Review Article

睡眠、膳食褪黑素补充与COVID-19

卷 31, 期 11, 2024

发表于: 22 May, 2023

页: [1298 - 1314] 页: 17

弟呕挨: 10.2174/0929867330666230224093849

价格: $65

摘要

背景:在2019冠状病毒病大流行期间,人们遭受了严重的精神健康问题。这些症状包括压力、焦虑和对居家隔离现状的困惑。褪黑素是一种流行的抗炎和抗氧化分子,作为非处方膳食补充剂出售。 目的:本文综述了在COVID-19大流行背景下使用褪黑素的适应症,包括治疗。 方法:在电子数据库中全面检索有关COVID-19患者褪黑素使用的出版物。 结果:压力对睡眠规律和个人生活质量有巨大的负面影响。睡眠被认为是免疫反应的重要调节剂。因此,睡眠不足会削弱免疫力,增加机体对感染的易感性。例如,较短的睡眠时间与患普通感冒的几率增加有关。褪黑素的管理可以防止病毒和其他病原体,并加快临床恢复。 结论:在重症监护病房的患者中,褪黑素降低了血栓和败血症等严重并发症的风险和死亡率。此外,它还能有效降低血管通透性、抑制和镇静,改善睡眠质量,这也有助于COVID-19患者获得更好的临床效果。

关键词: COVID-19、褪黑素、膳食补充剂、睡眠质量、抗氧化剂、压力。

[1]
Cui, J.; Li, F.; Shi, Z.L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol., 2019, 17(3), 181-192.
[http://dx.doi.org/10.1038/s41579-018-0118-9] [PMID: 30531947]
[2]
Martín, G.V.M.; Inserra, F.; Tajer, C.D.; Mariani, J.; Ferder, L.; Reiter, R.J.; Manucha, W. Lungs as target of COVID-19 infection: Protective common molecular mechanisms of vitamin D and melatonin as a new potential synergistic treatment. Life Sci., 2020, 254, 117808-117808.
[http://dx.doi.org/10.1016/j.lfs.2020.117808] [PMID: 32422305]
[3]
Semenova, Y.; Trenina, V.; Pivina, L.; Glushkova, N.; Zhunussov, Y.; Ospanov, E.; Bjørklund, G. The lessons of COVID-19, SARS, and MERS: Implications for preventive strategies. Int. J. Healthc. Manag., 2022, 15(4), 314-324.
[http://dx.doi.org/10.1080/20479700.2022.2051126]
[4]
Semenova, Y.; Kalmatayeva, Z.; Oshibayeva, A.; Mamyrbekova, S.; Kudirbekova, A.; Nurbakyt, A.; Baizhaxynova, A.; Colet, P.; Glushkova, N.; Ivankov, A.; Sarria-Santamera, A. Seropositivity of SARS-CoV-2 in the population of Kazakhstan: A nationwide laboratory-based surveillance. Int. J. Environ. Res. Public Health, 2022, 19(4), 2263.
[http://dx.doi.org/10.3390/ijerph19042263] [PMID: 35206453]
[5]
Greenberg, N.; Docherty, M.; Gnanapragasam, S.; Wessely, S. Managing mental health challenges faced by healthcare workers during COVID-19 pandemic. BMJ, 2020, 368, m1211.
[http://dx.doi.org/10.1136/bmj.m1211] [PMID: 32217624]
[6]
Wang, G.; Zhang, Y.; Zhao, J.; Zhang, J.; Jiang, F. Mitigate the effects of home confinement on children during the COVID-19 outbreak. Lancet, 2020, 395(10228), 945-947.
[http://dx.doi.org/10.1016/S0140-6736(20)30547-X] [PMID: 32145186]
[7]
Cohen, S.; Doyle, W.J.; Alper, C.M.; Janicki-Deverts, D.; Turner, R.B. Sleep habits and susceptibility to the common cold. Arch. Intern. Med., 2009, 169(1), 62-67.
[http://dx.doi.org/10.1001/archinternmed.2008.505] [PMID: 19139325]
[8]
Glaser, R.; Kiecolt-Glaser, J.K. Stress-induced immune dysfunction: Implications for health. Nat. Rev. Immunol., 2005, 5(3), 243-251.
[http://dx.doi.org/10.1038/nri1571] [PMID: 15738954]
[9]
Besedovsky, L.; Lange, T.; Born, J. Sleep and immune function. Pflugers Arch., 2012, 463(1), 121-137.
[http://dx.doi.org/10.1007/s00424-011-1044-0] [PMID: 22071480]
[10]
Wright, J.H.; Caudill, R. Remote treatment delivery in response to the COVID-19 pandemic. Psychother. Psychosom., 2020, 89(3), 130-132.
[http://dx.doi.org/10.1159/000507376] [PMID: 32213775]
[11]
Reiter, R.J.; Ma, Q.; Sharma, R. Melatonin in mitochondria: Mitigating clear and present dangers. Physiology, 2020, 35(2), 86-95.
[http://dx.doi.org/10.1152/physiol.00034.2019] [PMID: 32024428]
[12]
Benington, J.H.; Craig Heller, H. Restoration of brain energy metabolism as the function of sleep. Prog. Neurobiol., 1995, 45(4), 347-360.
[http://dx.doi.org/10.1016/0301-0082(94)00057-O] [PMID: 7624482]
[13]
Mackiewicz, M.; Shockley, K.R.; Romer, M.A.; Galante, R.J.; Zimmerman, J.E.; Naidoo, N.; Baldwin, D.A.; Jensen, S.T.; Churchill, G.A.; Pack, A.I. Macromolecule biosynthesis: A key function of sleep. Physiol. Genomics, 2007, 31(3), 441-457.
[http://dx.doi.org/10.1152/physiolgenomics.00275.2006] [PMID: 17698924]
[14]
Dimitrov, S.; Lange, T.; Nohroudi, K.; Born, J. Number and function of circulating human antigen presenting cells regulated by sleep. Sleep, 2007, 30(4), 401-411.
[http://dx.doi.org/10.1093/sleep/30.4.401] [PMID: 17520784]
[15]
Yehuda, S.; Sredni, B.; Carasso, R.L.; Kenigsbuch-Sredni, D. REM sleep deprivation in rats results in inflammation and interleukin-17 elevation. J Interferon Cytokine Res, 2009, 29(7), 393-398.
[http://dx.doi.org/10.1089/jir.2008.0080] [PMID: 19450150]
[16]
Zager, A.; Andersen, M.L.; Ruiz, F.S.; Antunes, I.B.; Tufik, S. Effects of acute and chronic sleep loss on immune modulation of rats. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2007, 293(1), R504-R509.
[http://dx.doi.org/10.1152/ajpregu.00105.2007] [PMID: 17409265]
[17]
Ibarra-Coronado, E.G.; Pantaleón-Martínez, A.M.; Velazquéz-Moctezuma, J.; Prospéro-García, O.; Méndez-Díaz, M.; Pérez-Tapia, M.; Pavón, L.; Morales-Montor, J. The bidirectional relationship between sleep and immunity against infections. J. Immunol. Res., 2015, 2015, 1-14.
[http://dx.doi.org/10.1155/2015/678164] [PMID: 26417606]
[18]
Hurtado-Alvarado, G.; Domínguez-Salazar, E.; Pavon, L.; Velázquez-Moctezuma, J.; Gómez-González, B. Blood-brain barrier disruption induced by chronic sleep loss: low-grade inflammation may be the link. J. Immunol. Res., 2016, 2016, 1-15.
[http://dx.doi.org/10.1155/2016/4576012] [PMID: 27738642]
[19]
Fang, J.; Sanborn, C.K.; Renegar, K.B.; Majde, J.A.; Krueger, J.M. Influenza viral infections enhance sleep in mice. Exp. Biol. Med., 1995, 210(3), 242-252.
[http://dx.doi.org/10.3181/00379727-210-43945] [PMID: 8539262]
[20]
Fang, I.; Tooley, D.; Gatewood, C.; Renegar, K.B.; Majde, J.A.; Krueger, J.M. Differential effects of total and upper airway influenza viral infection on sleep in mice. Sleep, 1996, 19(4), 337-342.
[PMID: 8776792]
[21]
Horváth, A.; Papp, A.; Szűcs, A. Progress in elucidating the pathophysiological basis of nonrapid eye movement parasomnias: not yet informing therapeutic strategies. Nat. Sci. Sleep, 2016, 8, 73-79.
[PMID: 27022307]
[22]
Cooke, G.S.; Hill, A.V.S. Genetics of susceptibitlity to human infectious disease. Nat. Rev. Genet., 2001, 2(12), 967-977.
[http://dx.doi.org/10.1038/35103577] [PMID: 11733749]
[23]
Hill, A.V.S. The genomics and genetics of human infectious disease susceptibility. Annu. Rev. Genomics Hum. Genet., 2001, 2(1), 373-400.
[http://dx.doi.org/10.1146/annurev.genom.2.1.373] [PMID: 11701655]
[24]
Trammell, R.A.; Liberati, T.A.; Toth, L.A. Host genetic background and the innate inflammatory response of lung to influenza virus. Microbes Infect., 2012, 14(1), 50-58.
[http://dx.doi.org/10.1016/j.micinf.2011.08.008] [PMID: 21920449]
[25]
Tuite, A.; Gros, P. The impact of genomics on the analysis of host resistance to infectious disease. Microbes Infect., 2006, 8(6), 1647-1653.
[http://dx.doi.org/10.1016/j.micinf.2005.11.016] [PMID: 16697229]
[26]
Toth, L.; Rehg, J.E.; Webster, R.G. Strain differences in sleep and other pathophysiological sequelae of influenza virus infection in naive and immunized mice. J. Neuroimmunol., 1995, 58(1), 89-99.
[http://dx.doi.org/10.1016/0165-5728(94)00193-R] [PMID: 7730450]
[27]
Dahan, V.; Kimoff, R.J.; Petrof, B.J.; Benedetti, A.; Diorio, D.; Trojan, D.A. Sleep-disordered breathing in fatigued postpoliomyelitis clinic patients. Arch. Phys. Med. Rehabil., 2006, 87(10), 1352-1356.
[http://dx.doi.org/10.1016/j.apmr.2006.07.256] [PMID: 17023245]
[28]
Silva, T.M.; Moreira, G.A.; Quadros, A.A.J.; Pradella-Hallinan, M.; Tufik, S.; Oliveira, A.S.B. Analysis of sleep characteristics in post-polio syndrome patients. Arq. Neuropsiquiatr., 2010, 68(4), 535-540.
[http://dx.doi.org/10.1590/S0004-282X2010000400011] [PMID: 20730305]
[29]
Steljes, D.G.; Kryger, M.H.; Kirk, B.W.; Millar, T.W. Sleep in postpolio syndrome. Chest, 1990, 98(1), 133-140.
[http://dx.doi.org/10.1378/chest.98.1.133] [PMID: 2361379]
[30]
Darko, D.F.; McCutchan, J.A.; Kripke, D.F.; Gillin, J.C.; Golshan, S. Fatigue, sleep disturbance, disability, and indices of progression of HIV infection. Am. J. Psychiatry, 1992, 149(4), 514-520.
[http://dx.doi.org/10.1176/ajp.149.4.514] [PMID: 1554037]
[31]
Kanmogne, G.D.; Fonsah, J.Y.; Umlauf, A.; Moul, J.; Doh, R.F.; Kengne, A.M.; Tang, B.; Tagny, C.T.; Nchindap, E.; Kenmogne, L.; Franklin, D.; Njamnshi, D.M.; Mbanya, D.; Njamnshi, A.K.; Heaton, R.K. Attention/working memory, learning and memory in adult cameroonians: Normative data, effects of HIV infection and viral genotype. J. Int. Neuropsychol. Soc., 2020, 26(6), 607-623.
[http://dx.doi.org/10.1017/S1355617720000120] [PMID: 32066518]
[32]
Chung, W.S.; Lin, H.H.; Cheng, N.C. The incidence and risk of herpes zoster in patients with sleep disorders. Medicine, 2016, 95(11), e2195.
[http://dx.doi.org/10.1097/MD.0000000000002195] [PMID: 26986095]
[33]
Gohier, B.; Goeb, J.L.; Rannou-Dubas, K.; Fouchard, I.; Calès, P.; Garré, J.B. Hepatitis C, alpha interferon, anxiety and depression disorders: A prospective study of 71 patients. World J. Biol. Psychiatry, 2003, 4(3), 115-118.
[http://dx.doi.org/10.1080/15622970310029904] [PMID: 12872204]
[34]
Thein, H.H.; Maruff, P.; Krahn, M.; Kaldor, J.M.; Koorey, D.J.; Brew, B.J.; Dore, G.J. Cognitive function, mood and health-related quality of life in hepatitis C virus (HCV)- monoinfected and HIV/HCV-coinfected individuals commencing HCV treatment. HIV Med., 2007, 8(3), 192-202.
[http://dx.doi.org/10.1111/j.1468-1293.2007.00452.x] [PMID: 17461864]
[35]
Sockalingam, S.; Abbey, S.E.; Alosaimi, F.; Novak, M. A review of sleep disturbance in hepatitis C. J. Clin. Gastroenterol., 2010, 44(1), 38-45.
[http://dx.doi.org/10.1097/MCG.0b013e3181b314ea] [PMID: 19730115]
[36]
Huang, Y.; Zhao, N. Generalized anxiety disorder, depressive symptoms and sleep quality during COVID-19 outbreak in China: A web-based cross-sectional survey. Psychiatry Res., 2020, 288, 112954-112954.
[http://dx.doi.org/10.1016/j.psychres.2020.112954] [PMID: 32325383]
[37]
Torales, J.; O’Higgins, M.; Castaldelli-Maia, J.M.; Ventriglio, A. The outbreak of COVID-19 coronavirus and its impact on global mental health. Int. J. Soc. Psychiatry, 2020, 66(4), 317-320.
[http://dx.doi.org/10.1177/0020764020915212] [PMID: 32233719]
[38]
Firth, J.; Torous, J. Multidisciplinary research priorities for the COVID-19 pandemic. Lancet Psychiatry, 2020, 7(7), e39.
[http://dx.doi.org/10.1016/S2215-0366(20)30251-0] [PMID: 32563314]
[39]
Calvo-Sanz, J.; Tapia-Ayuga, C.E. Blue light emission spectra of popular mobile devices: The extent of user protection against melatonin suppression by built-in screen technology and light filtering software systems. Chronobiol. Int., 2020, 37(7), 1016-1022.
[http://dx.doi.org/10.1080/07420528.2020.1781149] [PMID: 32649241]
[40]
Horenstein, A.; Morrison, A.S.; Goldin, P.; ten Brink, M.; Gross, J.J.; Heimberg, R.G. Sleep quality and treatment of social anxiety disorder. Anxiety Stress Coping, 2019, 32(4), 387-398.
[http://dx.doi.org/10.1080/10615806.2019.1617854] [PMID: 31082285]
[41]
Hempler, N.F.; Joensen, L.E.; Willaing, I. Relationship between social network, social support and health behaviour in people with type 1 and type 2 diabetes: cross-sectional studies. BMC Public Health, 2016, 16(1), 198.
[http://dx.doi.org/10.1186/s12889-016-2819-1] [PMID: 26926867]
[42]
Utz, S.; Breuer, J. The relationship between use of social network sites, online social support, and well-being. J. Media Psychol., 2017, 29(3), 115-125.
[http://dx.doi.org/10.1027/1864-1105/a000222] [PMID: 29147141]
[43]
Alvaro, P.K.; Roberts, R.M.; Harris, J.K. A systematic review assessing bidirectionality between sleep disturbances, anxiety, and depression. Sleep, 2013, 36(7), 1059-1068.
[http://dx.doi.org/10.5665/sleep.2810] [PMID: 23814343]
[44]
Cardinali, D.P.; Srinivasan, V.; Brzezinski, A.; Brown, G.M. Melatonin and its analogs in insomnia and depression. J. Pineal Res., 2012, 52(4), 365-375.
[http://dx.doi.org/10.1111/j.1600-079X.2011.00962.x] [PMID: 21951153]
[45]
van Santen, A.; Vreeburg, S.A.; Van der Does, A.J.W.; Spinhoven, P.; Zitman, F.G.; Penninx, B.W.J.H. Psychological traits and the cortisol awakening response: Results from the Netherlands study of depression and anxiety. Psychoneuroendocrinology, 2011, 36(2), 240-248.
[http://dx.doi.org/10.1016/j.psyneuen.2010.07.014] [PMID: 20724080]
[46]
Deng, J.; Zhou, F.; Hou, W.; Silver, Z.; Wong, C.Y.; Chang, O.; Huang, E.; Zuo, Q.K. The prevalence of depression, anxiety, and sleep disturbances in COVID-19 patients: a meta-analysis. Ann. N. Y. Acad. Sci., 2021, 1486(1), 90-111.
[http://dx.doi.org/10.1111/nyas.14506] [PMID: 33009668]
[47]
Donzella, S.M.; Kohler, L.N.; Crane, T.E.; Jacobs, E.T.; Ernst, K.C.; Bell, M.L.; Catalfamo, C.J.; Begay, R.; Pogreba-Brown, K.; Farland, L.V. COVID-19 infection, the COVID-19 pandemic, and changes in sleep. Front. Public Health, 2022, 9, 795320.
[http://dx.doi.org/10.3389/fpubh.2021.795320] [PMID: 35174134]
[48]
Pellitteri, G.; Surcinelli, A.; De Martino, M.; Fabris, M.; Janes, F.; Bax, F.; Marini, A.; Milanic, R.; Piani, A.; Isola, M.; Gigli, G.L.; Valente, M. Sleep alterations following COVID-19 are associated with both neuroinflammation and psychological disorders, although at different times. Front. Neurol., 2022, 13, 929480.
[http://dx.doi.org/10.3389/fneur.2022.929480] [PMID: 36062000]
[49]
Abdelghani, M.; Alsadik, M.; Abdelmoaty, A.; Atwa, S.; Said, A.; Hassan, M. Sleep disturbances following recovery from COVID-19: A comparative cross-sectional study in Egypt. East. Mediterr. Health J., 2022, 28(1), 14-22.
[http://dx.doi.org/10.26719/emhj.22.006] [PMID: 35165874]
[50]
El Sayed, S.; Gomaa, S.; Shokry, D.; Kabil, A.; Eissa, A. Sleep in post-COVID-19 recovery period and its impact on different domains of quality of life. Egypt. J. Neurol. Psychiat. Neurosurg., 2021, 57(1), 172.
[http://dx.doi.org/10.1186/s41983-021-00429-7] [PMID: 34924750]
[51]
Camargo-Martínez, W.; Lozada-Martínez, I.; Escobar-Collazos, A.; Navarro-Coronado, A.; Moscote-Salazar, L.; Pacheco-Hernández, A.; Janjua, T.; Bosque-Varela, P. Post-COVID-19 neurological syndrome: Implications for sequelae’s treatment. J. Clin. Neurosci., 2021, 88, 219-225.
[http://dx.doi.org/10.1016/j.jocn.2021.04.001] [PMID: 33992187]
[52]
Zildzic, M.; Salihefendic, D.; Masic, I. Non-pharmacological measures in the prevention and treatment of COVID-19 infection. Med. Arh., 2021, 75(4), 307-312.
[http://dx.doi.org/10.5455/medarh.2021.75.307-312] [PMID: 34759453]
[53]
Ekhtiari, H.; Rezapour, T.; Aupperle, R.L.; Paulus, M.P. Neuroscience-informed psychoeducation for addiction medicine: A neurocognitive perspective. Prog. Brain Res., 2017, 235, 239-264.
[http://dx.doi.org/10.1016/bs.pbr.2017.08.013] [PMID: 29054291]
[54]
DeRubeis, R.J.; Hollon, S.D.; Amsterdam, J.D.; Shelton, R.C.; Young, P.R.; Salomon, R.M.; O’Reardon, J.P.; Lovett, M.L.; Gladis, M.M.; Brown, L.L.; Gallop, R. Cognitive therapy vs. medications in the treatment of moderate to severe depression. Arch. Gen. Psychiatry, 2005, 62(4), 409-416.
[http://dx.doi.org/10.1001/archpsyc.62.4.409] [PMID: 15809408]
[55]
Thoma, N.; Pilecki, B.; McKay, D. Contemporary cognitive behavior therapy: A review of theory, history, and evidence. Psychodyn. Psychiatry, 2015, 43(3), 423-461.
[http://dx.doi.org/10.1521/pdps.2015.43.3.423] [PMID: 26301761]
[56]
Brewin, C.R. Theoretical foundations of cognitive-behavior therapy for anxiety and depression. Annu. Rev. Psychol., 1996, 47(1), 33-57.
[http://dx.doi.org/10.1146/annurev.psych.47.1.33] [PMID: 8624137]
[57]
Benjamin, C.L.; Puleo, C.M.; Settipani, C.A.; Brodman, D.M.; Edmunds, J.M.; Cummings, C.M.; Kendall, P.C. History of cognitive-behavioral therapy in youth. Child Adolesc. Psychiatr. Clin. N. Am., 2011, 20(2), 179-189.
[http://dx.doi.org/10.1016/j.chc.2011.01.011] [PMID: 21440849]
[58]
McKay, D.; Sookman, D.; Neziroglu, F.; Wilhelm, S.; Stein, D.J.; Kyrios, M.; Matthews, K.; Veale, D. Efficacy of cognitive-behavioral therapy for obsessive–compulsive disorder. Psychiatry Res., 2015, 225(3), 236-246.
[http://dx.doi.org/10.1016/j.psychres.2014.11.058] [PMID: 25613661]
[59]
Zhu, Z.; Zhang, L.; Jiang, J.; Li, W.; Cao, X.; Zhou, Z.; Zhang, T.; Li, C. Comparison of psychological placebo and waiting list control conditions in the assessment of cognitive behavioral therapy for the treatment of generalized anxiety disorder: A meta-analysis. Shanghai Jingshen Yixue, 2014, 26(6), 319-331.
[PMID: 25642106]
[60]
Johansson, R.; Andersson, G. Internet-based psychological treatments for depression. Expert Rev. Neurother., 2012, 12(7), 861-870.
[http://dx.doi.org/10.1586/ern.12.63] [PMID: 22853793]
[61]
Altena, E.; Micoulaud-Franchi, J.A.; Geoffroy, P.A.; Sanz-Arigita, E.; Bioulac, S.; Philip, P. The bidirectional relation between emotional reactivity and sleep: From disruption to recovery. Behav. Neurosci., 2016, 130(3), 336-350.
[http://dx.doi.org/10.1037/bne0000128] [PMID: 26866361]
[62]
Morin, C.M.; Inoue, Y.; Kushida, C.; Poyares, D.; Winkelman, J. Endorsement of European guideline for the diagnosis and treatment of insomnia by the World Sleep Society. Sleep Med., 2021, 81, 124-126.
[http://dx.doi.org/10.1016/j.sleep.2021.01.023] [PMID: 33667998]
[63]
Baglioni, C.; Altena, E.; Bjorvatn, B.; Blom, K.; Bothelius, K.; Devoto, A.; Espie, C.A.; Frase, L.; Gavriloff, D.; Tuuliki, H.; Hoflehner, A.; Högl, B.; Holzinger, B.; Järnefelt, H.; Jernelöv, S.; Johann, A.F.; Lombardo, C.; Nissen, C.; Palagini, L.; Peeters, G.; Perlis, M.L.; Posner, D.; Schlarb, A.; Spiegelhalder, K.; Wichniak, A.; Riemann, D. The European academy for cognitive behavioural therapy for insomnia: An initiative of the european insomnia network to promote implementation and dissemination of treatment. J. Sleep Res., 2019, 29.
[PMID: 31856367]
[64]
Morin, C.M.; Vallières, A.; Guay, B.; Ivers, H.; Savard, J.; Mérette, C.; Bastien, C.; Baillargeon, L. Cognitive behavioral therapy, singly and combined with medication, for persistent insomnia: a randomized controlled trial. JAMA, 2009, 301(19), 2005-2015.
[http://dx.doi.org/10.1001/jama.2009.682] [PMID: 19454639]
[65]
Randall, C.; Nowakowski, S.; Ellis, J.G. Managing acute insomnia in prison: Evaluation of a “one-shot” cognitive behavioral therapy for insomnia (CBT-I) intervention. Behav. Sleep Med., 2019, 17(6), 827-836.
[http://dx.doi.org/10.1080/15402002.2018.1518227] [PMID: 30289290]
[66]
Shah, S.M.A.; Mohammad, D.; Qureshi, M.F.H.; Abbas, M.Z.; Aleem, S. Prevalence, psychological responses and associated correlates of depression, anxiety and stress in a global population, during the coronavirus disease (COVID-19) pandemic. Community Ment. Health J., 2020, 1-10.
[PMID: 33108569]
[67]
Bastien, C.H.; Morin, C.M.; Ouellet, M.C.; Blais, F.C.; Bouchard, S. Cognitive-behavioral therapy for insomnia: Comparison of individual therapy, group therapy, and telephone consultations. J. Consult. Clin. Psychol., 2004, 72(4), 653-659.
[http://dx.doi.org/10.1037/0022-006X.72.4.653] [PMID: 15301650]
[68]
Fuller, K.H.; Waters, W.F.; Binks, P.G.; Anderson, T. Generalized anxiety and sleep architecture: A polysomnographic investigation. Sleep, 1997, 20(5), 370-376.
[http://dx.doi.org/10.1093/sleep/20.5.370] [PMID: 9381061]
[69]
Liu, N.; Zhang, F.; Wei, C.; Jia, Y.; Shang, Z.; Sun, L.; Wu, L.; Sun, Z.; Zhou, Y.; Wang, Y.; Liu, W. Prevalence and predictors of PTSS during COVID-19 outbreak in China hardest-hit areas: Gender differences matter. Psychiatry Res., 2020, 287, 112921-112921.
[http://dx.doi.org/10.1016/j.psychres.2020.112921] [PMID: 32240896]
[70]
Kim, H.; Hegde, S.; LaFiura, C.; Raghavan, M.; Luong, E.; Cheng, S.; Rebholz, C.M.; Seidelmann, S.B. COVID-19 illness in relation to sleep and burnout. BMJ Nutrition, Prevention & Health, 2021.
[http://dx.doi.org/10.1136/bmjnph-2021-000228]
[71]
Hofmann, S.G.; Gómez, A.F. Mindfulness-based interventions for anxiety and depression. Psychiatr. Clin. North Am., 2017, 40(4), 739-749.
[http://dx.doi.org/10.1016/j.psc.2017.08.008] [PMID: 29080597]
[72]
Creswell, J.D. Mindfulness interventions. Annu. Rev. Psychol., 2017, 68, 491-516.
[http://dx.doi.org/10.1146/annurev-psych-042716-051139] [PMID: 27687118]
[73]
Carlson, L.E. Mindfulness-based interventions for physical conditions: A narrative review evaluating levels of evidence. ISRN Psychiatry, 2012, 2012, 1-21.
[http://dx.doi.org/10.5402/2012/651583] [PMID: 23762768]
[74]
Sanada, K.; Montero-Marin, J.; Barceló-Soler, A.; Ikuse, D.; Ota, M.; Hirata, A.; Yoshizawa, A.; Hatanaka, R.; Valero, M.S.; Demarzo, M.; Campayo, J.G.; Iwanami, A. Effects of mindfulness-based interventions on biomarkers and low-grade inflammation in patients with psychiatric disorders: A meta-analytic review. Int. J. Mol. Sci., 2020, 21(7), 2484.
[http://dx.doi.org/10.3390/ijms21072484] [PMID: 32260096]
[75]
Roque-Lopez, S.; Llanez-Anaya, E.; Álvarez-López, M.J.; Everts, M.; Fernández, D.; Davidson, R.J.; Kaliman, P. Mental health benefits of a 1-week intensive multimodal group program for adolescents with multiple adverse childhood experiences. Child Abuse Negl., 2021, 122, 105349.
[http://dx.doi.org/10.1016/j.chiabu.2021.105349] [PMID: 34628152]
[76]
Juul, L.; Pallesen, K.J.; Bjerggaard, M.; Nielsen, C.; Fjorback, L.O. A pilot randomised trial comparing a mindfulness-based stress reduction course, a locally-developed stress reduction intervention and a waiting list control group in a real-life municipal health care setting. BMC Public Health, 2020, 20(1), 409.
[http://dx.doi.org/10.1186/s12889-020-08470-6] [PMID: 32228533]
[77]
Pascoe, M.C.; Thompson, D.R.; Jenkins, Z.M.; Ski, C.F. Mindfulness mediates the physiological markers of stress: Systematic review and meta-analysis. J. Psychiatr. Res., 2017, 95, 156-178.
[http://dx.doi.org/10.1016/j.jpsychires.2017.08.004] [PMID: 28863392]
[78]
Chadi, N.; Weisbaum, E.; Vo, D.X.; Ahola Kohut, S. Mindfulness-based interventions for adolescents: Time to consider telehealth. J. Altern. Complement. Med., 2020, 26(3), 172-175.
[http://dx.doi.org/10.1089/acm.2019.0302] [PMID: 31765222]
[79]
DeVries, A.C.; Glasper, E.R.; Detillion, C. E. Social modulation of stress responses. Physiol Behav, 2003, 79, 399-407.
[http://dx.doi.org/10.1016/s0031-9384(03)00152-5] [PMID: 12954434]
[80]
Xiao, H.; Zhang, Y.; Kong, D.; Li, S.; Yang, N. Social capital and sleep quality in individuals who self-isolated for 14 days during the coronavirus disease 2019 (COVID-19) outbreak in january 2020 in China. Med. Sci. Monit., 2020, 26, e923921.
[http://dx.doi.org/10.12659/MSM.923921] [PMID: 32194290]
[81]
Basner, M.; Fomberstein, K.M.; Razavi, F.M.; Banks, S.; William, J.H.; Rosa, R.R.; Dinges, D.F. American time use survey: Sleep time and its relationship to waking activities. Sleep, 2007, 30(9), 1085-1095.
[http://dx.doi.org/10.1093/sleep/30.9.1085] [PMID: 17910380]
[82]
Kent de Grey, R.G.; Uchino, B.N.; Trettevik, R.; Cronan, S.; Hogan, J.N. Social support and sleep: A meta-analysis. Health Psychol., 2018, 37(8), 787-798.
[http://dx.doi.org/10.1037/hea0000628] [PMID: 29809022]
[83]
Peng, Y.; Ao, M.; Dong, B.; Jiang, Y.; Yu, L.; Chen, Z.; Hu, C.; Xu, R. Anti-inflammatory effects of curcumin in the inflammatory diseases: Status, limitations and countermeasures. Drug Des. Devel. Ther., 2021, 15, 4503-4525.
[http://dx.doi.org/10.2147/DDDT.S327378] [PMID: 34754179]
[84]
Xu, Y.; Ku, B.; Cui, L.; Li, X.; Barish, P.A.; Foster, T.C.; Ogle, W.O. Curcumin reverses impaired hippocampal neurogenesis and increases serotonin receptor 1A mRNA and brain-derived neurotrophic factor expression in chronically stressed rats. Brain Res., 2007, 1162, 9-18.
[http://dx.doi.org/10.1016/j.brainres.2007.05.071] [PMID: 17617388]
[85]
Nouri-Vaskeh, M.; Afshan, H.; Malek Mahdavi, A.; Alizadeh, L.; Fan, X.; Zarei, M. Curcumin ameliorates health-related quality of life in patients with liver cirrhosis: A randomized, double-blind placebo-controlled trial. Complement. Ther. Med., 2020, 49, 102351.
[http://dx.doi.org/10.1016/j.ctim.2020.102351] [PMID: 32147077]
[86]
Aguiar, S.; Borowski, T. Neuropharmacological review of the nootropic herb Bacopa monnieri. Rejuvenation Res., 2013, 16(4), 313-326.
[http://dx.doi.org/10.1089/rej.2013.1431] [PMID: 23772955]
[87]
Simpson, T.; Pase, M.; Stough, C. Bacopa monnieri as an antioxidant therapy to reduce oxidative stress in the aging brain. Evid. Based Complement. Alternat. Med., 2015, 2015, 1-9.
[http://dx.doi.org/10.1155/2015/615384] [PMID: 26413126]
[88]
Lopresti, A.L.; Smith, S.J.; Ali, S.; Metse, A.P.; Kalns, J.; Drummond, P.D. Effects of a Bacopa monnieri extract (Bacognize®) on stress, fatigue, quality of life and sleep in adults with self-reported poor sleep: A randomised, double-blind, placebo-controlled study. J. Funct. Foods, 2021, 85, 104671.
[http://dx.doi.org/10.1016/j.jff.2021.104671]
[89]
Shetty, S.K.; Rao, P.N.; U, S.; Raj, A.; Ks, S.; Sv, S. The effect of brahmi (Bacopa monnieri (L.) Pennell) on depression, anxiety and stress during COVID-19. Eur. J. Integr. Med., 2021, 48, 101898.
[http://dx.doi.org/10.1016/j.eujim.2021.101898]
[90]
Mancuso, C.; Santangelo, R. Panax ginseng and Panax quinquefolius: From pharmacology to toxicology. Food Chem. Toxicol., 2017, 107(Pt A), 362-372.
[http://dx.doi.org/10.1016/j.fct.2017.07.019] [PMID: 28698154]
[91]
Yi, Y.S. Potential benefits of ginseng against COVID-19 by targeting inflammasomes. J. Ginseng Res., 2022, 46(6), 722-730.
[http://dx.doi.org/10.1016/j.jgr.2022.03.008] [PMID: 35399195]
[92]
Jeong Han, H.; Yun Kim, H.; Joon Choi, J.; Ahn, S.Y.; Lee, S.H.; Oh, K.W.; Kim, S.Y. Effects of red ginseng extract on sleeping behaviors in human volunteers. J. Ethnopharmacol., 2013, 149(2), 597-599.
[http://dx.doi.org/10.1016/j.jep.2013.07.005] [PMID: 23872254]
[93]
Hardeland, R. Melatonin and inflammation-story of a double-edged blade. J. Pineal Res., 2018, 65(4), e12525.
[http://dx.doi.org/10.1111/jpi.12525] [PMID: 30242884]
[94]
Reiter, R.J.; Tan, D.X.; Mayo, J.C.; Sainz, R.M.; Leon, J.; Czarnocki, Z. Melatonin as an antioxidant: Biochemical mechanisms and pathophysiological implications in humans. Acta Biochim. Pol., 2003, 50(4), 1129-1146.
[http://dx.doi.org/10.18388/abp.2003_3637] [PMID: 14740000]
[95]
Sinha, B.; Wu, Q.; Li, W.; Tu, Y.; Sirianni, A.C.; Chen, Y.; Jiang, J.; Zhang, X.; Chen, W.; Zhou, S.; Reiter, R.J.; Manning, S.M.; Patel, N.J.; Aziz-Sultan, A.M.; Inder, T.E.; Friedlander, R.M.; Fu, J.; Wang, X. Protection of melatonin in experimental models of newborn hypoxic-ischemic brain injury through MT1 receptor. J. Pineal Res., 2018, 64(1), e12443.
[http://dx.doi.org/10.1111/jpi.12443] [PMID: 28796402]
[96]
Wurtman, R.J.; Axelrod, J.; Phillips, L.S. Melatonin synthesis in the pineal gland: control by light. Science, 1963, 142(3595), 1071-1073.
[http://dx.doi.org/10.1126/science.142.3595.1071] [PMID: 14068225]
[97]
Zisapel, N. New perspectives on the role of melatonin in human sleep, circadian rhythms and their regulation. Br. J. Pharmacol., 2018, 175(16), 3190-3199.
[http://dx.doi.org/10.1111/bph.14116] [PMID: 29318587]
[98]
Juricek, L.; Xavier, C. The aryl hydrocarbon receptor and the nervous system. Int. J. Mol. Sci., 2018, 19(9), 25049.
[http://dx.doi.org/10.3390/ijms19092504]
[99]
Lee, K.; Hwang, O.J.; Back, K. Rice N-acetylserotonin deacetylase regulates melatonin levels in transgenic rice. Melatonin Res., 2020, 3(1), 32-42.
[http://dx.doi.org/10.32794/mr11250046]
[100]
Coto-Montes, A.; Boga, J.; Tan, D.; Reiter, R. Melatonin as a potential agent in the treatment of sarcopenia. Int. J. Mol. Sci., 2016, 17(10), 1771.
[http://dx.doi.org/10.3390/ijms17101771] [PMID: 27783055]
[101]
Sieck, G.C. Physiology in perspective: Physiological systems respond to time. Physiology , 2020, 35(2), 84-85.
[http://dx.doi.org/10.1152/physiol.00002.2020] [PMID: 32024427]
[102]
Huang, S.H.; Cao, X.J.; Liu, W.; Shi, X.Y.; Wei, W. Inhibitory effect of melatonin on lung oxidative stress induced by respiratory syncytial virus infection in mice. J. Pineal Res., 2010, 48(2), 109-116.
[http://dx.doi.org/10.1111/j.1600-079X.2009.00733.x] [PMID: 20070490]
[103]
Huang, S.H.; Cao, X.J.; Wei, W. Melatonin decreases TLR3-mediated inflammatory factor expression via inhibition of NF-kappa B activation in respiratory syncytial virus-infected RAW264.7 macrophages. J. Pineal. Res.2008; 45(1): 93-100.
[http://dx.doi.org/10.1111/j.1600-079X.2008.00560.x.]
[104]
Miller, S.C.; Pandi, P.S.R.; Esquifino, A.I.; Cardinali, D.P.; Maestroni, G.J.M. The role of melatonin in immuno-enhancement: Potential application in cancer. Int. J. Exp. Pathol., 2006, 87(2), 81-87.
[http://dx.doi.org/10.1111/j.0959-9673.2006.00474.x] [PMID: 16623752]
[105]
Zhang, R.; Wang, X.; Ni, L.; Di, X.; Ma, B.; Niu, S.; Liu, C.; Reiter, R.J. COVID-19: Melatonin as a potential adjuvant treatment. Life Sci., 2020, 250, 117583-117583.
[http://dx.doi.org/10.1016/j.lfs.2020.117583] [PMID: 32217117]
[106]
Wang, Q.L.; Yang, L.; Peng, Y.; Gao, M.; Yang, M.S.; Xing, W.; Xiao, X.Z. Ginsenoside Rg1 regulates SIRT1 to ameliorate sepsis-induced lung inflammation and injury viainhibiting endoplasmic reticulum stress and inflammation. Mediators Inflamm., 2019, 2019, 1-10.
[http://dx.doi.org/10.1155/2019/6453296] [PMID: 30918470]
[107]
Sun, C.K.; Lee, F.Y.; Kao, Y.H.; Chiang, H.J.; Sung, P.H.; Tsai, T.H.; Lin, Y.C.; Leu, S.; Wu, Y.C.; Lu, H.I.; Chen, Y.L.; Chung, S.Y.; Su, H.L.; Yip, H.K. Systemic combined melatonin-mitochondria treatment improves acute respiratory distress syndrome in the rat. J. Pineal Res., 2015, 58(2), 137-150.
[http://dx.doi.org/10.1111/jpi.12199] [PMID: 25491480]
[108]
Shang, Y.; Xu, S.P.; Wu, Y.; Jiang, Y.X.; Wu, Z.Y.; Yuan, S.Y.; Yao, S.L. Melatonin reduces acute lung injury in endotoxemic rats. Chin. Med. J., 2009, 122(12), 1388-1393.
[PMID: 19567158]
[109]
Pedrosa, A.M.C.; Weinlich, R.; Mognol, G.P.; Robbs, B.K.; Viola, J.P.B.; Campa, A.; Amarante-Mendes, G.P. Melatonin protects CD4+ T cells from activation-induced cell death by blocking NFAT-mediated CD95 ligand upregulation. J. Immunol., 2010, 184(7), 3487-3494.
[http://dx.doi.org/10.4049/jimmunol.0902961] [PMID: 20181888]
[110]
Habtemariam, S.; Daglia, M.; Sureda, A.; Selamoglu, Z.; Fuat, G.M.; Mohammad, NS. Melatonin and respiratory diseases: A review. Curr. Top. Med. Chem., 2016, 17(4), 467-488.
[http://dx.doi.org/10.2174/1568026616666160824120338] [PMID: 27558675]
[111]
Mańka, S.; Majewska, E. Immunoregulatory action of melatonin. The mechanism of action and the effect on inflammatory cells. Postepy Hig. Med. Dosw., 2016, 70(0), 1059-1067.
[http://dx.doi.org/10.5604/17322693.1221001] [PMID: 27708210]
[112]
Korkmaz, A.; Reiter, R.J.; Topal, T.; Manchester, L.C.; Oter, S.; Tan, D.X. Melatonin: an established antioxidant worthy of use in clinical trials. Mol. Med., 2009, 15(1-2), 43-50.
[http://dx.doi.org/10.2119/molmed.2008.00117] [PMID: 19011689]
[113]
Shirey, K.A.; Lai, W.; Scott, A.J.; Lipsky, M.; Mistry, P.; Pletneva, L.M.; Karp, C.L.; McAlees, J.; Gioannini, T.L.; Weiss, J.; Chen, W.H.; Ernst, R.K.; Rossignol, D.P.; Gusovsky, F.; Blanco, J.C.G.; Vogel, S.N. The TLR4 antagonist Eritoran protects mice from lethal influenza infection. Nature, 2013, 497(7450), 498-502.
[http://dx.doi.org/10.1038/nature12118] [PMID: 23636320]
[114]
Sui, X. Inhibition of the NF-κB signaling pathway on endothelial cell function and angiogenesis in mice with acute cerebral infarction. J. Biol. Regul. Homeost. Agents, 2019, 33(2), 375-384.
[PMID: 30945527]
[115]
Zhao, Y.; Wang, H.; Chen, W.; Chen, L.; Liu, D.; Wang, X.; Wang, X. Melatonin attenuates white matter damage after focal brain ischemia in rats by regulating the TLR4/NF-κB pathway. Brain Res. Bull., 2019, 150, 168-178.
[http://dx.doi.org/10.1016/j.brainresbull.2019.05.019] [PMID: 31158461]
[116]
Cuzzocrea, S.; Russel, J.R. Pharmacological action of melatonin in shock, inflammation and ischemia/reperfusion injury. Eur J Pharmacol, 2001, 426(1-2), 1-10.
[http://dx.doi.org/10.1016/s0014-2999(01)01175-x] [PMID: 11525764]
[117]
Gitto, E.; Karbownik, M.; Reiter, R.J.; Tan, D.X.; Cuzzocrea, S.; Chiurazzi, P.; Cordaro, S.; Corona, G.; Trimarchi, G.; Barberi, I. Effects of melatonin treatment in septic newborns. Pediatr. Res., 2001, 50(6), 756-760.
[http://dx.doi.org/10.1203/00006450-200112000-00021] [PMID: 11726736]
[118]
Mundigler, G.; Delle-Karth, G.; Koreny, M.; Zehetgruber, M.; Steindl-Munda, P.; Marktl, W.; Fertl, L.; Siostrzonek, P. Impaired circadian rhythm of melatonin secretion in sedated critically ill patients with severe sepsis. Crit. Care Med., 2002, 30(3), 536-540.
[http://dx.doi.org/10.1097/00003246-200203000-00007] [PMID: 11990911]
[119]
Tamura, D.Y.; Moore, E.E.; Partrick, D.A.; Johnson, J.L.; Offner, P.J.; Silliman, C.C. Acute hypoxemia in humans enhances the neutrophil inflammatory response. Shock, 2002, 17(4), 269-273.
[http://dx.doi.org/10.1097/00024382-200204000-00005] [PMID: 11954825]
[120]
Gitto, E.; Reiter, R.J.; Sabatino, G.; Buonocore, G.; Romeo, C.; Gitto, P.; Buggé, C.; Trimarchi, G.; Barberi, I. Correlation among cytokines, bronchopulmonary dysplasia and modality of ventilation in preterm newborns: improvement with melatonin treatment. J. Pineal Res., 2005, 39(3), 287-293.
[http://dx.doi.org/10.1111/j.1600-079X.2005.00251.x] [PMID: 16150110]
[121]
Bazyar, H.; Gholinezhad, H.; Moradi, L.; Salehi, P.; Abadi, F.; Ravanbakhsh, M.; Zare Javid, A. The effects of melatonin supplementation in adjunct with non-surgical periodontal therapy on periodontal status, serum melatonin and inflammatory markers in type 2 diabetes mellitus patients with chronic periodontitis: a double-blind, placebo-controlled trial. Inflammopharmacology, 2019, 27(1), 67-76.
[http://dx.doi.org/10.1007/s10787-018-0539-0] [PMID: 30328031]
[122]
Sánchez-López, A.L.; Ortiz, G.G.; Pacheco-Moises, F.P.; Mireles-Ramírez, M.A.; Bitzer-Quintero, O.K.; Delgado-Lara, D.L.C.; Ramírez-Jirano, L.J.; Velázquez-Brizuela, I.E. Efficacy of melatonin on serum pro-inflammatory cytokines and oxidative stress markers in relapsing remitting multiple sclerosis. Arch. Med. Res., 2018, 49(6), 391-398.
[http://dx.doi.org/10.1016/j.arcmed.2018.12.004] [PMID: 30595364]
[123]
Kücükakin, B.; Lykkesfeldt, J.; Nielsen, H.J.; Reiter, R.J.; Rosenberg, J.; Gögenur, I. Utility of melatonin to treat surgical stress after major vascular surgery – a safety study. J. Pineal Res., 2008, 44(4), 426-431.
[http://dx.doi.org/10.1111/j.1600-079X.2007.00545.x] [PMID: 18205732]
[124]
Zhao, Z.; Lu, C.; Li, T.; Wang, W.; Ye, W.; Zeng, R.; Ni, L.; Lai, Z.; Wang, X.; Liu, C. The protective effect of melatonin on brain ischemia and reperfusion in rats and humans: In vivo assessment and a randomized controlled trial. J. Pineal Res., 2018, 65(4), e12521.
[http://dx.doi.org/10.1111/jpi.12521] [PMID: 30098076]
[125]
Zarezadeh, M.; Khorshidi, M.; Emami, M.; Janmohammadi, P.; Kord-varkaneh, H.; Mousavi, S.M.; Mohammed, S.H.; Saedisomeolia, A.; Alizadeh, S. Melatonin supplementation and pro-inflammatory mediators: A systematic review and meta-analysis of clinical trials. Eur. J. Nutr., 2020, 59(5), 1803-1813.
[http://dx.doi.org/10.1007/s00394-019-02123-0] [PMID: 31679041]
[126]
Anderson, G.; Reiter, R.J. Melatonin: Roles in influenza, COVID-19, and other viral infections. Rev. Med. Virol., 2020, 30(3), e2109.
[http://dx.doi.org/10.1002/rmv.2109] [PMID: 32314850]
[127]
Begum, R.; Mamun-Or-Rashid, A.N.M.; Lucy, T.T.; Pramanik, M.K.; Sil, B.K.; Mukerjee, N.; Tagde, P.; Yagi, M.; Yonei, Y. Potential therapeutic approach of melatonin against omicron and some other variants of SARS-CoV-2. Molecules, 2022, 27(20), 6934.
[http://dx.doi.org/10.3390/molecules27206934] [PMID: 36296527]
[128]
Alizadeh, N.; Dianatkhah, M.; Alimohamadi, Y.; Moradi, H.; Akbarpour, S.; Akrami, M.; Mansouri, F.; Faraji, N.; Rezaie, Z.; Alizadeh, M.; Hosamirudsari, H. High dose melatonin as an adjuvant therapy in intubated patients with COVID-19: A randomized clinical trial. J. Taibah Univ. Med. Sci., 2022, 17(3), 454-460.
[http://dx.doi.org/10.1016/j.jtumed.2022.04.012] [PMID: 35581997]
[129]
Minich, D.M.; Henning, M.; Darley, C.; Fahoum, M.; Schuler, C.B.; Frame, J. Is melatonin the “next vitamin D”?: A review of emerging science, clinical uses, safety, and dietary supplements. Nutrients, 2022, 14(19), 3934.
[http://dx.doi.org/10.3390/nu14193934] [PMID: 36235587]
[130]
Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Moher, D. Updating guidance for reporting systematic reviews: Development of the PRISMA 2020 statement. J. Clin. Epidemiol., 2021, 134, 103-112.
[http://dx.doi.org/10.1016/j.jclinepi.2021.02.003] [PMID: 33577987]
[131]
Hasan, Z.T.; Atrakji, D.M.Q.Y.M.A.A.; Mehuaiden, D.A.K. The effect of melatonin on thrombosis, sepsis and mortality rate in COVID-19 patients. Int. J. Infect. Dis., 2022, 114, 79-84.
[http://dx.doi.org/10.1016/j.ijid.2021.10.012] [PMID: 34653660]
[132]
Mousavi, S.A.; Heydari, K.; Mehravaran, H.; Saeedi, M.; Alizadeh-Navaei, R.; Hedayatizadeh-Omran, A.; Shamshirian, A. Melatonin effects on sleep quality and outcomes of COVID-19 patients: An open-label, randomized, controlled trial. J. Med. Virol., 2022, 94(1), 263-271.
[http://dx.doi.org/10.1002/jmv.27312] [PMID: 34460132]
[133]
Farnoosh, G.; Akbariqomi, M.; Badri, T.; Bagheri, M.; Izadi, M.; Saeedi-Boroujeni, A.; Rezaie, E.; Ghaleh, H.E.G.; Aghamollaei, H.; Fasihi-ramandi, M.; Hassanpour, K.; Alishiri, G. Efficacy of a low dose of melatonin as an adjunctive therapy in hospitalized patients with COVID-19: A randomized, double-blind clinical trial. Arch. Med. Res., 2022, 53(1), 79-85.
[http://dx.doi.org/10.1016/j.arcmed.2021.06.006] [PMID: 34229896]
[134]
Alizadeh, Z.; Keyhanian, N.; Ghaderkhani, S.; Dashti-Khavidaki, S.; Shokouhi, S.R.; Pourpak, Z. A pilot study on controlling coronavirus disease 2019 (COVID-19) inflammation using melatonin supplement. Iran. J. Allergy Asthma Immunol., 2021, 20(4), 494-499.
[http://dx.doi.org/10.18502/ijaai.v20i4.6959] [PMID: 34418903]
[135]
Lan, S.H.; Lee, H.Z.; Chao, C.M.; Chang, S.P.; Lu, L.C.; Lai, C.C. Efficacy of melatonin in the treatment of patients with COVID-19: A systematic review and meta-analysis of randomized controlled trials. J. Med. Virol., 2022, 94(5), 2102-2107.
[http://dx.doi.org/10.1002/jmv.27595] [PMID: 35032042]
[136]
Mazza, M.G.; Palladini, M.; Poletti, S.; Benedetti, F. Post-COVID-19 depressive symptoms: Epidemiology, pathophysiology, and pharmacological treatment. CNS Drugs, 2022, 36(7), 681-702.
[http://dx.doi.org/10.1007/s40263-022-00931-3] [PMID: 35727534]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy