Review Article

席夫氏碱及其金属配合物抗菌活性的研究进展

卷 31, 期 17, 2024

发表于: 03 May, 2023

页: [2330 - 2344] 页: 15

弟呕挨: 10.2174/0929867330666230224092830

价格: $65

Open Access Journals Promotions 2
摘要

希夫碱是一类有价值的有机化合物,由伯胺与酮或醛缩合而成。它们在农业化学、有机合成、化学和生物传感、涂层、聚合物和树脂工业、催化、配位化学和药物设计等领域有着广泛的应用。席夫碱含有亚胺或亚甲胺(- c =N-)官能团,是设计和合成铅类生物活性化合物的重要药效团。在药物化学中,希夫氏碱因其丰富的生物活性而备受关注。本文综述了近年来希夫碱抗菌活性的研究进展。本文综述了2011年以来报道的希夫碱的抗菌、抗真菌、抗病毒、抗疟疾和抗利什曼原虫活性。

关键词: 希夫氏碱,抗菌活性,亚胺,亚甲基,抗菌,抗真菌,抗病毒,抗疟疾。

[1]
Golbedaghi, R.; Tabanez, A.M.; Esmaeili, S.; Fausto, R. Biological applications of macrocyclic schiff base ligands and their metal complexes: A survey of the literature (2005-2019). Appl. Organomet. Chem., 2020, 34(10), 1-33.
[http://dx.doi.org/10.1002/aoc.5884]
[2]
More, M.S.; Joshi, P.G.; Mishra, Y.K.; Khanna, P.K. Metal complexes driven from Schiff bases and semicarbazones for biomedical and allied applications: A review. Mater. Today Chem., 2019, 14, 100195.
[http://dx.doi.org/10.1016/j.mtchem.2019.100195] [PMID: 32289101]
[3]
Rauf, A. Synthesis, pH dependent photometric and electrochemical investigation, redox mechanism and biological applications of novel Schiff base and its metallic derivatives. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., 2017, 176, 155-167.
[4]
Zhang, J.; Xu, L.; Wong, W.Y. Energy materials based on metal Schiff base complexes. Coord. Chem. Rev., 2018, 355, 180-198.
[http://dx.doi.org/10.1016/j.ccr.2017.08.007]
[5]
da Silva, C.M.; da Silva, D.L.; Modolo, L.V.; Alves, R.B.; de Resende, M.A.; Martins, C.V.B.; de Fátima, Â. Schiff bases: A short review of their antimicrobial activities. J. Adv. Res., 2011, 2(1), 1-8.
[http://dx.doi.org/10.1016/j.jare.2010.05.004]
[6]
Tsantis, S.T.; Tzimopoulos, D.I. Holyńska, M.; Perlepes, S.P. Oligonuclear actinoid complexes with schiff bases as ligands—older achievements and recent progress. Int. J. Mol. Sci., 2020, 21(2), 555.
[http://dx.doi.org/10.3390/ijms21020555] [PMID: 31952278]
[7]
Fabbrizzi, L. Beauty in chemistry: Making artistic molecules with Schiff bases. J. Org. Chem., 2020, 85(19), 12212-12226.
[http://dx.doi.org/10.1021/acs.joc.0c01420] [PMID: 32864964]
[8]
Sharma, J.; Dogra, P.; Sharma, N. Applications of coordination compounds having schiff bases: A review. AIP Conf. Proc., 2019, 2142, 060002.
[9]
Berhanu, A.L. Gaurav; Mohiuddin, I.; Malik, A.K.; Aulakh, J.S.; Kumar, V.; Kim, K-H. A review of the applications of Schiff bases as optical chemical sensors. Trends Analyt. Chem., 2019, 116, 74-91.
[http://dx.doi.org/10.1016/j.trac.2019.04.025]
[10]
Kaczmarek, M.T.; Zabiszak, M.; Nowak, M.; Jastrzab, R. Lanthanides: Schiff base complexes, applications in cancer diagnosis, therapy, and antibacterial activity. Coord. Chem. Rev., 2018, 370, 42-54.
[http://dx.doi.org/10.1016/j.ccr.2018.05.012]
[11]
Golbedaghi, R.; Fausto, R. Coordination aspects in Schiff bases cocrystals. Polyhedron, 2018, 155, 1-12.
[http://dx.doi.org/10.1016/j.poly.2018.06.049]
[12]
Mahadevi, P.; Sumathi, S. Mini review on the performance of Schiff base and their metal complexes as photosensitizers in dye-sensitized solar cells. Synth. Commun., 2020, 50(15), 2237-2249.
[http://dx.doi.org/10.1080/00397911.2020.1748200]
[13]
Yin, N.; Diao, H.; Liu, W.; Wang, J.; Feng, L. Preparation, regulation and biological application of a Schiff base fluorescence probe. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2016, 153, 1-5.
[http://dx.doi.org/10.1016/j.saa.2015.07.107] [PMID: 26282317]
[14]
Udhayakumari, D.; Inbaraj, V. A review on schiff base fluorescent chemosensors for cell imaging applications. J. Fluoresc., 2020, 30(5), 1203-1223.
[http://dx.doi.org/10.1007/s10895-020-02570-7] [PMID: 32737660]
[15]
Xin, Y.; Yuan, J. Schiff’s base as a stimuli-responsive linker in polymer chemistry. Polym. Chem., 2012, 3(11), 3045-3055.
[http://dx.doi.org/10.1039/c2py20290e]
[16]
Liu, T.T.; Tseng, Y.W.; Yang, T.S. Functionalities of conjugated compounds of γ-aminobutyric acid with salicylaldehyde or cinnamaldehyde. Food Chem., 2016, 190, 1102-1108.
[http://dx.doi.org/10.1016/j.foodchem.2015.06.077] [PMID: 26213082]
[17]
Gao, W.W.; Gopala, L.; Bheemanaboina, R.R.Y.; Zhang, G.B.; Li, S.; Zhou, C.H. Discovery of 2-aminothiazolyl berberine derivatives as effectively antibacterial agents toward clinically drug-resistant Gram-negative Acinetobacter baumanii. Eur. J. Med. Chem., 2018, 146, 15-37.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.038] [PMID: 29396362]
[18]
Patel, D.; Kumari, P.; Patel, N. Synthesis and biological evaluation of some thiazolidinones as antimicrobial agents. Eur. J. Med. Chem., 2012, 48, 354-362.
[http://dx.doi.org/10.1016/j.ejmech.2011.11.041] [PMID: 22182927]
[19]
Mahyavanshi, V.; Marjadi, S.I.; Yadav, R. Synthesis and pharmacological studies of 1-(2-amino-1-(4-methoxyphenyl) ethyl) cyclohexanol analogs as potential microbial agents. Arab. J. Chem., 2017, 10, S804-S813.
[http://dx.doi.org/10.1016/j.arabjc.2012.12.009]
[20]
Panigrahi, A.; Are, V.N.; Jain, S.; Nayak, D.; Giri, S.; Sarma, T.K. Cationic organic nanoaggregates as aie luminogens for wash-free imaging of bacteria and broad-spectrum antimicrobial application. ACS Appl. Mater. Interfaces, 2020, 12(5), 5389-5402.
[http://dx.doi.org/10.1021/acsami.9b15629] [PMID: 31931570]
[21]
Yadav, P.; Poddar, D.; Jain, P.; Singh, A.; Sarkar, A. Chemistry of schiff base synthesis and their applications: a greener approach. In: Applications of Biodegradable and Bio-Based Polymers for Human Health and a Cleaner Environment; Stoica, I.; Mukbaniani, O.; Rawat, N.K.; Hagi, A.K., Eds.; Apple Academic Press: USA, 2021.
[http://dx.doi.org/10.1201/9781003146360-20]
[22]
Bhatti, M.P.; Sagir, M.; Naz, M.Y. Novel Schiff Bases Transition Metal Complexes;; Scholars' Press: India, 2014.
[23]
Akitsu, T. Schiff base in Organic, Inorganic and Physical Chemistry Akitsu, T., Ed.; Interopen UK, 2022.
[24]
Sahu, S.; Bharti, S.K.; Prasad, J. Synthesis and Biological Evaluation of some Novel Schiff bases Scholars. Press: India, 2021.
[25]
Patil, M.K.; Masand, V.H.; Maldhure, A.K. Schiff base metal complexes precursor for metal oxide nanomaterials: A review. Curr. Nanosci., 2021, 17(4), 634-645.
[http://dx.doi.org/10.2174/1573413716999201127112204]
[26]
Pervaiz, M.; Munir, A.; Riaz, A.; Saeed, Z.; Younas, U.; Imran, M.; Ullah, S.; Bashir, R.; Rashid, A.; Adnan, A. Review article-Amalgamation, scrutinizing, and biological evaluation of the antimicrobial aptitude of thiosemicarbazide Schiff bases derivatives metal complexes. Inorg. Chem. Commun., 2022, 141, 109459.
[http://dx.doi.org/10.1016/j.inoche.2022.109459]
[27]
Aggarwal, N.; Maji, S. Potential applicability of Schiff bases and their metal complexes during COVID-19 pandemic - a review. Rev. Inorg. Chem., 2022, 42(4), 363-383.
[http://dx.doi.org/10.1515/revic-2021-0027]
[28]
Mathur, G.; Sharma, P.K.; Nain, S. A review on isatin metal complexes derived from schiff bases. Curr. Bioact. Compd., 2018, 14(3), 211-216.
[http://dx.doi.org/10.2174/1573407213666170221154354]
[29]
Raczuk, E.; Dmochowska, B.; Samaszko-Fiertek, J.; Madaj, J. Different schiff bases—structure, importance and classification. Molecules, 2022, 27(3), 787.
[http://dx.doi.org/10.3390/molecules27030787] [PMID: 35164049]
[30]
Nair, S. Schiff base ligands: Synthesis and characterization ScholarsPress: India , 2019.
[31]
Soroceanu, A.; Bargan, A. Advanced and biomedical applications of schiff-base ligands and their metal complexes: A review. Crystals, 2022, 12(10), 1436.
[http://dx.doi.org/10.3390/cryst12101436]
[32]
Galant, L.S.; Rafique, J.; Braga, A.L.; Braga, F.C.; Saba, S.; Radi, R.; da Rocha, J.B.T.; Santi, C.; Monsalve, M.; Farina, M.; de Bem, A.F. The thiol-modifier effects of organoselenium compounds and their cytoprotective actions in neuronal cells. Neurochem. Res., 2021, 46(1), 120-130.
[http://dx.doi.org/10.1007/s11064-020-03026-x] [PMID: 32285377]
[33]
Godoi, M.; Botteselle, G.V.; Rafique, J.; Rocha, M.S.T.; Pena, J.M.; Braga, A.L. Solvent-free fmoc protection of amines under microwave irradiation. Asian J. Org. Chem., 2013, 2(9), 746-749.
[http://dx.doi.org/10.1002/ajoc.201300092]
[34]
Rafique, J.; Farias, G.; Saba, S.; Zapp, E.; Casagrande, I.B.; Salla, C.A.M.; Bechtold, I.H.; Scheide, M.R.; Neto, J.S.S.; Souza, D.M., Jr; Braga, H.C.; Ribeiro, L.F.B.; Gastaldon, F.; Pich, C.T.; Frizon, T.E.A. Selenylated-oxadiazoles as promising DNA intercalators: Synthesis, electronic structure, DNA interaction and cleavage. Dyes Pigm., 2020, 180, 108519.
[http://dx.doi.org/10.16/j.dyepig.2020.108519 ] [PMID: 32382200]
[35]
Saba, S.; Dos Santos, C.R.; Zavarise, B.R.; Naujorks, A.A.S.; Franco, M.S.; Schneider, A.R.; Scheide, M.R.; Affeldt, R.F.; Rafique, J.; Braga, A.L. Photoinduced, direct C(sp2)−H bond azo coupling of imidazoheteroarenes and imidazoanilines with aryl diazonium salts catalyzed by Eosin Y. Chemistry, 2020, 26(20), 4461-4466.
[http://dx.doi.org/10.1002/chem.201905308] [PMID: 31816129]
[36]
Santos, D.C.; Rafique, J.; Saba, S.; Almeida, G.M.; Siminski, T.; Pádua, C.; Filho, D.W.; Zamoner, A.; Braga, A.L.; Pedrosa, R.C.; Ourique, F. Apoptosis oxidative damage-mediated and antiproliferative effect of selenylated imidazo[1,2-a]pyridines on hepatocellular carcinoma HepG2 cells and in vivo. J. Biochem. Mol. Toxicol., 2021, 35(3), e22663.
[http://dx.doi.org/10.1002/jbt.22663] [PMID: 33125183]
[37]
Peterle, M.M.; Scheide, M.R.; Silva, L.T.; Saba, S.; Rafique, J.; Braga, A.L. Copper-catalyzed three-component reaction of oxadiazoles, elemental Se/S and aryl iodides: Synthesis of chalcogenyl (Se/S)-oxadiazoles. ChemistrySelect, 2018, 3(46), 13191-13196.
[http://dx.doi.org/10.1002/slct.201801213]
[38]
Veloso, I.C.; Delanogare, E.; Machado, A.E.; Braga, S.P.; Rosa, G.K.; De Bem, A.F.; Rafique, J.; Saba, S.; da Trindade, R.N.; Galetto, F.Z.; Moreira, E.L.G. A selanylimidazopyridine (3-SePh-IP) reverses the prodepressant- and anxiogenic-like effects of a high-fat/high-fructose diet in mice. J. Pharm. Pharmacol., 2021, 73(5), 673-681.
[http://dx.doi.org/10.1093/jpp/rgaa070] [PMID: 33772293]
[39]
Tornquist, B.L.; de Paula Bueno, G.; Manzano Willig, J.C.; de Oliveira, I.M.; Stefani, H.A.; Rafique, J.; Saba, S.; Almeida Iglesias, B.; Botteselle, G.V.; Manarin, F. Ytterbium (III) triflate/sodium dodecyl sulfate: A versatile recyclable and water-tolerant catalyst for the synthesis of bis(indolyl)methanes (BIMs). ChemistrySelect, 2018, 3(23), 6358-6363.
[http://dx.doi.org/10.1002/slct.201800673]
[40]
Frizon, T.E.A.; Vieira, A.A.; da Silva, F.N.; Saba, S.; Farias, G.; de Souza, B.; Zapp, E.; Lôpo, M.N.; Braga, H.C.; Grillo, F.; Curcio, S.F.; Cazati, T.; Rafique, J. Synthesis of 2,1,3-benzoxadiazole derivatives as new fluorophores—combined experimental, optical, electro, and theoretical study. Front Chem., 2020, 8, 360.
[http://dx.doi.org/10.3389/fchem.2020.00360] [PMID: 32478032]
[41]
Frizon, T.E.A.; Cararo, J.H.; Saba, S.; Dal-Pont, G.C.; Michels, M.; Braga, H.C.; Pimentel, T.; Dal-Pizzol, F.; Valvassori, S.S.; Rafique, J. Synthesis of novel selenocyanates and evaluation of their effect in cultured mouse neurons submitted to oxidative stress. Oxid. Med. Cell. Longev., 2020, 2020, 1-10.
[http://dx.doi.org/10.1155/2020/5417024] [PMID: 33093936]
[42]
] World Malaria Report. 2021. (Licence: CC BY-NC-SA 3.0 IGO, 2021).
[43]
Fonkui, T.Y.; Ikhile, M.I.; Njobeh, P.B.; Ndinteh, D.T. Benzimidazole Schiff base derivatives: Synthesis, characterization and antimicrobial activity. BMC Chem., 2019, 13(1), 127.
[http://dx.doi.org/10.1186/s13065-019-0642-3] [PMID: 31728454]
[44]
Okwor, I.; Uzonna, J. Social and economic burden of human leishmaniasis. Am. J. Trop. Med. Hyg., 2016, 94(3), 489-493.
[http://dx.doi.org/10.4269/ajtmh.15-0408] [PMID: 26787156]
[45]
Faheem, K.K.B. ChandraSekhar, K. V. G., Adinarayana, N. & Murugesan, S. Recent evolution on syntesis strategies and anti-leishmanial activity of β-carboline derivatives - An update. Heilyon, 2020, 6, e04916.
[http://dx.doi.org/10.1016/j.heliyon.2020.e04916]
[46]
Chander, S.; Ashok, P.; Reguera, R.M.; Perez-Pertejo, M.Y.; Carbajo-Andres, R.; Balana-Fouce, R.; Gowri Chandra Sekhar, K.V.; Sankaranarayanan, M. Synthesis and activity of benzopiperidine, benzopyridine and phenyl piperazine based compounds against Leishmania infantum. Exp. Parasitol., 2018, 189, 49-60.
[http://dx.doi.org/10.1016/j.exppara.2018.04.017] [PMID: 29702355]
[47]
Direkel, Ş Ünver, Y.; Akdemir, C. Antileishmanial activity of new synthesized schiff and mannich (morpholine) base compounds. Turkiye Parazitol. Derg., 2020, 44(4), 216-220.
[http://dx.doi.org/10.4274/tpd.galenos.2020.6900] [PMID: 33269563]
[48]
Granato, J.D.T.; dos Santos, J.A.; Calixto, S.L.; Prado da Silva, N.; da Silva Martins, J.; da Silva, A.D.; Coimbra, E.S. Novel steroid derivatives: Synthesis, antileishmanial activity, mechanism of action, and in silico physicochemical and pharmacokinetics studies. Biomed. Pharmacother., 2018, 106, 1082-1090.
[http://dx.doi.org/10.1016/j.biopha.2018.07.056] [PMID: 30119174]
[49]
Khattab, S.N.; Haiba, N.S.; Asal, A.M.; Bekhit, A.A.; Guemei, A.A.; Amer, A.; El-Faham, A. Study of antileishmanial activity of 2-aminobenzoyl amino acid hydrazides and their quinazoline derivatives. Bioorg. Med. Chem. Lett., 2017, 27(4), 918-921.
[http://dx.doi.org/10.1016/j.bmcl.2017.01.003] [PMID: 28087274]
[50]
Mangwegape, D.K.; Zuma, N.H.; Aucamp, J.; N’Da, D.D. Synthesis and in vitro antileishmanial efficacy of novel benzothiadiazine-1,1-dioxide derivatives. Arch. Pharm. (Weinheim), 2021, 354(5), 2000280.
[http://dx.doi.org/10.1002/ardp.202000280] [PMID: 33491807]
[51]
Taha, M.; Sain, A.A.; Ali, M.; Anouar, E.H.; Rahim, F.; Ismail, N.H.; Adenan, M.I.; Imran, S.; Al-Harrasi, A.; Nawaz, F.; Iqbal, N.; Khan, K.M. Synthesis of symmetrical bis-Schiff base-disulfide hybrids as highly effective anti-leishmanial agents. Bioorg. Chem., 2020, 99, 103819.
[http://dx.doi.org/10.1016/j.bioorg.2020.103819] [PMID: 32325334]
[52]
Ünver, Y.; Tuluk, M.; Kahriman, N.; Emirik, M. Bektaş, E.; Direkel, Ş. New chalcone derivatives with schiff base-thiophene: Synthesis, biological activity, and molecular docking studies. Russ. J. Gen. Chem., 2019, 89(4), 794-799.
[http://dx.doi.org/10.1134/S107036321904025X]
[53]
Ünver, Y.; Ünlüer, D. Dı̇ rekel, Ş.; Durdaği, S. Bis benzothiophene Schiff bases: Synthesis and in silico-guided biological activity studies. Turk. J. Chem., 2020, 44(4), 1164-1176.
[http://dx.doi.org/10.3906/kim-2004-78] [PMID: 33488220]
[54]
Süleymanoğlu, N.; Ustabaş, R.; Direkel, Ş.; Alpaslan, Y.B.; Ünver , Y. 1,2,4-triazole derivative with Schiff base; thiol-thione tautomerism, DFT study and antileishmanial activity. J. Mol. Struct., 2017, 1150, 82-87.
[http://dx.doi.org/10.1016/j.molstruc.2017.08.075]
[55]
Tahir, M.; Sirajuddin, M.; Haider, A.; Ali, S.; Nadhman, A.; Rizzoli, C. Synthesis, spectroscopic characterization, crystal structure, interaction with DNA, CTAB as well as evaluation of biological potency, docking and molecular dynamics studies of N-(3,4,5-trimethoxybenzylidene)-2, 3-dimethylbenzenamine. J. Mol. Struct., 2019, 1178, 29-38.
[http://dx.doi.org/10.1016/j.molstruc.2018.10.014]
[56]
Vicini, P.; Geronikaki, A.; Incerti, M.; Busonera, B.; Poni, G.; Cabras, C.A.; La Colla, P. Synthesis and biological evaluation of benzo[d]isothiazole, benzothiazole and thiazole Schiff bases. Bioorg. Med. Chem., 2003, 11(22), 4785-4789.
[http://dx.doi.org/10.1016/S0968-0896(03)00493-0] [PMID: 14556794]
[57]
Maryam, M.; Tan, S.L.; Crouse, K.A.; Mohamed Tahir, M.I.; Chee, H.Y. Synthesis, characterization and evaluation of antidengue activity of enantiomeric Schiff bases derived from S-substituted dithiocarbazate. Turk. J. Chem., 2020, 44(5), 1395-1409.
[http://dx.doi.org/10.3906/kim-2006-22] [PMID: 33488239]
[58]
Jarrahpour, A.; Sheikh, J.; Mounsi, I.E.; Juneja, H.; Hadda, T.B. Computational evaluation and experimental in vitro antibacterial, antifungal and antiviral activity of bis-Schiff bases of isatin and its derivatives. Med. Chem. Res., 2013, 22(3), 1203-1211.
[http://dx.doi.org/10.1007/s00044-012-0127-6]
[59]
Kumar, K.S.; Ganguly, S.; Veerasamy, R.; De Clercq, E. Synthesis, antiviral activity and cytotoxicity evaluation of Schiff bases of some 2-phenyl quinazoline-4(3)H-ones. Eur. J. Med. Chem., 2010, 45(11), 5474-5479.
[http://dx.doi.org/10.1016/j.ejmech.2010.07.058] [PMID: 20724039]
[60]
Jarrahpour, A.; Khalili, D.; De Clercq, E.; Salmi, C.; Brunel, J. Synthesis, antibacterial, antifungal and antiviral activity evaluation of some new bis-Schiff bases of isatin and their derivatives. Molecules, 2007, 12(8), 1720-1730.
[http://dx.doi.org/10.3390/12081720] [PMID: 17960083]
[61]
Ali, P.; Meshram, J.; Sheikh, J.; Tiwari, V.; Dongre, R.; Hadda, T.B. Predictions and correlations of structure activity relationship of some aminoantipyrine derivatives on the basis of theoretical and experimental ground. Med. Chem. Res., 2012, 21(2), 157-164.
[http://dx.doi.org/10.1007/s00044-010-9505-0]
[62]
Abbas, S.Y.; Farag, A.A.; Ammar, Y.A.; Atrees, A.A.; Mohamed, A.F.; El-Henawy, A.A. Synthesis, characterization, and antiviral activity of novel fluorinated isatin derivatives. Monatsh. Chem., 2013, 144(11), 1725-1733.
[http://dx.doi.org/10.1007/s00706-013-1034-3] [PMID: 32214479]
[63]
Madni, M.; Hameed, S.; Ahmed, M.N.; Tahir, M.N.; Al-Masoudi, N.A.; Pannecouque, C. Synthesis, crystal structure, anti-HIV, and antiproliferative activity of new pyrazolylthiazole derivatives. Med. Chem. Res., 2017, 26(10), 2653-2665.
[http://dx.doi.org/10.1007/s00044-017-1963-1]
[64]
Johnson, J.; Yardily, A. Synthesis, spectral investigation, thermal, molecular modeling and bio-molecular docking studies of a thiazole derived chalcone and its metal complexes. J. Coord. Chem., 2020, 73(11), 1712-1729.
[http://dx.doi.org/10.1080/00958972.2020.1795145]
[65]
Zhang, B.; Liu, Y.; Wang, Z.; Li, Y.; Wang, Q. Antiviral activity and mechanism of gossypols: Effects of the O 2 ˙- production rate and the chirality. RSC Advances, 2017, 7(17), 10266-10277.
[http://dx.doi.org/10.1039/C6RA28625A]
[66]
Ligon, B.L. Penicillin: its discovery and early development. Semin. Pediatr. Infect. Dis., 2004, 15(1), 52-57.
[http://dx.doi.org/10.1053/j.spid.2004.02.001] [PMID: 15175995]
[67]
Kong, K.F.; Schneper, L.; Mathee, K. Beta-lactam antibiotics: from antibiosis to resistance and bacteriology. Acta Pathol. Microbiol. Scand. Suppl., 2010, 118(1), 1-36.
[http://dx.doi.org/10.1111/j.1600-0463.2009.02563.x] [PMID: 20041868]
[68]
Majiduddin, F.K.; Materon, I.C.; Palzkill, T.G. Molecular analysis of beta-lactamase structure and function. Int. J. Med. Microbiol., 2002, 292(2), 127-137.
[http://dx.doi.org/10.1078/1438-4221-00198] [PMID: 12195735]
[69]
Knowles, J.R. Penicillin resistance: The chemistry of. β-lactamase inhibition. Acc. Chem. Res., 1985, 18(4), 97-104.
[http://dx.doi.org/10.1021/ar00112a001]
[70]
Kumar, S.; Lim, S.M.; Ramasamy, K.; Vasudevan, M.; Shah, S.A.A.; Selvaraj, M.; Narasimhan, B. Synthesis, molecular docking and biological evaluation of bis-pyrimidine Schiff base derivatives. Chem. Cent. J., 2017, 11(1), 89.
[http://dx.doi.org/10.1186/s13065-017-0322-0] [PMID: 29086867]
[71]
Duan, J.R.; Liu, H.B.; Jeyakkumar, P.; Gopala, L.; Li, S.; Geng, R.X.; Zhou, C.H. Design, synthesis and biological evaluation of novel Schiff base-bridged tetrahydroprotoberberine triazoles as a new type of potential antimicrobial agents. MedChemComm, 2017, 8(5), 907-916.
[http://dx.doi.org/10.1039/C6MD00688D] [PMID: 30108806]
[72]
Gong, H.H.; Baathulaa, K.; Lv, J.S.; Cai, G.X.; Zhou, C.H. Synthesis and biological evaluation of Schiff base-linked imidazolyl naphthalimides as novel potential anti-MRSA agents. MedChemComm, 2016, 7(5), 924-931.
[http://dx.doi.org/10.1039/C5MD00574D]
[73]
Kajal, A.; Bala, S.; Kamboj, S.; Sharma, N.; Saini, V. Schiff bases: A versatile pharmacophore. J. Catal., 2013, 2013, 893512.
[74]
Chavan, R.R.; Hosamani, K.M. Microwave-assisted synthesis, computational studies and antibacterial/anti-inflammatory activities of compounds based on coumarin-pyrazole hybrid. R. Soc. Open Sci., 2018, 5(5), 172435.
[http://dx.doi.org/10.1098/rsos.172435] [PMID: 29892430]
[75]
Ling, L.L.; Schneider, T.; Peoples, A.J.; Spoering, A.L.; Engels, I.; Conlon, B.P.; Mueller, A.; Schäberle, T.F.; Hughes, D.E.; Epstein, S.; Jones, M.; Lazarides, L.; Steadman, V.A.; Cohen, D.R.; Felix, C.R.; Fetterman, K.A.; Millett, W.P.; Nitti, A.G.; Zullo, A.M.; Chen, C.; Lewis, K. A new antibiotic kills pathogens without detectable resistance. Nature, 2015, 517(7535), 455-459.
[http://dx.doi.org/10.1038/nature14098] [PMID: 25561178]
[76]
Ng, V.; Kuehne, S.A.; Chan, W.C. Rational design and synthesis of modified teixobactin analogues: in vitro antibacterial activity against Staphylococcus aureus, Propionibacterium acnes and Pseudomonas aeruginosa. Chemistry, 2018, 24(36), 9136-9147.
[http://dx.doi.org/10.1002/chem.201801423] [PMID: 29741277]
[77]
Amnerkar, N.D.; Bhongade, B.A.; Bhusari, K.P. Synthesis and biological evaluation of some 4-(6-substituted-1,3-benzothiazol-2-yl)amino-1,3-thiazole-2-amines and their Schiff bases. Arab. J. Chem., 2015, 8(4), 545-552.
[http://dx.doi.org/10.1016/j.arabjc.2014.11.034]
[78]
Prakash, C.R.; Raja, S. Synthesis, characterization and in vitro antimicrobial activity of some novel 5-substituted Schiff and Mannich base of isatin derivatives. J. Saudi Chem. Soc., 2013, 17(3), 337-344.
[http://dx.doi.org/10.1016/j.jscs.2011.10.022]
[79]
Mallikarjunaswamy, C.; Bhadregowda, D.G.; Mallesha, L. Synthesis of novel ( E )- N ′-(-(2-chloropyrimidin-4-yl)- N -(5-cyano-2-hydroxy-6-phenylpyrimidin-4-yl) formamidine derivatives and their antimicrobial activity. J. Saudi Chem. Soc., 2016, 20, S606-S614.
[http://dx.doi.org/10.1016/j.jscs.2013.04.005]
[80]
Chen, Y.; Mi, Y.; Sun, X.; Zhang, J.; Li, Q.; Ji, N.; Guo, Z. Novel inulin derivatives modified with schiff bases: Synthesis, characterization, and antifungal activity. Polymers (Basel), 2019, 11(6), 998.
[http://dx.doi.org/10.3390/polym11060998] [PMID: 31167475]
[81]
Wei, L.; Tan, W.; Zhang, J.; Mi, Y.; Dong, F.; Li, Q.; Guo, Z. Synthesis, characterization, and antifungal activity of schiff bases of inulin bearing pyridine ring. Polymers (Basel), 2019, 11(2), 371.
[http://dx.doi.org/10.3390/polym11020371] [PMID: 30960355]
[82]
Carreño, A.; Gacitúa, M.; Páez-Hernández, D.; Polanco, R.; Preite, M.; Fuentes, J.A.; Mora, G.C.; Chávez, I.; Arratia-Pérez, R. Spectral, theoretical characterization and antifungal properties of two phenol derivative Schiff bases with an intramolecular hydrogen bond. New J. Chem., 2015, 39(10), 7822-7831.
[http://dx.doi.org/10.1039/C5NJ01469G]
[83]
Carreño, A.; Zúñiga, C.; Páez-Hernández, D.; Gacitúa, M.; Polanco, R.; Otero, C.; Arratia-Pérez, R.; Fuentes, J.A. Study of the structure-bioactivity relationship of three new pyridine Schiff bases: Synthesis, spectral characterization, DFT calculations and biological assays. New J. Chem., 2018, 42(11), 8851-8863.
[http://dx.doi.org/10.1039/C8NJ00390D]
[84]
Sabaa, M.W.; Elzanaty, A.M.; Abdel-Gawad, O.F.; Arafa, E.G. Synthesis, characterization and antimicrobial activity of Schiff bases modified chitosan-graft-poly(acrylonitrile). Int. J. Biol. Macromol., 2018, 109, 1280-1291.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.11.129] [PMID: 29169941]
[85]
Anush, S.M.; Vishalakshi, B.; Kalluraya, B.; Manju, N. Synthesis of pyrazole-based Schiff bases of Chitosan: Evaluation of antimicrobial activity. Int. J. Biol. Macromol., 2018, 119, 446-452.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.07.129] [PMID: 30036622]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy