Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Formulation and Characterisation of Fluconazole Loaded MCM-41 Powder for Topical Drug Delivery

Author(s): Ankita Umesh Goswami*, Mihir Raval and Navin Sheth

Volume 21, Issue 8, 2024

Published on: 11 April, 2023

Page: [1406 - 1416] Pages: 11

DOI: 10.2174/1570180820666230301122816

Price: $65

conference banner
Abstract

Purpose: The use of common carriers like talc for topical drug delivery leads to diminished efficacy as a result of poor aqueous solubility and low dissolution rate. The objective of this study was to improve the efficiency of fluconazole topical dosage form using MCM-41 as a carrier material. The aim was to load fluconazole in carriers like MCM-41 as well as ß-Cyclodextrin and to compare the prepared powder formulation with the marketed formulations.

Methods: Fluconazole complex was formulated with the use of MCM-41 and ß-CD as carriers in different proportions by melt, solvent evaporation and kneading method. The complex was developed into a powder formulation. These formulations were subjected to in vitro anti-fungal activity tests on candida albicans.

Results: The inclusion compound was characterised by X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC), and FTIR. The optimised method of preparation determined by in vitro dissolution was the melt method. The optimised formulation was then subjected to anti-fungal activity test. Formulation B containing MCM-41 as the bulk excipient had better performance than the marketed formulation; it showed 92.95 ± 0.33% CDR compared to 74.96 ± 0.47% CDR at the end of 1 hour and increased moisture adsorption.

Conclusion: Thus, a fluconazole topical formulation with improved drug dissolution and moisture adsorption was designed. From in vitro tests, it was seen that the prepared formulation had better performance compared to the commercial formulation against skin mycotic infections and could be used for its treatment.

Keywords: Fluconazole, mesoporous materials, skin mycotic infections, inclusion compound, X-ray diffractometry, drug dissolution, adsorption.

Graphical Abstract
[1]
Bongomin, F.; Gago, S.; Oladele, R.; Denning, D. Global and multi-national prevalence of fungal diseases—estimate precision. J. Fungi, 2017, 3(4), 57.
[http://dx.doi.org/10.3390/jof3040057] [PMID: 29371573]
[2]
Davis, J.D. Superficial fungal infections of the skin: Tinea corporis, Tinea pedis, and Candida intertrigo. Prim. Care Update Ob Gyns, 1995, 2(5), 157-161.
[http://dx.doi.org/10.1016/1068-607X(95)00033-3]
[3]
Brown, G.D.; Denning, D.W.; Gow, N.A.R.; Levitz, S.M.; Netea, M.G.; White, T.C. Hidden killers: Human fungal infections. Sci. Transl. Med., 2012, 4(165), 165rv13.
[http://dx.doi.org/10.1126/scitranslmed.3004404] [PMID: 23253612]
[4]
Janniger, C.K.; Schwartz, R.A.; Szepietowski, J.C.; Reich, A. Intertrigo and common secondary skin infections. Am. Fam. Physician, 2005, 72(5), 833-838.
[PMID: 16156342]
[5]
Mistiaen, P.; Poot, E.; Hickox, S.; Jochems, C.; Wagner, C. Preventing and treating intertrigo in the large skin folds of adults: A literature overview. Dermatol. Nurs., 2004, 16(1), 43-46, 49-57.
[PMID: 15022504]
[6]
Ambrogi, V.; Perioli, L.; Pagano, C.; Marmottini, F.; Moretti, M.; Mizzi, F.; Rossi, C. Econazole nitrate-loaded MCM-41 for an antifungal topical powder formulation. J. Pharm. Sci., 2010, 99(11), 4738-4745.
[http://dx.doi.org/10.1002/jps.22183] [PMID: 20845470]
[7]
Goa, K.L.; Barradell, L.B. Fluconazole. Drugs, 1995, 50(4), 658-690.
[http://dx.doi.org/10.2165/00003495-199550040-00007] [PMID: 8536553]
[8]
Martin, M.V. The use of fluconazole and itraconazole in the treatment of Candida albicans infections: A review. J. Antimicrob. Chemother., 1999, 44(4), 429-437.
[http://dx.doi.org/10.1093/jac/44.4.429] [PMID: 10588302]
[9]
Yurtdaş, G.; Demirel, M.; Genç, L. Inclusion complexes of fluconazole with β-cyclodextrin: physicochemical characterization and in vitro evaluation of its formulation. J. Incl. Phenom. Macrocycl. Chem., 2011, 70(3-4), 429-435.
[http://dx.doi.org/10.1007/s10847-010-9908-z]
[10]
Sweetman, S.C.; Blake, P.S.; Brayfield, A.; McGlashan, J.M.; Neathercoat, G.C.; Parsons, A.V. Martindale: The Complete Drug References. 36th ed; Gurnee: Pharmaceutical Press, , 2009.
[11]
Kibbe, A.H. Handbook of Pharmaceutical Excipients Cyclodextrins, 3rd ed;Published by the American Pharmaceutical Association.: Washington Pharmaceutical Press; , 2000, pp. 165-168.
[12]
Airaksinen, S.; Karjalainen, M.; Kivikero, N.; Westermarck, S.; Shevchenko, A.; Rantanen, J.; Yliruusi, J. Excipient selection can significantly affect solid-state phase transformation in formulation during wet granulation. AAPS Pharm.Sci.Tech, 2005, 6(2), E311-E322.
[http://dx.doi.org/10.1208/pt060241] [PMID: 16353990]
[13]
Beck, J.S.; Vartuli, J.C.; Roth, W.J.; Leonowicz, M.E.; Kresge, C.T.; Schmitt, K.D.; Chu, C.T.W.; Olson, D.H.; Sheppard, E.W.; McCullen, S.B.; Higgins, J.B.; Schlenker, J.L. A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc., 1992, 114(27), 10834-10843.
[http://dx.doi.org/10.1021/ja00053a020]
[14]
Horcajada, P.; Rámila, A.; Pérez-Pariente, J.; Vallet-Regí, M. Influence of pore size of MCM-41 matrices on drug delivery rate. Micropor. Mesopor. Mater., 2004, 68(1-3), 105-109.
[http://dx.doi.org/10.1016/j.micromeso.2003.12.012]
[15]
Ng, E.P.; Mintova, S. Nanoporous materials with enhanced hydrophilicity and high water sorption capacity. Micropor. Mesopor. Mater., 2008, 114(1-3), 1-26.
[http://dx.doi.org/10.1016/j.micromeso.2007.12.022]
[16]
Vadia, N.; Rajput, S. Mesoporous material, MCM-41: A new drug carrier. Asian J. Pharm. Clin. Res., 2011, 4, 44-53.
[17]
Charnay, C.; Bégu, S.; Tourné-Péteilh, C.; Nicole, L.; Lerner, D.A.; Devoisselle, J.M. Inclusion of ibuprofen in mesoporous templated silica: Drug loading and release property. Eur. J. Pharm. Biopharm., 2004, 57(3), 533-540.
[http://dx.doi.org/10.1016/j.ejpb.2003.12.007] [PMID: 15093603]
[18]
Ambrogi, V.; Perioli, L.; Marmottini, F.; Giovagnoli, S.; Esposito, M.; Rossi, C. Improvement of dissolution rate of piroxicam by inclusion into MCM-41 mesoporous silicate. Eur. J. Pharm. Sci., 2007, 32(3), 216-222.
[http://dx.doi.org/10.1016/j.ejps.2007.07.005] [PMID: 17826966]
[19]
Loftsson, T.; Masson, M. Cyclodextrins in topical drug formulations: Theory and practice. Int. J. Pharm., 2001, 225(1-2), 15-30.
[http://dx.doi.org/10.1016/S0378-5173(01)00761-X] [PMID: 11489551]
[20]
Stephen, S.; Gorain, B.; Choudhury, H.; Chatterjee, B. Exploring the role of mesoporous silica nanoparticle in the development of novel drug delivery systems. Drug Deliv. Transl. Res., 2022, 12(1), 105-123.
[http://dx.doi.org/10.1007/s13346-021-00935-4] [PMID: 33604837]
[21]
Ahmed, H.; Gomte, S.S.; Prathyusha, E.A.P.; Agrawal, M.; Alexander, A. Biomedical applications of mesoporous silica nanoparticles as a drug delivery carrier. J. Drug Deliv. Sci. Technol., 2022, 76, 103729.
[http://dx.doi.org/10.1016/j.jddst.2022.103729]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy