co-activator p300. Exp. Cell Res., 2013, 319(3), 173-184.
[http://dx.doi.org/10.1016/j.yexcr.2012.11.015] [PMID: 23211718]
[153]
Li, Y.; Wang, J.; Sun, L.; Zhu, S. LncRNA myocardial infarction-associated transcript (MIAT) contributed to cardiac hypertrophy by regulating TLR4 via miR-93. Eur. J. Pharmacol., 2018, 818, 508-517.
[http://dx.doi.org/10.1016/j.ejphar.2017.11.031] [PMID: 29157986]
[154]
Baumgarten, G.; Knuefermann, P.; Nozaki, N.; Sivasubramanian, N.; Mann, D.L.; Vallejo, J.G. In vivo expression of proinflammatory mediators in the adult heart after endotoxin administration: The role of toll-like receptor-4. J. Infect. Dis., 2001, 183(11), 1617-1624.
[http://dx.doi.org/10.1086/320712] [PMID: 11343210]
[155]
Dange, R.B.; Agarwal, D.; Masson, G.S.; Vila, J.; Wilson, B.; Nair, A.; Francis, J. Central blockade of TLR4 improves cardiac function and attenuates myocardial inflammation in angiotensin II-induced hypertension. Cardiovasc. Res., 2014, 103(1), 17-27.
[http://dx.doi.org/10.1093/cvr/cvu067] [PMID: 24667851]
[156]
Ji, Y.; Liu, J.; Wang, Z.; Liu, N. Angiotensin II induces inflammatory response partly via toll-like receptor 4-dependent signaling pathway in vascular smooth muscle cells. Cell. Physiol. Biochem., 2009, 23(4-6), 265-276.
[http://dx.doi.org/10.1159/000218173] [PMID: 19471094]
[157]
Ha, T.; Li, Y.; Hua, F.; Ma, J.; Gao, X.; Kelley, J.; Zhao, A.; Haddad, G.; Williams, D.; Williambrowder, I.; Kao, R.L.; Li, C. Reduced cardiac hypertrophy in toll-like receptor 4-deficient mice following pressure overload. Cardiovasc. Res., 2005, 68(2), 224-234.
[http://dx.doi.org/10.1016/j.cardiores.2005.05.025] [PMID: 15967420]
[158]
Loewer, S.; Cabili, M.N.; Guttman, M.; Loh, Y.H.; Thomas, K.; Park, I.H.; Garber, M.; Curran, M.; Onder, T.; Agarwal, S.; Manos, P.D.; Datta, S.; Lander, E.S.; Schlaeger, T.M.; Daley, G.Q.; Rinn, J.L. Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells. Nat. Genet., 2010, 42(12), 1113-1117.
[http://dx.doi.org/10.1038/ng.710] [PMID: 21057500]
[159]
Lu, R.; Chen, J.; Kong, L.; Zhu, H. Prognostic value of lncRNA ROR expression in various cancers: A meta-analysis. Biosci. Rep., 2018, 38(5), BSR20181095.
[http://dx.doi.org/10.1042/BSR20181095] [PMID: 30076198]
[160]
Jiang, F.; Zhou, X.; Huang, J. Long non-coding RNA-ROR mediates the reprogramming in cardiac hypertrophy. PLoS One, 2016, 11(4), e0152767.
[http://dx.doi.org/10.1371/journal.pone.0152767] [PMID: 27082978]
[161]
Carè, A.; Catalucci, D.; Felicetti, F.; Bonci, D.; Addario, A.; Gallo, P.; Bang, M.L.; Segnalini, P.; Gu, Y.; Dalton, N.D.; Elia, L.; Latronico, M.V.G.; Høydal, M.; Autore, C.; Russo, M.A.; Dorn, G.W., II; Ellingsen, Ø.; Ruiz-Lozano, P.; Peterson, K.L.; Croce, C.M.; Peschle, C.; Condorelli, G. MicroRNA-133 controls cardiac hypertrophy. Nat. Med., 2007, 13(5), 613-618.
[http://dx.doi.org/10.1038/nm1582] [PMID: 17468766]
[162]
Xu, L.; Wang, H.; Jiang, F.; Sun, H.; Zhang, D. LncRNA AK045171 protects the heart from cardiac hypertrophy by regulating the SP1/MG53 signalling pathway. Aging, 2020, 12(4), 3126-3139.
[http://dx.doi.org/10.18632/aging.102668] [PMID: 32087602]
[163]
Azakie, A.; Fineman, J.R.; He, Y. Sp3 inhibits Sp1-mediated activation of the cardiac troponin T promoter and is downregulated during pathological cardiac hypertrophy in vivo. Am. J. Physiol. Heart Circ. Physiol., 2006, 291(2), H600-H611.
[http://dx.doi.org/10.1152/ajpheart.01305.2005] [PMID: 16617124]
[164]
Liu, W.; Wang, G.; Zhang, C.; Ding, W.; Cheng, W.; Luo, Y.; Wei, C.; Liu, J. MG53, a novel regulator of KChIP2 and Ito,f, plays a critical role in electrophysiological remodeling in cardiac hypertrophy. Circulation, 2019, 139(18), 2142-2156.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.118.029413] [PMID: 30760025]
[165]
Dhingra, R.; Vasan, R.S. Biomarkers in cardiovascular disease: Statistical assessment and section on key novel heart failure biomarkers. Trends Cardiovasc. Med., 2017, 27(2), 123-133.
[http://dx.doi.org/10.1016/j.tcm.2016.07.005] [PMID: 27576060]
[166]
Villacorta, H.; Maisel, A.S. Soluble ST2 testing: A promising biomarker in the management of heart failure. Arq. Bras. Cardiol., 2016, 106(2), 145-152.
[PMID: 26761075]
[167]
Paul, T.K.; Mukherjee, D. Silent myocardial infarction and risk of heart failure. Ann. Transl. Med., 2018, 6(S1), S35.
[http://dx.doi.org/10.21037/atm.2018.09.45] [PMID: 30613610]
[168]
Luo, F.; Wang, T.; Zeng, L.; Zhu, S.; Cao, W.; Wu, W.; Wu, H.; Zou, T. Diagnostic potential of circulating LncRNAs in human cardiovascular disease: A meta-analysis. Biosci. Rep., 2018, 38(6), BSR20181610.
[http://dx.doi.org/10.1042/BSR20181610] [PMID: 30361292]
[169]
Terracciano, D.; Ferro, M.; Terreri, S.; Lucarelli, G.; D’Elia, C.; Musi, G.; de Cobelli, O.; Mirone, V.; Cimmino, A. Urinary long noncoding RNAs in nonmuscle-invasive bladder cancer: New architects in cancer prognostic biomarkers. Transl. Res., 2017, 184, 108-117.
[http://dx.doi.org/10.1016/j.trsl.2017.03.005] [PMID: 28438520]
[170]
Martignano, F.; Rossi, L.; Maugeri, A.; Gallà, V.; Conteduca, V.; De Giorgi, U.; Casadio, V.; Schepisi, G. Urinary RNA-based biomarkers for prostate cancer detection. Clin. Chim. Acta, 2017, 473, 96-105.
[http://dx.doi.org/10.1016/j.cca.2017.08.009] [PMID: 28807541]
[171]
Zhou, X.; Yin, C.; Dang, Y.; Ye, F.; Zhang, G. Identification of the long non-coding RNA H19 in plasma as a novel biomarker for diagnosis of gastric cancer. Sci. Rep., 2015, 5(1), 11516.
[http://dx.doi.org/10.1038/srep11516] [PMID: 26096073]
[172]
Viereck, J.; Thum, T. Circulating noncoding RNAs as biomarkers of cardiovascular disease and injury. Circ. Res., 2017, 120(2), 381-399.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.308434] [PMID: 28104771]
[173]
Li, Q.; Shao, Y.; Zhang, X.; Zheng, T.; Miao, M.; Qin, L.; Wang, B.; Ye, G.; Xiao, B.; Guo, J. Plasma long noncoding RNA protected by exosomes as a potential stable biomarker for gastric cancer. Tumour Biol., 2015, 36(3), 2007-2012.
[http://dx.doi.org/10.1007/s13277-014-2807-y] [PMID: 25391424]
[174]
Fritz, J.V.; Heintz-Buschart, A.; Ghosal, A.; Wampach, L.; Etheridge, A.; Galas, D.; Wilmes, P. Sources and functions of extracellular small RNAs in human circulation. Annu. Rev. Nutr., 2016, 36(1), 301-336.
[http://dx.doi.org/10.1146/annurev-nutr-071715-050711] [PMID: 27215587]
[175]
Xuan, L.; Sun, L.; Zhang, Y.; Huang, Y.; Hou, Y.; Li, Q.; Guo, Y.; Feng, B.; Cui, L.; Wang, X.; Wang, Z.; Tian, Y.; Yu, B.; Wang, S.; Xu, C.; Zhang, M.; Du, Z.; Lu, Y.; Yang, B.F. Circulating long non-coding RNAs NRON and MHRT as novel predictive biomarkers of heart failure. J. Cell. Mol. Med., 2017, 21(9), 1803-1814.
[http://dx.doi.org/10.1111/jcmm.13101] [PMID: 28296001]
[176]
Abu el Maaty, M.A.; Hanafi, R.S.; El-Badawy, S.; Gad, M.Z. Interplay of vitamin D and nitric oxide in post-menopausal knee osteoarthritis. Aging Clin. Exp. Res., 2014, 26(4), 363-368.
[http://dx.doi.org/10.1007/s40520-013-0192-9] [PMID: 24374888]
[177]
Zhang, L.; Wu, Y-J.; Zhang, S-L. Circulating lncRNA MHRT predicts survival of patients with chronic heart failure. J. Geriatr. Cardiol., 2019, 16(11), 818-821.
[PMID: 31853247]
[178]
Bossuyt, P.M.; Reitsma, J.B.; Bruns, D.E.; Gatsonis, C.A.; Glasziou, P.P.; Irwig, L.M.; Moher, D.; Rennie, D.; de Vet, H.C.; Lijmer, J.G. The STARD statement for reporting studies of diagnostic accuracy: Explanation and elaboration. Ann. Intern. Med., 2003, 138(1), W1-12.
[http://dx.doi.org/10.7326/0003-4819-138-1-200301070-00010] [PMID: 12513067]
[179]
Adams, B.D.; Parsons, C.; Walker, L.; Zhang, W.C.; Slack, F.J. Targeting noncoding RNAs in disease. J. Clin. Invest., 2017, 127(3), 761-771.
[http://dx.doi.org/10.1172/JCI84424] [PMID: 28248199]
[180]
Collins, L.; Binder, P.; Chen, H.; Wang, X. Regulation of long non-coding RNAs and microRNAs in heart disease: Insight into mechanisms and therapeutic approaches. Front. Physiol., 2020, 11, 798.
[http://dx.doi.org/10.3389/fphys.2020.00798] [PMID: 32754048]
[181]
Rincon, M.Y.; VandenDriessche, T.; Chuah, M.K. Gene therapy for cardiovascular disease: Advances in vector development, targeting, and delivery for clinical translation. Cardiovasc. Res., 2015, 108(1), 4-20.
[http://dx.doi.org/10.1093/cvr/cvv205] [PMID: 26239654]
[182]
Wang, K.; Sun, T.; Li, N.; Wang, Y.; Wang, J.X.; Zhou, L.Y.; Long, B.; Liu, C.Y.; Liu, F.; Li, P.F. MDRL lncRNA regulates the processing of miR-484 primary transcript by targeting miR-361. PLoS Genet., 2014, 10(7), e1004467.
[http://dx.doi.org/10.1371/journal.pgen.1004467] [PMID: 25057983]
[183]
Aparicio-Prat, E.; Arnan, C.; Sala, I.; Bosch, N.; Guigó, R.; Johnson, R. DECKO: Single-oligo, dual-CRISPR deletion of genomic elements including long non-coding RNAs. BMC Genomics, 2015, 16(1), 846.
[http://dx.doi.org/10.1186/s12864-015-2086-z] [PMID: 26493208]
[184]
Liu, S.J.; Horlbeck, M.A.; Cho, S.W.; Birk, H.S.; Malatesta, M.; He, D.; Attenello, F.J.; Villalta, J.E.; Cho, M.Y.; Chen, Y.; Mandegar, M.A.; Olvera, M.P.; Gilbert, L.A.; Conklin, B.R.; Chang, H.Y.; Weissman, J.S.; Lim, D.A. CRISPRi-based genome-scale identification of functional long noncoding RNA loci in human cells. Science, 2017, 355(6320), eaah7111.
[http://dx.doi.org/10.1126/science.aah7111] [PMID: 27980086]
[185]
Fazil, M.H.U.T.; Ong, S.T.; Chalasani, M.L.S.; Low, J.H.; Kizhakeyil, A.; Mamidi, A.; Lim, C.F.H.; Wright, G.D.; Lakshminarayanan, R.; Kelleher, D.; Verma, N.K. GapmeR cellular internalization by macropinocytosis induces sequence-specific gene silencing in human primary T-cells. Sci. Rep., 2016, 6(1), 37721.
[http://dx.doi.org/10.1038/srep37721] [PMID: 27883055]
[186]
Swayze, E.E.; Siwkowski, A.M.; Wancewicz, E.V.; Migawa, M.T.; Wyrzykiewicz, T.K.; Hung, G.; Monia, B.P.; Bennett, C.F. Antisense oligonucleotides containing locked nucleic acid improve potency but cause significant hepatotoxicity in animals. Nucleic Acids Res., 2007, 35(2), 687-700.
[http://dx.doi.org/10.1093/nar/gkl1071] [PMID: 17182632]
[187]
Micheletti, R.; Plaisance, I.; Abraham, B.J.; Sarre, A.; Ting, C.C.; Alexanian, M.; Maric, D.; Maison, D.; Nemir, M.; Young, R.A.; Schroen, B.; González, A.; Ounzain, S.; Pedrazzini, T. The long noncoding RNA Wisper controls cardiac fibrosis and remodeling. Sci. Transl. Med., 2017, 9(395), eaai9118.
[http://dx.doi.org/10.1126/scitranslmed.aai9118] [PMID: 28637928]
[188]
Piccoli, M.T.; Gupta, S.K.; Viereck, J.; Foinquinos, A.; Samolovac, S.; Kramer, F.L.; Garg, A.; Remke, J.; Zimmer, K.; Batkai, S.; Thum, T. Inhibition of the cardiac fibroblast–enriched lncRNA Meg3 prevents cardiac fibrosis and diastolic dysfunction. Circ. Res., 2017, 121(5), 575-583.
[http://dx.doi.org/10.1161/CIRCRESAHA.117.310624] [PMID: 28630135]
[189]
Viereck, J.; Kumarswamy, R.; Foinquinos, A.; Xiao, K.; Avramopoulos, P.; Kunz, M.; Dittrich, M.; Maetzig, T.; Zimmer, K.; Remke, J.; Just, A.; Fendrich, J.; Scherf, K.; Bolesani, E.; Schambach, A.; Weidemann, F.; Zweigerdt, R.; de Windt, L.J.; Engelhardt, S.; Dandekar, T.; Batkai, S.; Thum, T. Long noncoding RNA Chast promotes cardiac remodeling. Sci. Transl. Med., 2016, 8(326), 326ra22.
[http://dx.doi.org/10.1126/scitranslmed.aaf1475] [PMID: 26888430]
[190]
Burdick, A.D.; Sciabola, S.; Mantena, S.R.; Hollingshead, B.D.; Stanton, R.; Warneke, J.A.; Zeng, M.; Martsen, E.; Medvedev, A.; Makarov, S.S.; Reed, L.A.; Davis, J.W., II; Whiteley, L.O. Sequence motifs associated with hepatotoxicity of locked nucleic acid—modified antisense oligonucleotides. Nucleic Acids Res., 2014, 42(8), 4882-4891.
[http://dx.doi.org/10.1093/nar/gku142] [PMID: 24550163]
[191]
Ounzain, S.; Micheletti, R.; Arnan, C.; Plaisance, I.; Cecchi, D.; Schroen, B.; Reverter, F.; Alexanian, M.; Gonzales, C.; Ng, S.Y.; Bussotti, G.; Pezzuto, I.; Notredame, C.; Heymans, S.; Guigó, R.; Johnson, R.; Pedrazzini, T. CARMEN, a human super enhancer-associated long noncoding RNA controlling cardiac specification, differentiation and homeostasis. J. Mol. Cell. Cardiol., 2015, 89(Pt A), 98-112.
[http://dx.doi.org/10.1016/j.yjmcc.2015.09.016]
[192]
Poller, W.; Dimmeler, S.; Heymans, S.; Zeller, T.; Haas, J.; Karakas, M.; Leistner, D.M.; Jakob, P.; Nakagawa, S.; Blankenberg, S.; Engelhardt, S.; Thum, T.; Weber, C.; Meder, B.; Hajjar, R.; Landmesser, U. Non-coding RNAs in cardiovascular diseases: Diagnostic and therapeutic perspectives. Eur. Heart J., 2018, 39(29), 2704-2716.
[http://dx.doi.org/10.1093/eurheartj/ehx165] [PMID: 28430919]
[193]
Kemp, C.D.; Conte, J.V. The pathophysiology of heart failure. Cardiovasc. Pathol., 2012, 21(5), 365-371.
[http://dx.doi.org/10.1016/j.carpath.2011.11.007] [PMID: 22227365]
[194]
Frey, N.; Olson, E.N. Cardiac hypertrophy: The good, the bad, and the ugly. Annu. Rev. Physiol., 2003, 65(1), 45-79.
[http://dx.doi.org/10.1146/annurev.physiol.65.092101.142243] [PMID: 12524460]
[195]
Vaduganathan, M.; Greene, S.J.; Butler, J.; Sabbah, H.N.; Shantsila, E.; Lip, G.Y.H.; Gheorghiade, M. The immunological axis in heart failure: Importance of the leukocyte differential. Heart Fail. Rev., 2013, 18(6), 835-845.
[http://dx.doi.org/10.1007/s10741-012-9352-9] [PMID: 23054221]
[196]
Kumar, A.; Supowit, S.; Potts, J.D.; DiPette, D.J. Alpha-calcitonin gene-related peptide prevents pressure-overload induced heart failure: Role of apoptosis and oxidative stress. Physiol. Rep., 2019, 7(21), e14269.
[http://dx.doi.org/10.14814/phy2.14269] [PMID: 31724338]
[197]
van der Pol, A.; van Gilst, W.H.; Voors, A.A.; van der Meer, P. Treating oxidative stress in heart failure: Past, present and future. Eur. J. Heart Fail., 2019, 21(4), 425-435.
[http://dx.doi.org/10.1002/ejhf.1320] [PMID: 30338885]
[198]
Sui, Y.B.; Wang, Y.; Liu, L.; Liu, F.; Zhang, Y.Q. Astragaloside IV alleviates heart failure by promoting angiogenesis through the JAK-STAT3 pathway. Pharm. Biol., 2019, 57(1), 48-54.
[http://dx.doi.org/10.1080/13880209.2019.1569697] [PMID: 30905241]
[199]
Ghosh, R.; Pattison, J.S. Macroautophagy and chaperone-mediated autophagy in heart failure: The known and the unknown. Oxid Med Cell Longev, 2018, 2018, 8602041.
[http://dx.doi.org/10.1155/2018/8602041]
[200]
Rosik, J.; Szostak, B.; Machaj, F.; Pawlik, A. Potential targets of gene therapy in the treatment of heart failure. Expert Opin. Ther. Targets, 2018, 22(9), 811-816.
[http://dx.doi.org/10.1080/14728222.2018.1514012] [PMID: 30124081]
[201]
Creemers, E.E.; Wilde, A.A.; Pinto, Y.M. Heart failure: advances through genomics. Nat. Rev. Genet., 2011, 12(5), 357-362.
[http://dx.doi.org/10.1038/nrg2983] [PMID: 21423240]
[202]
Yu, X.; Zou, T.; Zou, L.; Jin, J.; Xiao, F.; Yang, J. Plasma long noncoding RNA urothelial carcinoma associated 1 predicts poor prognosis in chronic heart failure patients. Med. Sci. Monit., 2017, 23, 2226-2231.
[http://dx.doi.org/10.12659/MSM.904113] [PMID: 28490726]
[203]
Zhuang, A.; Calkin, A.C.; Lau, S.; Kiriazis, H.; Donner, D.G.; Liu, Y.; Bond, S.T.; Moody, S.C.; Gould, E.A.M.; Colgan, T.D.; Carmona, S.R.; Inouye, M.; de Aguiar Vallim, T.Q.; Tarling, E.J.; Quaife-Ryan, G.A.; Hudson, J.E.; Porrello, E.R.; Gregorevic, P.; Gao, X.M.; Du, X.J.; McMullen, J.R.; Drew, B.G. Loss of the long non-coding RNA OIP5-AS1 exacerbates heart failure in a sex-specific manner. iScience, 2021, 24(6), 102537.
[http://dx.doi.org/10.1016/j.isci.2021.102537] [PMID: 34142046]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy