Generic placeholder image

Infectious Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5265
ISSN (Online): 2212-3989

Review Article

Potential of Black Seeds (Nigella sativa) in the Management of Long COVID or Post-acute Sequelae of COVID-19 (PASC) and Persistent COVID-19 Symptoms – An Insight

Author(s): Naina Mohamed Pakkir Maideen*, Abdurazak Hassan Jumale, Ibrahim Ramadan Barakat and Ayesha Khalifa Albasti

Volume 23, Issue 4, 2023

Published on: 13 March, 2023

Article ID: e230223213955 Pages: 8

DOI: 10.2174/1871526523666230223112045

Price: $65

Abstract

Background: Some individuals may experience symptoms persisting for many months after the recovery from COVID-19 and patients with Long COVID are managed mainly with symptomatic treatment and supportive care.

Objective: This review article focuses on the beneficial effects of black seeds (Nigella sativa) in the management of long COVID and persistent COVID symptoms.

Methods: The literature was searched in databases such as LitCOVID, Web of Science, Google Scholar, bioRxiv, medRxiv, Science Direct, EBSCO, Scopus, Embase, and reference lists to identify studies, which evaluated various effects of black seeds (N. sativa) related to signs and symptoms of long COVID.

Results: Black seeds (N. sativa) have shown potential anti-COVID, antiviral, anti-inflammatory, antioxidant, immunomodulatory, antihypertensive, anti-obesity, antidiabetic, antihyperlipidemic, and antiasthmatic properties in various clinical, animal, in vitro, in vivo, and in silico studies, which would help the patients recovered from COVID to mitigate Long COVID complications.

Conclusion: Patients experiencing Long COVID may use black seeds (N. sativa) as adjunctive therapy in combination with symptomatic treatment and supportive care to prevent further deterioration and hospitalization. The safety and efficacy of N. sativa in patients with Long-COVID would further be established by future randomized controlled clinical trials.

Keywords: Long COVID, long-haul COVID, chronic COVID, post-COVID conditions (PCC), post-acute COVID-19, postacute sequelae of SARS-CoV-2 infection (PASC), long-term effects of COVID, Nigella sativa, black seeds, kalonji, thymoquinone.

Graphical Abstract
[1]
WHO Coronavirus (COVID-19) Dashboard. Available from: https://covid19.who.int/ (Accessed on: 09 Aug 2022).
[2]
Gluckman TJ, Bhave NM, Allen LA, et al. 2022 ACC expert consensus decision pathway on cardiovascular sequelae of COVID-19 in adults: Myocarditis and other myocardial involvement, post-acute sequelae of SARS-CoV-2 infection, and return to play: A report of the American College of cardiology solution set oversight Committee. J Am Coll Cardiol 2022; 79(17): 1717-56.
[http://dx.doi.org/10.1016/j.jacc.2022.02.003] [PMID: 35307156]
[3]
Chen C, Haupert SR, Zimmermann L, Shi X, Fritsche LG, Mukherjee B. Global prevalence of post COVID-19 condition or long COVID: A meta-analysis and systematic review. J Infect Dis 2022; 226(9): 1593-607.
[http://dx.doi.org/10.1093/infdis/jiac136] [PMID: 35429399]
[4]
Groff D, Sun A, Ssentongo AE, et al. Short-term and long-term rates of postacute sequelae of SARS-CoV-2 infection: A systematic review. JAMA Netw Open 2021; 4(10): e2128568.
[http://dx.doi.org/10.1001/jamanetworkopen.2021.28568] [PMID: 34643720]
[5]
Lopez-Leon S, Wegman-Ostrosky T, Perelman C, et al. More than 50 long-term effects of COVID-19: A systematic review and meta-analysis. medRxiv 2021; 2021; 16144.
[6]
Newell KL, Waickman AT. Inflammation, immunity, and antigen persistence in post-acute sequelae of SARS-CoV-2 infection. Curr Opin Immunol 2022; 77: 102228.
[http://dx.doi.org/10.1016/j.coi.2022.102228] [PMID: 35724449]
[7]
Proal AD, VanElzakker MB. Long COVID or post-acute sequelae of COVID-19 (PASC): An overview of biological factors that may contribute to persistent symptoms. Front Microbiol 2021; 12: 698169.
[http://dx.doi.org/10.3389/fmicb.2021.698169] [PMID: 34248921]
[8]
Su Y, Yuan D, Chen DG, et al. Multiple early factors anticipate post-acute COVID-19 sequelae. Cell 2022; 185(5): 881-895.e20.
[http://dx.doi.org/10.1016/j.cell.2022.01.014] [PMID: 35216672]
[9]
Peluso MJ, Deeks SG. Early clues regarding the pathogenesis of long-COVID. Trends Immunol 2022; 43(4): 268-70.
[http://dx.doi.org/10.1016/j.it.2022.02.008] [PMID: 35272932]
[10]
Umesh A, Pranay K, Pandey RC, Gupta MK. Evidence mapping and review of long-COVID and its underlying pathophysiological mechanism. Infection 2022; 50(5): 1053-66.
[http://dx.doi.org/10.1007/s15010-022-01835-6] [PMID: 35489015]
[11]
Khazaal S, Harb J, Rima M, et al. The pathophysiology of long COVID throughout the renin-angiotensin system. Molecules 2022; 27(9): 2903.
[http://dx.doi.org/10.3390/molecules27092903] [PMID: 35566253]
[12]
Mehandru S, Merad M. Pathological sequelae of long-haul COVID. Nat Immunol 2022; 23(2): 194-202.
[http://dx.doi.org/10.1038/s41590-021-01104-y] [PMID: 35105985]
[13]
Satterfield BA, Bhatt DL, Gersh BJ. Cardiac involvement in the long-term implications of COVID-19. Nat Rev Cardiol 2022; 19(5): 332-41.
[http://dx.doi.org/10.1038/s41569-021-00631-3] [PMID: 34686843]
[14]
Daines L, Zheng B, Pfeffer P, Hurst JR, Sheikh A. A clinical review of long-COVID with a focus on the respiratory system. Curr Opin Pulm Med 2022; 28(3): 174-9.
[http://dx.doi.org/10.1097/MCP.0000000000000863] [PMID: 35131989]
[15]
Stefanou MI, Palaiodimou L, Bakola E, et al. Neurological manifestations of long-COVID syndrome: A narrative review. Ther Adv Chronic Dis 2022; 13.
[http://dx.doi.org/10.1177/20406223221076890] [PMID: 35198136]
[16]
Pinzon RT, Wijaya VO, Jody AA, Nunsio PN, Buana RB. Persistent neurological manifestations in long COVID-19 syndrome: A systematic review and meta-analysis. J Infect Public Health 2022; 15(8): 856-69.
[http://dx.doi.org/10.1016/j.jiph.2022.06.013] [PMID: 35785594]
[17]
Sancak B, Ozer Agirbas U, Kilic C. Long COVID and its psychiatric aspects. J Acad Consult Liaison Psychiatry 2021; 62(4): 480-1.
[http://dx.doi.org/10.1016/j.jaclp.2021.03.003] [PMID: 33817685]
[18]
Badenoch JB, Rengasamy ER, Watson C, et al. Persistent neuropsychiatric symptoms after COVID-19: A systematic review and meta-analysis. Brain Commun 2022; 4(1): fcab297.
[http://dx.doi.org/10.1093/braincomms/fcab297] [PMID: 35169700]
[19]
Zeng N, Zhao YM, Yan W, et al. A systematic review and meta-analysis of long term physical and mental sequelae of COVID-19 pandemic: Call for research priority and action. Mol Psychiatry 2022; 28: 423-33.
[PMID: 35668159]
[20]
Blackett JW, Wainberg M, Elkind MSV, Freedberg DE. Potential long coronavirus disease 2019 gastrointestinal symptoms 6 months after coronavirus infection are associated with mental health symptoms. Gastroenterology 2022; 162(2): 648-650.e2.
[http://dx.doi.org/10.1053/j.gastro.2021.10.040] [PMID: 34728186]
[21]
Raman B, Bluemke DA, Lüscher TF, Neubauer S. Long COVID: Post-acute sequelae of COVID-19 with a cardiovascular focus. Eur Heart J 2022; 43(11): 1157-72.
[http://dx.doi.org/10.1093/eurheartj/ehac031] [PMID: 35176758]
[22]
Diotallevi F, Mazzanti S, Properzi P, Olivieri S, Giacometti A, Offidani A. Is there a POST-COVID dermatological syndrome? The integrated dermato-infectious disease experience of a single centre. J Eur Acad Dermatol Venereol 2022; 36(3): e166-9.
[http://dx.doi.org/10.1111/jdv.17803] [PMID: 34755400]
[23]
Karaarslan F, Güneri FD. Kardeş S. Long COVID: Rheumatologic/musculoskeletal symptoms in hospitalized COVID-19 survivors at 3 and 6 months. Clin Rheumatol 2022; 41(1): 289-96.
[http://dx.doi.org/10.1007/s10067-021-05942-x] [PMID: 34713356]
[24]
Sansone A, Mollaioli D, Limoncin E, et al. The sexual long COVID (SLC): Erectile dysfunction as a biomarker of systemic complications for COVID-19 long haulers. Sex Med Rev 2021; 10(2): 271-85.
[http://dx.doi.org/10.1016/j.sxmr.2021.11.001] [PMID: 34933829]
[25]
Pal R, Joshi A, Bhadada SK, Banerjee M, Vaikkakara S, Mukhopadhyay S. Endocrine follow-up during post-acute COVID-19: practical recommendations based on available clinical evidence. Endocr Pract 2022; 28(4): 425-32.
[http://dx.doi.org/10.1016/j.eprac.2022.02.003] [PMID: 35158058]
[26]
Jiang DH, Roy DJ, Gu BJ, Hassett LC, McCoy RG. Postacute sequelae of severe acute respiratory syndrome coronavirus 2 infection: A state-of-the-art review. JACC Basic Transl Sci 2021; 6(9-10): 796-811.
[http://dx.doi.org/10.1016/j.jacbts.2021.07.002] [PMID: 34541421]
[27]
Alkodaymi MS, Omrani OA, Fawzy NA, et al. Prevalence of post-acute COVID-19 syndrome symptoms at different follow-up periods: A systematic review and meta-analysis. Clin Microbiol Infect 2022; 28(5): 657-66.
[http://dx.doi.org/10.1016/j.cmi.2022.01.014] [PMID: 35124265]
[28]
Han Q, Zheng B, Daines L, Sheikh A. Long-term sequelae of COVID-19: A systematic review and meta-analysis of one-year follow-up studies on post-COVID symptoms. Pathogens 2022; 11(2): 269.
[http://dx.doi.org/10.3390/pathogens11020269] [PMID: 35215212]
[29]
Munipalli B, Seim L, Dawson NL, Knight D, Dabrh AMA. Post-acute sequelae of COVID-19 (PASC): A meta-narrative review of pathophysiology, prevalence, and management. SN Compr Clin Med 2022; 4(1): 90.
[http://dx.doi.org/10.1007/s42399-022-01167-4] [PMID: 35402784]
[30]
Laestadius LI, Guidry JPD, Bishop A, Campos-Castillo C. State health department communication about long COVID in the United States on facebook: Risks, prevention, and support. Int J Environ Res Public Health 2022; 19(10): 5973.
[http://dx.doi.org/10.3390/ijerph19105973] [PMID: 35627510]
[31]
Burdock GA. Assessment of black cumin (Nigella sativa L.) as a food ingredient and putative therapeutic agent. Regul Toxicol Pharmacol 2022; 128: 105088.
[http://dx.doi.org/10.1016/j.yrtph.2021.105088] [PMID: 34838871]
[32]
Ahmad MF, Ahmad FA, Ashraf SA, et al. An updated knowledge of Black seed (Nigella sativa Linn.): Review of phytochemical constituents and pharmacological properties. J Herb Med 2021; 25: 100404.
[http://dx.doi.org/10.1016/j.hermed.2020.100404] [PMID: 32983848]
[33]
Dalli M, Bekkouch O, Azizi S, Azghar A, Gseyra N, Kim B. Nigella sativa L. phytochemistry and pharmacological activities: A review (2019–2021). Biomolecules 2021; 12(1): 20.
[http://dx.doi.org/10.3390/biom12010020] [PMID: 35053168]
[34]
Ashraf S, Ashraf S, Ashraf M, et al. Honey and Nigella sativa against COVID-19 in Pakistan (HNS-COVID-PK): A multi-center placebo-controlled randomized clinical trial. Phytother Res 2023; 37(2): 627-44.
[http://dx.doi.org/10.1002/ptr.7640] [PMID: 36420866]
[35]
Koshak A, Koshak EA, Mobeireek AF, et al. Nigella sativa supplementation accelerates recovery from mild COVID-19: First randomized controlled trial. Eur J Integr Med 2021; 48: 101899.
[http://dx.doi.org/10.1016/j.eujim.2021.101899]
[36]
El Sayed SM, Aboonq MS, El Rashedy AG, et al. Promising preventive and therapeutic effects of TaibUVID nutritional supplements for COVID-19 pandemic: towards better public prophylaxis and treatment (A retrospective study). Am J Blood Res 2020; 10(5): 266-82.
[PMID: 33224571]
[37]
El Sayed SM, Bahashwan SA, Aboonq MS, Baghdadi H, Elshazley M, Okashah AM. Adjuvant TaibUVID nutritional supplements proved promising for novel safe COVID-19 public prophylaxis and treatment: Enhancing immunity and decreasing morbidity period for better outcomes (A retrospective study). Int J Diabetes Dev Ctries 2020; 4(8): 1-15.
[38]
Dutt J, Ganatra B, Suthar N, et al. A randomized and comparative study to assess safety and efficacy of supplemental treatment of a herbal formulation - Aayudh Advance comprising essential oils in patients with corona virus 2019 (COVID-19). Contemp Clin Trials Commun 2021; 22: 100755.
[http://dx.doi.org/10.1016/j.conctc.2021.100755] [PMID: 33728385]
[39]
Bouchentouf S, Noureddine M. Identification of compounds from Nigella sativa as new potential inhibitors of 2019 novel coronavirus (COVID-19): Molecular docking study. ChemRxiv 2020; 12055716.v1.
[http://dx.doi.org/10.26434/chemrxiv.12055716.v1]
[40]
Youness K, Mohammed M, Houda F. In silico investigation of the SARS CoV2 protease with thymoquinone, the major constituent of Nigella sativa. Curr Drug Discov Technol 2020; 17: 1-4.
[http://dx.doi.org/10.2174/1570163817666200712164406]
[41]
Sekiou O, Bouziane I, Bouslama Z, Djemel A. In silico identification of potent inhibitors of COVID-19 Main Protease (Mpro) and Angiotensin Converting Enzyme 2 (ACE2) from natural products: Quercetin, hispidulin, and cirsimaritin exhibited better potential inhibition than hydroxy-chloroquine against COVID-19 main protease active site and ACE2. ChemRxiv 2020; 12181404.v1.
[http://dx.doi.org/10.26434/chemrxiv.12181404.v1]
[42]
Pandey P, Khan F, Mazumder A, Rana AK, Srivastava Y. Inhibitory potential of dietary phytocompounds of Nigella sativa against key targets of novel coronavirus (COVID-19). Int J Pharm Sci Rev Res 2021; 55(1): 190-7.
[http://dx.doi.org/10.5530/ijper.55.1.21]
[43]
Ahmad S, Abbasi HW, Shahid S, Gul S, Abbasi SW. Molecular docking, simulation and MM-PBSA studies of Nigella sativa compounds: a computational quest to identify potential natural antiviral for COVID-19 treatment. J Biomol Struct Dyn 2021; 39(12): 4225-33.
[http://dx.doi.org/10.1080/07391102.2020.1775129]
[44]
Shaikh YI, Shaikh VS, Ahmed K, Nazeruddin GM, Pathan HM. The revelation of various compounds found in Nigella sativa L. (Black Cumin) and their possibility to inhibit COVID-19 infection based on the molecular docking and physical properties. Eng Sci 2020; 11: 31-5.
[http://dx.doi.org/10.30919/es8d1127]
[45]
Jakhmola Mani R, Sehgal N, Dogra N, Saxena S, Pande Katare D. Deciphering underlying mechanism of SARS-CoV-2 infection in humans and revealing the therapeutic potential of bioactive constituents from Nigella sativa to combat COVID-19: In silico study. J Biomol Struct Dyn 2020; 1-3.
[PMID: 33111624]
[46]
Xu H, Liu B, Xiao Z, et al. Computational and experimental studies reveal that thymoquinone blocks the entry of coronaviruses into in vitro cells. Infect Dis Ther 2021; 10(1): 483-94.
[http://dx.doi.org/10.1007/s40121-021-00400-2] [PMID: 33532909]
[47]
Mehmood A, Khan S, Khan S, et al. In silico analysis of quranic and prophetic medicinals plants for the treatment of infectious viral diseases including corona virus. Saudi J Biol Sci 2021; 28(5): 3137-51.
[http://dx.doi.org/10.1016/j.sjbs.2021.02.058] [PMID: 33642896]
[48]
Sultan Mohideen AK. Molecular docking analysis of phytochemical thymoquinone as a therapeutic agent on SARS-CoV-2 envelope protein. Biointerface Res Appl Chem 2020; 11(1): 8389-401.
[http://dx.doi.org/10.33263/BRIAC111.83898401]
[49]
Esharkawy ER, Almalki F, Hadda TB. In vitro potential antiviral SARS-CoV-19- activity of natural product thymohydroquinone and dithymoquinone from Nigella sativa. Bioorg Chem 2022; 120: 105587.
[http://dx.doi.org/10.1016/j.bioorg.2021.105587] [PMID: 35026560]
[50]
Maideen NM, Rajkapoor B, Sudha M, Mirunalini G, Mohamed R. Therapeutic potentials of black seeds (Nigella sativa) in the management of COVID-19-A review of clinical and in silico studies. Antiinfect Agents 2022; 20: e020822207222.
[51]
Le Balc’h P, Pinceaux K, Pronier C, Seguin P, Tadié JM, Reizine F. Herpes simplex virus and cytomegalovirus reactivations among severe COVID-19 patients. Crit Care 2020; 24(1): 530.
[http://dx.doi.org/10.1186/s13054-020-03252-3] [PMID: 32859241]
[52]
Shanshal M, Ahmed HS. COVID-19 and herpes simplex virus infection: A cross-sectional study. Cureus 2021; 13(9): e18022.
[http://dx.doi.org/10.7759/cureus.18022] [PMID: 34667693]
[53]
Moniz P, Brito S, Póvoa P. SARS-CoV-2 and cytomegalovirus co-infections-a case series of critically ill patients. J Clin Med 2021; 10(13): 2792.
[http://dx.doi.org/10.3390/jcm10132792] [PMID: 34201947]
[54]
Gold JE, Okyay RA, Licht WE, Hurley DJ. Investigation of long COVID prevalence and its relationship to Epstein-Barr virus reactivation. Pathogens 2021; 10(6): 763.
[http://dx.doi.org/10.3390/pathogens10060763] [PMID: 34204243]
[55]
Peluso MJ, Deveau TM, Munter SE, et al. Evidence of recent Epstein-Barr virus reactivation in individuals experiencing Long COVID. medRxiv 2022.
[56]
Chen J, Song J, Dai L, Post SR, Qin Z. SARS-CoV-2 infection and lytic reactivation of herpesviruses: A potential threat in the postpandemic era? J Med Virol 2022; 94(11): 5103-11.
[http://dx.doi.org/10.1002/jmv.27994]
[57]
Sökmen A. Antiviral and cytotoxic activities of extracts from the cell cultures and respective parts of some Turkish medicinal plants. Turk J Biol 2001; 25(3): 343-50.
[58]
Salem ML, Hossain MS. Protective effect of black seed oil from Nigella sativa against murine cytomegalovirus infection. Int J Immunopharmacol 2000; 22(9): 729-40.
[http://dx.doi.org/10.1016/S0192-0561(00)00036-9] [PMID: 10884593]
[59]
Zihlif MA, Mahmoud IS, Ghanim MT, et al. Thymoquinone efficiently inhibits the survival of EBV-infected B cells and alters EBV gene expression. Integr Cancer Ther 2013; 12(3): 257-63.
[http://dx.doi.org/10.1177/1534735412458827] [PMID: 23089554]
[60]
Maideen NMP. Prophetic medicine-Nigella sativa (black cumin seeds) -Potential herb for COVID-19? J Pharmacopuncture 2020; 23(2): 62-70.
[http://dx.doi.org/10.3831/KPI.2020.23.010] [PMID: 32685234]
[61]
Maideen NMP. Potential of black seeds (Nigella sativa) in the management of COVID-19 among children. IJMDAT 2021; 4: e366.
[http://dx.doi.org/10.32113/ijmdat_202110_366]
[62]
Basurra RS, Wang SM, Alhoot MA. Nigella sativa (black seed) as a natural remedy against viruses. J Pure Appl Microbiol 2021; 15(1): 29-41.
[http://dx.doi.org/10.22207/JPAM.15.1.26]
[63]
Littlefield KM, Watson RO, Schneider JM, et al. SARS-CoV-2-specific T cells associate with inflammation and reduced lung function in pulmonary post-acute sequalae of SARS-CoV-2. PLoS Pathog 2022; 18(5): e1010359.
[http://dx.doi.org/10.1371/journal.ppat.1010359] [PMID: 35617421]
[64]
Peluso MJ, Sans HM, Forman CA, et al. Plasma markers of neurologic injury and inflammation in people with self-reported neurologic postacute sequelae of SARS-CoV-2 infection. Neurol Neuroimmunol Neuroinflamm 2022; 9(5): e200003.
[http://dx.doi.org/10.1212/NXI.0000000000200003] [PMID: 35701186]
[65]
Novak P, Mukerji SS, Alabsi HS, et al. Multisystem involvement in post-acute sequelae of Coronavirus disease 19. Ann Neurol 2022; 91(3): 367-79.
[http://dx.doi.org/10.1002/ana.26286] [PMID: 34952975]
[66]
Kohandel Z, Farkhondeh T, Aschner M, Samarghandian S. Anti-inflammatory effects of thymoquinone and its protective effects against several diseases. Biomed Pharmacother 2021; 138: 111492.
[http://dx.doi.org/10.1016/j.biopha.2021.111492] [PMID: 33743334]
[67]
Crook H, Raza S, Nowell J, Young M, Edison P. Long COVID mechanisms, risk factors, and management. BMJ 2021; 26: 374.
[http://dx.doi.org/10.1136/bmj.n1648]
[68]
Vollbracht C, Kraft K. Oxidative stress and hyper-inflammation as major drivers of severe COVID-19 and long COVID: Implications for the benefit of high-dose intravenous vitamin C. Front Pharmacol 2022; 13: 899198.
[http://dx.doi.org/10.3389/fphar.2022.899198] [PMID: 35571085]
[69]
Ardiana M, Pikir BS, Santoso A, Hermawan HO, Al-Farabi MJ. Effect of Nigella sativa supplementation on oxidative stress and antioxidant parameters: A meta-analysis of randomized controlled trials. Sci World J 2020; 2020: 1-7.
[http://dx.doi.org/10.1155/2020/2390706] [PMID: 32454800]
[70]
Montazeri RS, Fatahi S, Sohouli MH, et al. The effect of Nigella sativa on biomarkers of inflammation and oxidative stress: A systematic review and meta-analysis of randomized controlled trials. J Food Biochem 2021; 45(4): e13625.
[http://dx.doi.org/10.1111/jfbc.13625] [PMID: 33559935]
[71]
Bergamaschi L, Mescia F, Turner L, et al. Longitudinal analysis reveals that delayed bystander CD8+ T cell activation and early immune pathology distinguish severe COVID-19 from mild disease. Immunity 2021; 54(6): 1257-1275.e8.
[http://dx.doi.org/10.1016/j.immuni.2021.05.010] [PMID: 34051148]
[72]
Majdalawieh AF, Fayyad MW. Immunomodulatory and anti-inflammatory action of Nigella sativa and thymoquinone: A comprehensive review. Int Immunopharmacol 2015; 28(1): 295-304.
[http://dx.doi.org/10.1016/j.intimp.2015.06.023] [PMID: 26117430]
[73]
Mahmoud HS, Almallah AA. Gad EL-Hak HN, Aldayel TS, Abdelrazek HMA, Khaled HE. The effect of dietary supplementation with Nigella sativa (black seeds) mediates immunological function in male Wistar rats. Sci Rep 2021; 11(1): 7542.
[http://dx.doi.org/10.1038/s41598-021-86721-1] [PMID: 33414495]
[74]
Pretorius E, Vlok M, Venter C, et al. Persistent clotting protein pathology in long COVID/Post-Acute Sequelae of COVID-19 (PASC) is accompanied by increased levels of antiplasmin. Cardiovasc Diabetol 2021; 20(1): 172.
[http://dx.doi.org/10.1186/s12933-021-01359-7] [PMID: 34425843]
[75]
Elseidy SA, Awad AK, Vorla M, et al. Cardiovascular complications in the post-acute COVID-19 syndrome (PACS). Int J Cardiol Heart Vasc 2022; 40: 101012.
[http://dx.doi.org/10.1016/j.ijcha.2022.101012] [PMID: 35355927]
[76]
Yusof AN. Screening of haemostatic activity of Nigella sativa seed extract. J Environ Health Sci Eng 2017; 1(1): 57-74.
[77]
Muralidharan-Chari V, Kim J, Abuawad A, Naeem M, Cui H, Mousa S. Thymoquinone modulates blood coagulation in vitro via its effects on inflammatory and coagulation pathways. Int J Mol Sci 2016; 17(4): 474.
[http://dx.doi.org/10.3390/ijms17040474] [PMID: 27043539]
[78]
Ebinger JE, Driver M, Joung S, et al. Hypertension and excess risk for severe COVID-19 illness despite booster vaccination. Hypertension 2022; 79(10): e132-4.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.122.19694] [PMID: 35862106]
[79]
Maideen NMP, Balasubramanian R, Ramanathan S. Nigella sativa (black seeds), A potential herb for the pharmacotherapeutic management of hypertension - a review. Curr Cardiol Rev 2021; 17(4): e230421187786.
[http://dx.doi.org/10.2174/1573403X16666201110125906] [PMID: 33172379]
[80]
Yan T, Xiao R, Wang N, Shang R, Lin G. Obesity and severe coronavirus disease 2019: Molecular mechanisms, paths forward, and therapeutic opportunities. Theranostics 2021; 11(17): 8234-53.
[http://dx.doi.org/10.7150/thno.59293] [PMID: 34373739]
[81]
Aminian A, Bena J, Pantalone KM, Burguera B. Association of obesity with postacute sequelae of COVID-19. Diabetes Obes Metab 2021; 23(9): 2183-8.
[http://dx.doi.org/10.1111/dom.14454] [PMID: 34060194]
[82]
Maideen NMP. Nigella sativa (black seeds) – Potential herb to help weight loss. Curr Tradit Med 2022; 8(4): e091121197833.
[http://dx.doi.org/10.2174/2215083807666211109115834]
[83]
Wander PL, Lowy E, Beste LA, et al. The incidence of diabetes among 2,777,768 veterans with and without recent SARS-CoV-2 infection. Diabetes Care 2022; 45(4): 782-8.
[http://dx.doi.org/10.2337/dc21-1686] [PMID: 35085391]
[84]
Rathmann W, Kuss O, Kostev K. Incidence of newly diagnosed diabetes after COVID-19. Diabetologia 2022; 65(6): 949-54.
[http://dx.doi.org/10.1007/s00125-022-05670-0] [PMID: 35292829]
[85]
Maideen NMP. Antidiabetic activity of Nigella sativa (black seeds) and its active constituent (Thymoquinone): A review of human and experimental animal studies. Chonnam Med J 2021; 57(3): 169-75.
[http://dx.doi.org/10.4068/cmj.2021.57.3.169] [PMID: 34621636]
[86]
Pretorius E, Venter C, Laubscher GJ, et al. Prevalence of symptoms, comorbidities, fibrin amyloid microclots and platelet pathology in individuals with Long COVID/Post-Acute Sequelae of COVID-19 (PASC). Cardiovasc Diabetol 2022; 21(1): 148.
[http://dx.doi.org/10.1186/s12933-022-01579-5] [PMID: 35933347]
[87]
Abbasi J. The COVID heart-one year after SARS-CoV-2 infection, patients have an array of increased cardiovascular risks. JAMA 2022; 327(12): 1113-4.
[http://dx.doi.org/10.1001/jama.2022.2411] [PMID: 35234824]
[88]
Xie Y, Xu E, Bowe B, Al-Aly Z. Long-term cardiovascular outcomes of COVID-19. Nat Med 2022; 28(3): 583-90.
[http://dx.doi.org/10.1038/s41591-022-01689-3] [PMID: 35132265]
[89]
Maideen NMP. Effects of Nigella sativa (black seeds) Supplementation on plasma lipid profile in human subjects - a review. Current Nutraceuticals 2022; 3(1): e021221198487.
[http://dx.doi.org/10.2174/2665978602666211202102631]
[90]
Cervia C, Zurbuchen Y, Taeschler P, et al. Immunoglobulin signature predicts risk of post-acute COVID-19 syndrome. Nat Commun 2022; 13(1): 446.
[http://dx.doi.org/10.1038/s41467-021-27797-1] [PMID: 35078982]
[91]
Huang C, Huang L, Wang Y, et al. 6-month consequences of COVID-19 in patients discharged from hospital: A cohort study. Lancet 2021; 397(10270): 220-32.
[http://dx.doi.org/10.1016/S0140-6736(20)32656-8] [PMID: 33428867]
[92]
Koshak A, Wei L, Koshak E, et al. Nigella sativa supplementation improves asthma control and biomarkers: A randomized, double-blind, placebo-controlled trial. Phytother Res 2017; 31(3): 403-9.
[http://dx.doi.org/10.1002/ptr.5761] [PMID: 28093815]
[93]
Heinrich M, Koshak AE. Is Nigella sativa L. (black seed) a phyto-therapeutic option in the treatment of asthma? a case study in Saudi Arabia. Zeitschrift für Phytotherapie 2022; 43(S01): S24-5.
[http://dx.doi.org/10.1055/a-1792-9136]
[94]
Koshak A, Koshak E, Heinrich M. Medicinal benefits of Nigella sativa in bronchial asthma: A literature review. Saudi Pharm J 2017; 25(8): 1130-6.
[http://dx.doi.org/10.1016/j.jsps.2017.07.002] [PMID: 30166900]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy