Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Application of Polymer Materials in Targeting Glioma

Author(s): Jia Guo, Zheng Yao, Feiyu Zhang* and Junzi Wu*

Volume 23, Issue 11, 2023

Published on: 16 March, 2023

Page: [1284 - 1297] Pages: 14

DOI: 10.2174/1871520623666230222142825

Price: $65

Open Access Journals Promotions 2
Abstract

Glioma is a serious life-threatening disease, and traditional treatments have little effect. In recent decades, polymer materials have been developed for the treatment of glioma as a new research area. The ability to target reactive polymeric carriers is important for treating glioma. Polymer materials have good designability and expansibility. They respond to different stimuli, leading to a change in the macroscopic properties of materials. Sensitive polymer carriers respond to biological stimuli (pH, oxidative stress, enzyme, temperature, ions and nucleic acids) and the tumour microenvironment. They can be used as intelligent polymer carriers to transport chemotherapy and imaging drugs for glioma treatment. The ability of these polymer carriers to control the release of molecules at tumour-specific sites has aroused great interest. This review summarizes current research on sensitive polymer-carriers for glioma treatment over the past decade, focusing on their clinical application prospects. Finally, future applications of polymer carriers in nanomedicine are reviewed.

Keywords: Glioma, polymer carrier, targeted therapy, sensitivity factors, tumour microenvironment, glioma treatment.

Graphical Abstract
[1]
Jiang, Y.; Uhrbom, L. On the origin of glioma. Ups. J. Med. Sci., 2012, 117(2), 113-121.
[http://dx.doi.org/10.3109/03009734.2012.658976] [PMID: 22348397]
[2]
Bleeker, F.E.; Molenaar, R.J.; Leenstra, S. Recent advances in the molecular understanding of glioblastoma. J. Neurooncol., 2012, 108(1), 11-27.
[http://dx.doi.org/10.1007/s11060-011-0793-0] [PMID: 22270850]
[3]
Lacroix, M.; Abi-Said, D.; Fourney, D.R.; Gokaslan, Z.L.; Shi, W.; DeMonte, F.; Lang, F.F.; McCutcheon, I.E.; Hassenbusch, S.J.; Hol-land, E.; Hess, K.; Michael, C.; Miller, D.; Sawaya, R. A multivariate analysis of 416 patients with glioblastoma multiforme: Prognosis, ex-tent of resection, and survival. J. Neurosurg., 2001, 95(2), 190-198.
[http://dx.doi.org/10.3171/jns.2001.95.2.0190] [PMID: 11780887]
[4]
Stewart, L.A. Chemotherapy in adult high-grade glioma: A systematic review and meta-analysis of individual patient data from 12 random-ised trials. Lancet, 2002, 359(9311), 1011-1018.
[http://dx.doi.org/10.1016/S0140-6736(02)08091-1] [PMID: 11937180]
[5]
Siegel, R.A. Stimuli sensitive polymers and self regulated drug delivery systems: A very partial review. J. Control. Release, 2014, 190, 337-351.
[http://dx.doi.org/10.1016/j.jconrel.2014.06.035] [PMID: 24984012]
[6]
Yan, L.; Li, X. Biodegradable stimuli-responsive polymeric micelles for treatment of malignancy. Curr. Pharm. Biotechnol., 2016, 17(3), 227-236.
[http://dx.doi.org/10.2174/138920101703160206142821] [PMID: 26873075]
[7]
Lu, Y.; Sun, W.; Gu, Z. Stimuli-responsive nanomaterials for therapeutic protein delivery. J. Control. Release, 2014, 194, 1-19.
[http://dx.doi.org/10.1016/j.jconrel.2014.08.015] [PMID: 25151983]
[8]
Farokhzad, O.C.; Langer, R. Impact of nanotechnology on drug delivery. ACS Nano, 2009, 3(1), 16-20.
[http://dx.doi.org/10.1021/nn900002m] [PMID: 19206243]
[9]
Allen, T.M.; Cullis, P.R. Drug delivery systems: Entering the mainstream. Science, 2004, 303(5665), 1818-1822.
[http://dx.doi.org/10.1126/science.1095833] [PMID: 15031496]
[10]
Peer, D.; Karp, J.M.; Hong, S.; Farokhzad, O.C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol., 2007, 2(12), 751-760.
[http://dx.doi.org/10.1038/nnano.2007.387] [PMID: 18654426]
[11]
Davis, M.E.; Chen, Z.; Shin, D.M. Nanoparticle therapeutics: An emerging treatment modality for cancer. Nat. Rev. Drug Discov., 2008, 7(9), 771-782.
[http://dx.doi.org/10.1038/nrd2614] [PMID: 18758474]
[12]
Gutkin, A.; Cohen, Z.R.; Peer, D. Harnessing nanomedicine for therapeutic intervention in glioblastoma. Expert Opin. Drug Deliv., 2016, 13(11), 1573-1582.
[http://dx.doi.org/10.1080/17425247.2016.1200557] [PMID: 27292970]
[13]
Mangraviti, A.; Gullotti, D.; Tyler, B.; Brem, H. Nanobiotechnology-based delivery strategies: New frontiers in brain tumor targeted thera-pies. J. Control. Release, 2016, 240, 443-453.
[http://dx.doi.org/10.1016/j.jconrel.2016.03.031] [PMID: 27016141]
[14]
Meng, J.; Agrahari, V.; Youm, I. Advances in targeted drug delivery approaches for the central nervous system tumors: The Inspiration of nanobiotechnology. J. Neuroimmune Pharmacol., 2017, 12(1), 84-98.
[http://dx.doi.org/10.1007/s11481-016-9698-1] [PMID: 27449494]
[15]
Yasaswi, P.S.; Shetty, K.; Yadav, K.S. Temozolomide nano enabled medicine: Promises made by the nanocarriers in glioblastoma therapy. J. Control. Release, 2021, 336, 549-571.
[http://dx.doi.org/10.1016/j.jconrel.2021.07.003] [PMID: 34229001]
[16]
Duncan, R. Polymer conjugates as anticancer nanomedicines. Nat. Rev. Cancer, 2006, 6(9), 688-701.
[http://dx.doi.org/10.1038/nrc1958] [PMID: 16900224]
[17]
Hubbell, J.A.; Langer, R. Translating materials design to the clinic. Nat. Mater., 2013, 12(11), 963-966.
[http://dx.doi.org/10.1038/nmat3788] [PMID: 24150414]
[18]
Kataoka, K.; Harada, A.; Nagasaki, Y. Block copolymer micelles for drug delivery: Design, characterization and biological significance. Adv. Drug Deliv. Rev., 2001, 47(1), 113-131.
[http://dx.doi.org/10.1016/S0169-409X(00)00124-1] [PMID: 11251249]
[19]
Nishiyama, N.; Kataoka, K. Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol. Ther., 2006, 112(3), 630-648.
[http://dx.doi.org/10.1016/j.pharmthera.2006.05.006] [PMID: 16815554]
[20]
Bae, Y.; Kataoka, K. Intelligent polymeric micelles from functional poly(ethylene glycol)-poly(amino acid) block copolymers. Adv. Drug Deliv. Rev., 2009, 61(10), 768-784.
[http://dx.doi.org/10.1016/j.addr.2009.04.016] [PMID: 19422866]
[21]
Matsumura, Y.; Kataoka, K. Preclinical and clinical studies of anticancer agent-incorporating polymer micelles. Cancer Sci., 2009, 100(4), 572-579.
[http://dx.doi.org/10.1111/j.1349-7006.2009.01103.x] [PMID: 19462526]
[22]
Miyata, K.; Nishiyama, N.; Kataoka, K. Rational design of smart supramolecular assemblies for gene delivery: Chemical challenges in the creation of artificial viruses. Chem. Soc. Rev., 2012, 41(7), 2562-2574.
[http://dx.doi.org/10.1039/C1CS15258K] [PMID: 22105545]
[23]
Cabral, H.; Kataoka, K. Progress of drug-loaded polymeric micelles into clinical studies. J. Control. Release, 2014, 190, 465-476.
[http://dx.doi.org/10.1016/j.jconrel.2014.06.042] [PMID: 24993430]
[24]
Cabral, H.; Matsumoto, Y.; Mizuno, K.; Chen, Q.; Murakami, M.; Kimura, M.; Terada, Y.; Kano, M.R.; Miyazono, K.; Uesaka, M.; Nishiyama, N.; Kataoka, K. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat. Nanotechnol., 2011, 6(12), 815-823.
[http://dx.doi.org/10.1038/nnano.2011.166] [PMID: 22020122]
[25]
Raveendran, R.; Bhuvaneshwar, G.S.; Sharma, C.P. Hemocompatible curcumin-dextran micelles as pH sensitive pro-drugs for enhanced therapeutic efficacy in cancer cells. Carbohydr. Polym., 2016, 137, 497-507.
[http://dx.doi.org/10.1016/j.carbpol.2015.11.017] [PMID: 26686156]
[26]
Sun, P.; Wu, Z.; Xiao, Y.; Wu, H.; Di, Q.; Zhao, X.; Quan, J.; Tang, H.; Wang, Q.; Chen, W. TfR-T12 short peptide and pH sensitive cell transmembrane peptide modified nano-composite micelles for glioma treatment via remodeling tumor microenvironment. Nanomedicine, 2022, 41, 102516.
[http://dx.doi.org/10.1016/j.nano.2022.102516] [PMID: 35131469]
[27]
Yin, Y.; Wang, J.; Yang, M.; Du, R.; Pontrelli, G.; McGinty, S.; Wang, G.; Yin, T.; Wang, Y. Penetration of the blood-brain barrier and the anti-tumour effect of a novel PLGA-lysoGM1/DOX micelle drug delivery system. Nanoscale, 2020, 12(5), 2946-2960.
[http://dx.doi.org/10.1039/C9NR08741A] [PMID: 31994576]
[28]
Li, J.; Du, Y.; Jiang, Z.; Tian, Y.; Qiu, N.; Wang, Y. lqbal, M.Z.; Hu, M.; Zou, R.; Luo, L.; Du, S.; Tian, J.; Wu, A. Y1 receptor ligand-based nanomicelle as a novel nanoprobe for glioma-targeted imaging and therapy. Nanoscale, 2018, 10(13), 5845-5851.
[http://dx.doi.org/10.1039/C8NR00148K] [PMID: 29542782]
[29]
Shamul, J.G.; Shah, S.R.; Kim, J.; Schiapparelli, P.; Vazquez-Ramos, C.A.; Lee, B.J.; Patel, K.K.; Shin, A.; Quinones-Hinojosa, A.; Green, J.J. Verteporfin-loaded anisotropic poly(beta-amino ester)-based micelles demonstrate brain cancer-selective cytotoxicity and enhanced pharmacokinetics. Int. J. Nanomedicine, 2019, 14, 10047-10060.
[http://dx.doi.org/10.2147/IJN.S231167] [PMID: 31920302]
[30]
Wang, G.; Wang, J.J.; Chen, X.L.; Du, L.; Li, F. Quercetin-loaded freeze-dried nanomicelles: Improving absorption and anti-glioma effi-ciency in vitro and in vivo. J. Control. Release, 2016, 235, 276-290.
[http://dx.doi.org/10.1016/j.jconrel.2016.05.045] [PMID: 27242199]
[31]
Groult, H.; García-Álvarez, I.; Romero-Ramírez, L.; Nieto-Sampedro, M.; Herranz, F.; Fernández-Mayoralas, A.; Ruiz-Cabello, J. Micellar iron oxide nanoparticles coated with anti-tumor glycosides. Nanomaterials, 2018, 8(8), 567.
[http://dx.doi.org/10.3390/nano8080567] [PMID: 30044386]
[32]
Singleton, W.G.; Collins, A.M.; Bienemann, A.S.; Killick-Cole, C.L.; Haynes, H.R.; Asby, D.J.; Butts, C.P.; Wyatt, M.J.; Barua, N.U.; Gill, S.S. Convection enhanced delivery of panobinostat (LBH589)-loaded pluronic nano-micelles prolongs survival in the F98 rat glioma model. Int. J. Nanomedicine, 2017, 12, 1385-1399.
[http://dx.doi.org/10.2147/IJN.S125300] [PMID: 28260886]
[33]
Fan, Q.; Liu, Y.; Cui, G.; Zhong, Z.; Deng, C. Brain delivery of Plk1 inhibitor via chimaeric polypeptide polymersomes for safe and su-perb treatment of orthotopic glioblastoma. J. Control. Release, 2021, 329, 1139-1149.
[http://dx.doi.org/10.1016/j.jconrel.2020.10.043] [PMID: 33131697]
[34]
Tian, C.; Asghar, S.; Xu, Y.; Chen, Z.; Zhang, M.; Huang, L.; Ye, J.; Ping, Q.; Xiao, Y. The effect of the molecular weight of hyaluronic acid on the physicochemical characterization of hyaluronic acid-curcumin conjugates and in vitro evaluation in glioma cells. Colloids Surf. B Biointerfaces, 2018, 165, 45-55.
[http://dx.doi.org/10.1016/j.colsurfb.2018.02.016] [PMID: 29453085]
[35]
Tan, J.; Duan, X.; Zhang, F.; Ban, X.; Mao, J.; Cao, M.; Han, S.; Shuai, X.; Shen, J. Theranostic nanomedicine for synergistic chemody-namic therapy and chemotherapy of orthotopic glioma. Adv. Sci., 2020, 7(24), 2003036.
[http://dx.doi.org/10.1002/advs.202003036] [PMID: 33344142]
[36]
Xu, J.; Yang, X.; Ji, J.; Gao, Y.; Qiu, N.; Xi, Y.; Liu, A.; Zhai, G. RVG-functionalized reduction sensitive micelles for the effective accu-mulation of doxorubicin in brain. J. Nanobiotechnology, 2021, 19(1), 251.
[http://dx.doi.org/10.1186/s12951-021-00997-z] [PMID: 34419071]
[37]
Zhu, Y.; Jiang, Y.; Meng, F.; Deng, C.; Cheng, R.; Zhang, J.; Feijen, J.; Zhong, Z. Highly efficacious and specific anti-glioma chemotherapy by tandem nanomicelles co-functionalized with brain tumor-targeting and cell-penetrating peptides. J. Control. Release, 2018, 278, 1-8.
[http://dx.doi.org/10.1016/j.jconrel.2018.03.025] [PMID: 29596873]
[38]
Lu, L.; Zhao, X.; Fu, T.; Li, K.; He, Y.; Luo, Z.; Dai, L.; Zeng, R.; Cai, K. An iRGD-conjugated prodrug micelle with blood-brain-barrier penetrability for anti-glioma therapy. Biomaterials, 2020, 230, 119666.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119666] [PMID: 31831222]
[39]
Wang, P.; Yu, N.; Wang, Y.; Sun, H.; Yang, Z.; Zhou, S. Co-delivery of PLK1-specific shRNA and doxorubicin via core-crosslinked pH-sensitive and redox ultra-sensitive micelles for glioma therapy. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(1), 112-124.
[http://dx.doi.org/10.1039/C7TB02160G] [PMID: 32254199]
[40]
Quader, S.; Liu, X.; Toh, K.; Su, Y.L.; Maity, A.R.; Tao, A.; Paraiso, W.K.D.; Mochida, Y.; Kinoh, H.; Cabral, H.; Kataoka, K. Supramo-lecularly enabled pH-triggered drug action at tumor microenvironment potentiates nanomedicine efficacy against glioblastoma. Biomaterials, 2021, 267, 120463.
[http://dx.doi.org/10.1016/j.biomaterials.2020.120463] [PMID: 33130321]
[41]
Yang, Y.; Zhang, X.; Wu, S.; Zhang, R.; Zhou, B.; Zhang, X.; Tang, L.; Tian, Y.; Men, K.; Yang, L. Enhanced nose-to-brain delivery of siRNA using hyaluronan-enveloped nanomicelles for glioma therapy. J. Control. Release, 2022, 342, 66-80.
[http://dx.doi.org/10.1016/j.jconrel.2021.12.034] [PMID: 34973309]
[42]
Kanazawa, T.; Morisaki, K.; Suzuki, S.; Takashima, Y. Prolongation of life in rats with malignant glioma by intranasal siRNA/drug codelivery to the brain with cell-penetrating peptide-modified micelles. Mol. Pharm., 2014, 11(5), 1471-1478.
[http://dx.doi.org/10.1021/mp400644e] [PMID: 24708261]
[43]
Kanazawa, T.; Taki, H.; Okada, H. Nose-to-brain drug delivery system with ligand/cell-penetrating peptide-modified polymeric nano-micelles for intracerebral gliomas. Eur. J. Pharm. Biopharm., 2020, 152, 85-94.
[http://dx.doi.org/10.1016/j.ejpb.2020.05.001] [PMID: 32387702]
[44]
Akiyoshi, K.; Kobayashi, S.; Shichibe, S.; Mix, D.; Baudys, M.; Wan Kim, S.; Sunamoto, J. Self-assembled hydrogel nanoparticle of cho-lesterol-bearing pullulan as a carrier of protein drugs: Complexation and stabilization of insulin. J. Control. Release, 1998, 54(3), 313-320.
[http://dx.doi.org/10.1016/S0168-3659(98)00017-0] [PMID: 9766251]
[45]
Mangalathillam, S.; Rejinold, N.S.; Nair, A.; Lakshmanan, V.K.; Nair, S.V.; Jayakumar, R. Curcumin loaded chitin nanogels for skin can-cer treatment via the transdermal route. Nanoscale, 2012, 4(1), 239-250.
[http://dx.doi.org/10.1039/C1NR11271F] [PMID: 22080352]
[46]
Vashist, A.; Kaushik, A.; Vashist, A.; Bala, J.; Nikkhah-Moshaie, R.; Sagar, V.; Nair, M. Nanogels as potential drug nanocarriers for CNS drug delivery. Drug Discov. Today, 2018, 23(7), 1436-1443.
[http://dx.doi.org/10.1016/j.drudis.2018.05.018] [PMID: 29775669]
[47]
Aderibigbe, B.; Naki, T. Design and efficacy of nanogels formulations for intranasal administration. Molecules, 2018, 23(6), 1241.
[http://dx.doi.org/10.3390/molecules23061241] [PMID: 29789506]
[48]
Jo, D.H.; Kim, J.H.; Lee, T.G.; Kim, J.H. Size, surface charge, and shape determine therapeutic effects of nanoparticles on brain and retinal diseases. Nanomedicine, 2015, 11(7), 1603-1611.
[http://dx.doi.org/10.1016/j.nano.2015.04.015] [PMID: 25989200]
[49]
Jiang, L.; Zhou, Q.; Mu, K.; Xie, H.; Zhu, Y.; Zhu, W.; Zhao, Y.; Xu, H.; Yang, X. pH/temperature sensitive magnetic nanogels conjugated with Cy5.5-labled lactoferrin for MR and fluorescence imaging of glioma in rats. Biomaterials, 2013, 34(30), 7418-7428.
[http://dx.doi.org/10.1016/j.biomaterials.2013.05.078] [PMID: 23810255]
[50]
Javed, B.; Zhao, X.; Cui, D.; Curtin, J.; Tian, F. Enhanced anticancer response of curcumin- and piperine-loaded lignin-g-p (NIPAM-co-DMAEMA) gold nanogels against u-251 mg glioblastoma multiforme. Biomedicines, 2021, 9(11), 1516.
[http://dx.doi.org/10.3390/biomedicines9111516] [PMID: 34829745]
[51]
McCrorie, P.; Mistry, J.; Taresco, V.; Lovato, T.; Fay, M.; Ward, I.; Ritchie, A.A.; Clarke, P.A.; Smith, S.J.; Marlow, M.; Rahman, R. Etoposide and olaparib polymer-coated nanoparticles within a bioadhesive sprayable hydrogel for post-surgical localised delivery to brain tumours. Eur. J. Pharm. Biopharm., 2020, 157, 108-120.
[http://dx.doi.org/10.1016/j.ejpb.2020.10.005] [PMID: 33068736]
[52]
Ito, S.; Nabetani, T.; Shinoda, Y.; Nagatsuka, Y.; Hirabayashi, Y. Quantitative analysis of a novel glucosylated phospholipid by liquid chromatography-mass spectrometry. Anal. Biochem., 2008, 376(2), 252-257.
[http://dx.doi.org/10.1016/j.ab.2008.02.007] [PMID: 18342611]
[53]
Liu, W.; Luo, B.; Liang, H.; Zhang, S.; Qin, X.; Liu, X.; Zeng, F.; Wu, Y.; Yang, X. Novel lactoferrin-conjugated amphiphilic poly(aminoethyl ethylene phosphate)/poly(L-lactide) copolymer nanobubbles for tumor-targeting ultrasonic imaging. Int. J. Nanomedicine, 2015, 10, 5805-5817.
[http://dx.doi.org/10.2147/IJN.S83582] [PMID: 26396514]
[54]
Zhan, J.; Zhong, J.; Ma, S.; Ma, W.; Wang, Y.; Yu, Z.; Cai, Y.; Huang, W. Dual-responsive self-assembly in lysosomes enables cell cycle arrest for locking glioma cell growth. Chem. Commun., 2020, 56(51), 6957-6960.
[http://dx.doi.org/10.1039/C9CC09983B] [PMID: 32436508]
[55]
Singh, S.; Drude, N.; Blank, L.; Desai, P.B.; Königs, H.; Rütten, S.; Langen, K.J.; Möller, M.; Mottaghy, F.M.; Morgenroth, A. Protease responsive nanogels for transcytosis across the blood−brain barrier and intracellular delivery of radiopharmaceuticals to brain tumor cells. Adv. Healthc. Mater., 2021, 10(20), 2100812.
[http://dx.doi.org/10.1002/adhm.202100812] [PMID: 34490744]
[56]
Lu, Y.J.; Lan, Y.H.; Chuang, C.C.; Lu, W.T.; Chan, L.Y.; Hsu, P.W.; Chen, J.P. Injectable thermo-sensitive chitosan hydrogel containing CPT-11-loaded EGFR-targeted graphene oxide and SLP2 shRNA for localized drug/gene delivery in glioblastoma therapy. Int. J. Mol. Sci., 2020, 21(19), 7111.
[http://dx.doi.org/10.3390/ijms21197111] [PMID: 32993166]
[57]
Belousov, A.; Titov, S.; Shved, N.; Malykin, G.; Kovalev, V.; Suprunova, I.; Khotimchenko, Y.; Kumeiko, V. Hydrogels based on modi-fied pectins capable of modulating neural cell behavior as prospective biomaterials in glioblastoma treatment. Int. Rev. Neurobiol., 2020, 151, 111-138.
[http://dx.doi.org/10.1016/bs.irn.2020.03.025] [PMID: 32448603]
[58]
Gao, X.; Li, S.; Ding, F.; Liu, X.; Wu, Y.; Li, J.; Feng, J.; Zhu, X.; Zhang, C. A virus-mimicking nucleic acid nanogel reprograms microglia and macrophages for glioblastoma therapy. Adv. Mater., 2021, 33(9), 2006116.
[http://dx.doi.org/10.1002/adma.202006116] [PMID: 33501743]
[59]
Rao, S.S.; DeJesus, J.; Short, A.R.; Otero, J.J.; Sarkar, A.; Winter, J.O. Glioblastoma behaviors in three-dimensional collagen-hyaluronan composite hydrogels. ACS Appl. Mater. Interfaces, 2013, 5(19), 9276-9284.
[http://dx.doi.org/10.1021/am402097j] [PMID: 24010546]
[60]
Xiao, T.; He, M.; Xu, F.; Fan, Y.; Jia, B.; Shen, M.; Wang, H.; Shi, X. Macrophage membrane-camouflaged responsive polymer nanogels enable magnetic resonance imaging-guided chemotherapy/chemodynamic therapy of orthotopic glioma. ACS Nano, 2021, 15(12), 20377-20390.
[http://dx.doi.org/10.1021/acsnano.1c08689] [PMID: 34860014]
[61]
Torchilin, V.P. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov., 2005, 4(2), 145-160.
[http://dx.doi.org/10.1038/nrd1632] [PMID: 15688077]
[62]
Deshpande, P.P.; Biswas, S.; Torchilin, V.P. Current trends in the use of liposomes for tumor targeting. Nanomedicine, 2013, 8(9), 1509-1528.
[http://dx.doi.org/10.2217/nnm.13.118] [PMID: 23914966]
[63]
Crommelin, D.J.A.; Storm, G. Liposomes: From the bench to the bed. J. Liposome Res., 2003, 13(1), 33-36.
[http://dx.doi.org/10.1081/LPR-120017488] [PMID: 12725726]
[64]
Lu, J.; Li, R.; Mu, B.; Peng, Y.; Zhao, Y.; Shi, Y.; Guo, L.; Hai, L.; Wu, Y. Multiple targeted doxorubicin-lonidamine liposomes modified with p-hydroxybenzoic acid and triphenylphosphonium to synergistically treat glioma. Eur. J. Med. Chem., 2022, 230, 114093.
[http://dx.doi.org/10.1016/j.ejmech.2021.114093] [PMID: 35007860]
[65]
Tao, J.; Fei, W.; Tang, H.; Li, C.; Mu, C.; Zheng, H.; Li, F.; Zhu, Z. Angiopep-2-conjugated “core-shell” hybrid nanovehicles for targeted and pH-Triggered delivery of arsenic trioxide into glioma. Mol. Pharm., 2019, 16(2), 786-797.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b01056] [PMID: 30620881]
[66]
Li, M.; Shi, K.; Tang, X.; Wei, J.; Cun, X.; Chen, X.; Yu, Q.; Zhang, Z.; He, Q. pH-sensitive folic acid and dNP2 peptide dual-modified liposome for enhanced targeted chemotherapy of glioma. Eur. J. Pharm. Sci., 2018, 124, 240-248.
[http://dx.doi.org/10.1016/j.ejps.2018.07.055] [PMID: 30071282]
[67]
Liu, H.; Cai, Y.; Zhang, Y.; Xie, Y.; Qiu, H.; Hua, L.; Liu, X.; Li, Y.; Lu, J.; Zhang, L.; Yu, R. Development of a hypoxic radiosensitizer-prodrug liposome delivery DNA repair inhibitor dbait combination with radiotherapy for glioma therapy. Adv. Healthc. Mater., 2017, 6(12), 1601377.
[http://dx.doi.org/10.1002/adhm.201601377] [PMID: 28371526]
[68]
Lu, F.; Pang, Z.; Zhao, J.; Jin, K.; Li, H.; Pang, Q.; Zhang, L.; Pang, Z. Angiopep-2-conjugated poly(ethylene glycol)-co-poly(ϵ-caprolactone) polymersomes for dual-targeting drug delivery to glioma in rats. Int. J. Nanomedicine, 2017, 12, 2117-2127.
[http://dx.doi.org/10.2147/IJN.S123422] [PMID: 28356732]
[69]
Jiao, Z.; Li, Y.; Pang, H.; Zheng, Y.; Zhao, Y. Pep-1 peptide-functionalized liposome to enhance the anticancer efficacy of cilengitide in glioma treatment. Colloids Surf. B Biointerfaces, 2017, 158, 68-75.
[http://dx.doi.org/10.1016/j.colsurfb.2017.03.058] [PMID: 28672205]
[70]
Yuan, J.; Zeng, C.; Cao, W.; Zhou, X.; Pan, Y.; Xie, Y.; Zhang, Y.; Yang, Q.; Wang, S. Bufalin-loaded PEGylated liposomes: Antitumor efficacy, acute toxicity, and tissue distribution. Nanoscale Res. Lett., 2019, 14(1), 223.
[http://dx.doi.org/10.1186/s11671-019-3057-0] [PMID: 31278603]
[71]
Joshi, S.; Cooke, J.R.N.; Chan, D.K.W.; Ellis, J.A.; Hossain, S.S.; Singh-Moon, R.P.; Wang, M.; Bigio, I.J.; Bruce, J.N.; Straubinger, R.M. Liposome size and charge optimization for intra-arterial delivery to gliomas. Drug Deliv. Transl. Res., 2016, 6(3), 225-233.
[http://dx.doi.org/10.1007/s13346-016-0294-y] [PMID: 27091339]
[72]
Xue, J.; Zhao, Z.; Zhang, L.; Xue, L.; Shen, S.; Wen, Y.; Wei, Z.; Wang, L.; Kong, L.; Sun, H.; Ping, Q.; Mo, R.; Zhang, C. Neutrophil-mediated anticancer drug delivery for suppression of postoperative malignant glioma recurrence. Nat. Nanotechnol., 2017, 12(7), 692-700.
[http://dx.doi.org/10.1038/nnano.2017.54] [PMID: 28650441]
[73]
Najlah, M.; Jain, M.; Wan, K.W.; Ahmed, W.; Albed Alhnan, M.; Phoenix, D.A.; Taylor, K.M.G.; Elhissi, A. Ethanol-based proliposome delivery systems of paclitaxel for in vitro application against brain cancer cells. J. Liposome Res., 2018, 28(1), 74-85.
[http://dx.doi.org/10.1080/08982104.2016.1259628] [PMID: 27834116]
[74]
Yue, P.; He, L.; Qiu, S.; Li, Y.; Liao, Y.; Li, X.; Xie, D.; Peng, Y. OX26/CTX-conjugated PEGylated liposome as a dual-targeting gene delivery system for brain glioma. Mol. Cancer, 2014, 13(1), 191.
[http://dx.doi.org/10.1186/1476-4598-13-191] [PMID: 25128329]
[75]
Shein, S.A.; Kuznetsov, I.I.; Abakumova, T.O.; Chelushkin, P.S.; Melnikov, P.A.; Korchagina, A.A.; Bychkov, D.A.; Seregina, I.F.; Bol-shov, M.A.; Kabanov, A.V.; Chekhonin, V.P.; Nukolova, N.V. VEGF- and VEGFR2-Targeted liposomes for cisplatin delivery to glioma cells. Mol. Pharm., 2016, 13(11), 3712-3723.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00519] [PMID: 27654150]
[76]
Hu, J.; Wang, J.; Wang, G.; Yao, Z.; Dang, X. Pharmacokinetics and antitumor efficacy of DSPE-PEG2000 polymeric liposomes loaded with quercetin and temozolomide: Analysis of their effectiveness in enhancing the chemosensitization of drug-resistant glioma cells. Int. J. Mol. Med., 2016, 37(3), 690-702.
[http://dx.doi.org/10.3892/ijmm.2016.2458] [PMID: 26782731]
[77]
Huang, F.Y.; Lee, T.W.; Chang, C.H.; Chen, L.C.; Hsu, W.H.; Chang, C.W.; Lo, J.M. Evaluation of 188Re-labeled PEGylated nanolipo-some as a radionuclide therapeutic agent in an orthotopic glioma-bearing rat model. Int. J. Nanomedicine, 2015, 10, 463-473.
[http://dx.doi.org/10.2147/IJN.S75955] [PMID: 25624760]
[78]
Wang, X.; Meng, N.; Wang, S.; Zhang, Y.; Lu, L.; Wang, R.; Ruan, H.; Jiang, K.; Wang, H.; Ran, D.; Zhan, C.; Yu, K.; Burgess, D.J.; Lu, W. Non-immunogenic, low-toxicity and effective glioma targeting MTI-31 liposomes. J. Control. Release, 2019, 316, 381-392.
[http://dx.doi.org/10.1016/j.jconrel.2019.11.005] [PMID: 31730912]
[79]
Alves, A.; Correia-da-Silva, M.; Nunes, C.; Campos, J.; Sousa, E.; Silva, P.; Bousbaa, H.; Rodrigues, F.; Ferreira, D.; Costa, P.; Pinto, M. Discovery of a new xanthone against glioma: synthesis and development of (pro)liposome formulations. Molecules, 2019, 24(3), 409.
[http://dx.doi.org/10.3390/molecules24030409] [PMID: 30678085]
[80]
Shi, M.; Anantha, M.; Wehbe, M.; Bally, M.B.; Fortin, D.; Roy, L.O.; Charest, G.; Richer, M.; Paquette, B.; Sanche, L. Liposomal formula-tions of carboplatin injected by convection-enhanced delivery increases the median survival time of F98 glioma bearing rats. J. Nanobi-otechnol., 2018, 16(1), 77.
[http://dx.doi.org/10.1186/s12951-018-0404-8] [PMID: 30290821]
[81]
Han, Y.; Park, J.H. Convection-enhanced delivery of liposomal drugs for effective treatment of glioblastoma multiforme. Drug Deliv. Transl. Res., 2020, 10(6), 1876-1887.
[http://dx.doi.org/10.1007/s13346-020-00773-w] [PMID: 32367425]
[82]
Saw, P.E.; Kim, S.; Lee, I.; Park, J.; Yu, M.; Lee, J.; Kim, J.I.; Jon, S. Aptide-conjugated liposome targeting tumor-associated fibronectin for glioma therapy. J. Mater. Chem. B Mater. Biol. Med., 2013, 1(37), 4723-4726.
[http://dx.doi.org/10.1039/c3tb20815j] [PMID: 32261155]
[83]
Bredlau, A.L.; Motamarry, A.; Chen, C.; McCrackin, M.A.; Helke, K.; Armeson, K.E.; Bynum, K.; Broome, A.M.; Haemmerich, D. Local-ized delivery of therapeutic doxorubicin dose across the canine blood-brain barrier with hyperthermia and temperature sensitive lipo-somes. Drug Deliv., 2018, 25(1), 973-984.
[http://dx.doi.org/10.1080/10717544.2018.1461280] [PMID: 29688083]
[84]
Shi, D.; Mi, G.; Shen, Y.; Webster, T.J. Glioma-targeted dual functionalized thermosensitive Ferri-liposomes for drug delivery through an in vitro blood-brain barrier. Nanoscale, 2019, 11(32), 15057-15071.
[http://dx.doi.org/10.1039/C9NR03931G] [PMID: 31369016]
[85]
Lin, C.Y.; Li, R.J.; Huang, C.Y.; Wei, K.C.; Chen, P.Y. Controlled release of liposome-encapsulated temozolomide for brain tumour treat-ment by convection-enhanced delivery. J. Drug Target., 2018, 26(4), 325-332.
[http://dx.doi.org/10.1080/1061186X.2017.1379526] [PMID: 28911239]
[86]
Lu, Y.J. S, A.T.; Chuang, C.C.; Chen, J.P. Liposomal IR-780 as a highly stable nanotheranostic agent for improved photother-mal/photodynamic therapy of brain tumors by convection-enhanced delivery. Cancers, 2021, 13(15), 3690.
[http://dx.doi.org/10.3390/cancers13153690] [PMID: 34359590]
[87]
Narendra; Mehata, A.K.; Viswanadh, M.K.; Sonkar, R.; Pawde, D.M.; Priya, V.; Singh, M.; Koch, B.; S Muthu, M. Formulation and in vitro evaluation of upconversion nanoparticle-loaded liposomes for brain cancer. Ther. Deliv., 2020, 11(9), 557-571.
[http://dx.doi.org/10.4155/tde-2020-0070] [PMID: 32867624]
[88]
Andresen, T.; Bruun, J.; Larsen, T.B.; Jølck, R.I.; Eliasen, R.; Holm, R.; Gjetting, T. Investigation of enzyme-sensitive lipid nanoparticles for delivery of siRNA to blood-brain barrier and glioma cells. Int. J. Nanomedicine, 2015, 10, 5995-6008.
[http://dx.doi.org/10.2147/IJN.S87334] [PMID: 26451106]
[89]
Wei, X.; Gao, J.; Zhan, C.; Xie, C.; Chai, Z.; Ran, D.; Ying, M.; Zheng, P.; Lu, W. Liposome-based glioma targeted drug delivery enabled by stable peptide ligands. J. Control. Release, 2015, 218, 13-21.
[http://dx.doi.org/10.1016/j.jconrel.2015.09.059] [PMID: 26428462]
[90]
Ying, M.; Shen, Q.; Liu, Y.; Yan, Z.; Wei, X.; Zhan, C.; Gao, J.; Xie, C.; Yao, B.; Lu, W. Stabilized heptapeptide A7R for enhanced multi-functional liposome-based tumor-targeted drug delivery. ACS Appl. Mater. Interfaces, 2016, 8(21), 13232-13241.
[http://dx.doi.org/10.1021/acsami.6b01300] [PMID: 27195531]
[91]
Ying, M.; Zhan, C.; Wang, S.; Yao, B.; Hu, X.; Song, X.; Zhang, M.; Wei, X.; Xiong, Y.; Lu, W. Liposome-based systemic glioma-targeted drug delivery enabled by all D peptides. ACS Appl. Mater. Interfaces, 2016, 8(44), 29977-29985.
[http://dx.doi.org/10.1021/acsami.6b10146] [PMID: 27797175]
[92]
Jose, G.; Lu, Y.J.; Hung, J.T.; Yu, A.L.; Chen, J.P. Co-delivery of CPT-11 and panobinostat with anti-GD2 antibody conjugated immu-noliposomes for targeted combination chemotherapy. Cancers, 2020, 12(11), 3211.
[http://dx.doi.org/10.3390/cancers12113211] [PMID: 33142721]
[93]
Kim, J.S.; Shin, D.H.; Kim, J.S. Dual-targeting immunoliposomes using angiopep-2 and CD133 antibody for glioblastoma stem cells. J. Control. Release, 2018, 269, 245-257.
[http://dx.doi.org/10.1016/j.jconrel.2017.11.026] [PMID: 29162480]
[94]
Zheng, Z.; Zhang, J.; Jiang, J.; He, Y.; Zhang, W.; Mo, X.; Kang, X.; Xu, Q.; Wang, B.; Huang, Y. Remodeling tumor immune microenvi-ronment (TIME) for glioma therapy using multi-targeting liposomal codelivery. J. Immunother. Cancer, 2020, 8(2), e000207.
[http://dx.doi.org/10.1136/jitc-2019-000207] [PMID: 32817393]
[95]
Saw, P.E.; Zhang, A.; Nie, Y.; Zhang, L.; Xu, Y.; Xu, X. Tumor-associated fibronectin targeted liposomal nanoplatform for cyclophilin A siRNA Delivery and targeted malignant glioblastoma therapy. Front. Pharmacol., 2018, 9, 1194.
[http://dx.doi.org/10.3389/fphar.2018.01194] [PMID: 30386245]
[96]
Papachristodoulou, A.; Signorell, R.D.; Werner, B.; Brambilla, D.; Luciani, P.; Cavusoglu, M.; Grandjean, J.; Silginer, M.; Rudin, M.; Mar-tin, E.; Weller, M.; Roth, P.; Leroux, J.C. Chemotherapy sensitization of glioblastoma by focused ultrasound-mediated delivery of thera-peutic liposomes. J. Control. Release, 2019, 295, 130-139.
[http://dx.doi.org/10.1016/j.jconrel.2018.12.009] [PMID: 30537486]
[97]
Vangala, V.; Nimmu, N.V.; Khalid, S.; Kuncha, M.; Sistla, R.; Banerjee, R.; Chaudhuri, A. Combating glioblastoma by codelivering the small-molecule inhibitor of STAT3 and STAT3siRNA with α5β1 integrin receptor-selective liposomes. Mol. Pharm., 2020, 17(6), 1859-1874.
[http://dx.doi.org/10.1021/acs.molpharmaceut.9b01271] [PMID: 32343904]
[98]
Zhao, G.; Huang, Q.; Wang, F.; Zhang, X.; Hu, J.; Tan, Y.; Huang, N.; Wang, Z.; Wang, Z.; Cheng, Y. Targeted shRNA-loaded liposome complex combined with focused ultrasound for blood brain barrier disruption and suppressing glioma growth. Cancer Lett., 2018, 418, 147-158.
[http://dx.doi.org/10.1016/j.canlet.2018.01.035] [PMID: 29339208]
[99]
Yuan, Z.; Zhao, L.; Zhang, Y.; Li, S.; Pan, B.; Hua, L.; Wang, Z.; Ye, C.; Lu, J.; Yu, R.; Liu, H. Inhibition of glioma growth by a GOLPH3 siRNA-loaded cationic liposomes. J. Neurooncol., 2018, 140(2), 249-260.
[http://dx.doi.org/10.1007/s11060-018-2966-6] [PMID: 30105446]
[100]
Cheng, Y.; Zhao, L.; Li, Y.; Xu, T. Design of biocompatible dendrimers for cancer diagnosis and therapy: Current status and future per-spectives. Chem. Soc. Rev., 2011, 40(5), 2673-2703.
[http://dx.doi.org/10.1039/c0cs00097c] [PMID: 21286593]
[101]
Wang, Y.; Miao, Z.; Ren, G.; Xu, Y.; Cheng, Z. A novel affibody bioconjugate for dual-modality imaging of ovarian cancer. Chem. Commun., 2014, 50(85), 12832-12835.
[http://dx.doi.org/10.1039/C4CC03454F] [PMID: 24927395]
[102]
Zhou, Z.; Wu, X.; Kresak, A.; Griswold, M.; Lu, Z.R. Peptide targeted tripod macrocyclic Gd(III) chelates for cancer molecular MRI. Biomaterials, 2013, 34(31), 7683-7693.
[http://dx.doi.org/10.1016/j.biomaterials.2013.06.057] [PMID: 23863450]
[103]
Bai, C.Z.; Choi, S.; Nam, K.; An, S.; Park, J.S. Arginine modified PAMAM dendrimer for interferon beta gene delivery to malignant glio-ma. Int. J. Pharm., 2013, 445(1-2), 79-87.
[http://dx.doi.org/10.1016/j.ijpharm.2013.01.057] [PMID: 23384727]
[104]
Ma, M.; Cheng, Y.; Xu, Z.; Xu, P.; Qu, H.; Fang, Y.; Xu, T.; Wen, L. Evaluation of polyamidoamine (PAMAM) dendrimers as drug carri-ers of anti-bacterial drugs using sulfamethoxazole (SMZ) as a model drug. Eur. J. Med. Chem., 2007, 42(1), 93-98.
[http://dx.doi.org/10.1016/j.ejmech.2006.07.015] [PMID: 17095123]
[105]
Kaminskas, L.M.; McLeod, V.M.; Porter, C.J.H.; Boyd, B.J. Association of chemotherapeutic drugs with dendrimer nanocarriers: An as-sessment of the merits of covalent conjugation compared to noncovalent encapsulation. Mol. Pharm., 2012, 9(3), 355-373.
[http://dx.doi.org/10.1021/mp2005966] [PMID: 22250750]
[106]
Li, Y.; He, H.; Jia, X.; Lu, W.L.; Lou, J.; Wei, Y. A dual-targeting nanocarrier based on poly(amidoamine) dendrimers conjugated with transferrin and tamoxifen for treating brain gliomas. Biomaterials, 2012, 33(15), 3899-3908.
[http://dx.doi.org/10.1016/j.biomaterials.2012.02.004] [PMID: 22364698]
[107]
Han, S.; Zheng, H.; Lu, Y.; Sun, Y.; Huang, A.; Fei, W.; Shi, X.; Xu, X.; Li, J.; Li, F. A novel synergetic targeting strategy for glioma thera-py employing borneol combination with angiopep-2-modified, DOX-loaded PAMAM dendrimer. J. Drug Target., 2018, 26(1), 86-94.
[http://dx.doi.org/10.1080/1061186X.2017.1344849] [PMID: 28635335]
[108]
Sharma, A.; Liaw, K.; Sharma, R.; Spriggs, T.; Appiani La Rosa, S.; Kannan, S.; Kannan, R.M. Dendrimer-mediated targeted delivery of rapamycin to tumor-associated macrophages improves systemic treatment of glioblastoma. Biomacromolecules, 2020, 21(12), 5148-5161.
[http://dx.doi.org/10.1021/acs.biomac.0c01270] [PMID: 33112134]
[109]
Wang, K.; Zhang, X.; Liu, Y.; Liu, C.; Jiang, B.; Jiang, Y. Tumor penetrability and anti-angiogenesis using iRGD-mediated delivery of dox-orubicin-polymer conjugates. Biomaterials, 2014, 35(30), 8735-8747.
[http://dx.doi.org/10.1016/j.biomaterials.2014.06.042] [PMID: 25023394]
[110]
Zhao, J.; Zhang, B.; Shen, S.; Chen, J.; Zhang, Q.; Jiang, X.; Pang, Z. CREKA peptide-conjugated dendrimer nanoparticles for glioblastoma multiforme delivery. J. Colloid Interface Sci., 2015, 450, 396-403.
[http://dx.doi.org/10.1016/j.jcis.2015.03.019] [PMID: 25863222]
[111]
Lu, Y.; Han, S.; Zheng, H.; Ma, R.; Ping, Y.; Zou, J.; Tang, H.; Zhang, Y.; Xu, X.; Li, F. A novel RGDyC/PEG co-modified PAMAM den-drimer-loaded arsenic trioxide of glioma targeting delivery system. Int. J. Nanomedicine, 2018, 13, 5937-5952.
[http://dx.doi.org/10.2147/IJN.S175418] [PMID: 30323584]
[112]
Ban, J.; Li, S.; Zhan, Q.; Li, X.; Xing, H.; Chen, N.; Long, L.; Hou, X.; Zhao, J.; Yuan, X. PMPC modified PAMAM dendrimer enhances brain tumor-targeted drug delivery. Macromol. Biosci., 2021, 21(4), 2000392.
[http://dx.doi.org/10.1002/mabi.202000392] [PMID: 33506646]
[113]
Sharma, A.K.; Gupta, L.; Sahu, H.; Qayum, A.; Singh, S.K.; Nakhate, K.T. Ajazuddin; Gupta, U. Chitosan engineered PAMAM den-drimers as nanoconstructs for the enhanced anti-cancer potential and improved in vivo brain pharmacokinetics of temozolomide. Pharm. Res., 2018, 35(1), 9.
[http://dx.doi.org/10.1007/s11095-017-2324-y] [PMID: 29294212]
[114]
Zolotarskaya, O.Y.; Xu, L.; Valerie, K.; Yang, H. Click synthesis of a polyamidoamine dendrimer-based camptothecin prodrug. RSC Ad-vanc., 2015, 5(72), 58600-58608.
[http://dx.doi.org/10.1039/C5RA07987J] [PMID: 26640689]
[115]
Wang, S.; Li, Y.; Fan, J.; Wang, Z.; Zeng, X.; Sun, Y.; Song, P.; Ju, D. The role of autophagy in the neurotoxicity of cationic PAMAM den-drimers. Biomaterials, 2014, 35(26), 7588-7597.
[http://dx.doi.org/10.1016/j.biomaterials.2014.05.029] [PMID: 24906346]
[116]
Muniswamy, V.J.; Raval, N.; Gondaliya, P.; Tambe, V.; Kalia, K.; Tekade, R.K. ‘Dendrimer-cationized-albumin’ encrusted polymeric nanoparticle improves BBB penetration and anticancer activity of doxorubicin. Int. J. Pharm., 2019, 555, 77-99.
[http://dx.doi.org/10.1016/j.ijpharm.2018.11.035] [PMID: 30448308]
[117]
Lesniak, W.G.; Oskolkov, N.; Song, X.; Lal, B.; Yang, X.; Pomper, M.; Laterra, J.; Nimmagadda, S.; McMahon, M.T. Salicylic acid conju-gated dendrimers are a tunable, high performance CEST MRI nanoplatform. Nano Lett., 2016, 16(4), 2248-2253.
[http://dx.doi.org/10.1021/acs.nanolett.5b04517] [PMID: 26910126]
[118]
Bae, Y.; Green, E.S.; Kim, G.Y.; Song, S.J.; Mun, J.Y.; Lee, S.; Park, J.I.; Park, J.; Ko, K.S.; Han, J.; Choi, J.S. Dipeptide-functionalized polyamidoamine dendrimer-mediated apoptin gene delivery facilitates apoptosis of human primary glioma cells. Int. J. Pharm., 2016, 515(1-2), 186-200.
[http://dx.doi.org/10.1016/j.ijpharm.2016.09.083] [PMID: 27732896]
[119]
Jiang, Y.; Lv, L.; Shi, H.; Hua, Y.; Lv, W.; Wang, X.; Xin, H.; Xu, Q. PEGylated polyamidoamine dendrimer conjugated with tumor hom-ing peptide as a potential targeted delivery system for glioma. Colloids Surf. B Biointerfaces, 2016, 147, 242-249.
[http://dx.doi.org/10.1016/j.colsurfb.2016.08.002] [PMID: 27518456]
[120]
Zhang, F.; Mastorakos, P.; Mishra, M.K.; Mangraviti, A.; Hwang, L.; Zhou, J.; Hanes, J.; Brem, H.; Olivi, A.; Tyler, B.; Kannan, R.M. Uniform brain tumor distribution and tumor associated macrophage targeting of systemically administered dendrimers. Biomaterials, 2015, 52, 507-516.
[http://dx.doi.org/10.1016/j.biomaterials.2015.02.053] [PMID: 25818456]
[121]
Garrigue, P.; Tang, J.; Ding, L.; Bouhlel, A.; Tintaru, A.; Laurini, E.; Huang, Y.; Lyu, Z.; Zhang, M.; Fernandez, S.; Balasse, L.; Lan, W.; Mas, E.; Marson, D.; Weng, Y.; Liu, X.; Giorgio, S.; Iovanna, J.; Pricl, S.; Guillet, B.; Peng, L. Self-assembling supramolecular dendrimer nanosystem for PET imaging of tumors. Proc. Natl. Acad. Sci. USA, 2018, 115(45), 11454-11459.
[http://dx.doi.org/10.1073/pnas.1812938115] [PMID: 30348798]
[122]
An, J.M.; Ju, Y.; Kim, J.H.; Lee, H.; Jung, Y.; Kim, J.; Kim, Y.J.; Kim, J.; Kim, D. A metastasis suppressor Pt-dendrimer nanozyme for the alleviation of glioblastoma. J. Mater. Chem. B Mater. Biol. Med., 2021, 9(19), 4015-4023.
[http://dx.doi.org/10.1039/D1TB00425E] [PMID: 33954328]
[123]
Uram, Ł.; Markowicz, J.; Misiorek, M.; Filipowicz-Rachwał, A.; Wołowiec, S.; Wałajtys-Rode, E. Celecoxib substituted biotinylated poly(amidoamine) G3 dendrimer as potential treatment for temozolomide resistant glioma therapy and anti-nematode agent. Eur. J. Pharm. Sci., 2020, 152, 105439.
[http://dx.doi.org/10.1016/j.ejps.2020.105439] [PMID: 32615261]
[124]
Zhao, L.; Zhu, J.; Cheng, Y.; Xiong, Z.; Tang, Y.; Guo, L.; Shi, X.; Zhao, J. Chlorotoxin-conjugated multifunctional dendrimers labeled with radionuclide. 131I for single photon emission computed tomography Imaging and radiotherapy of gliomas. ACS Appl. Mater. Interfaces, 2015, 7(35), 19798-19808.
[http://dx.doi.org/10.1021/acsami.5b05836] [PMID: 26291070]
[125]
Bae, Y.; Rhim, H.S.; Lee, S.; Ko, K.S.; Han, J.; Choi, J.S. Apoptin gene delivery by the functionalized polyamidoamine dendrimer deriva-tives induces cell death of U87-MG glioblastoma cells. J. Pharm. Sci., 2017, 106(6), 1618-1633.
[http://dx.doi.org/10.1016/j.xphs.2017.01.034] [PMID: 28188727]
[126]
Sk, U.H.; Dixit, D.; Sen, E. Comparative study of microtubule inhibitors-Estramustine and natural podophyllotoxin conjugated PAMAM dendrimer on glioma cell proliferation. Eur. J. Med. Chem., 2013, 68, 47-57.
[http://dx.doi.org/10.1016/j.ejmech.2013.07.007] [PMID: 23954240]
[127]
Cheng, Y.; Zhu, J.; Zhao, L.; Xiong, Z.; Tang, Y.; Liu, C.; Guo, L.; Qiao, W.; Shi, X.; Zhao, J. 131I-labeled multifunctional dendrimers modified with BmK CT for targeted SPECT imaging and radiotherapy of gliomas. Nanomedicine, 2016, 11(10), 1253-1266.
[http://dx.doi.org/10.2217/nnm-2016-0001] [PMID: 26940668]
[128]
Sowińska, M.; Szeliga, M.; Morawiak, M.; Ziemińska, E.; Zabłocka, B.; Urbańczyk-Lipkowska, Z. Peptide dendrimers with non-symmetric bola structure exert long term effect on glioblastoma and neuroblastoma cell lines. Biomolecules, 2021, 11(3), 435.
[http://dx.doi.org/10.3390/biom11030435] [PMID: 33804286]
[129]
Szwed, A.; Miłowska, K.; Michlewska, S.; Moreno, S.; Shcharbin, D.; Gomez-Ramirez, R.; de la Mata, F.J.; Majoral, J.P.; Bryszewska, M.; Gabryelak, T. Generation dependent effects and entrance to mitochondria of hybrid dendrimers on normal and cancer neuronal cells in vitro. Biomolecules, 2020, 10(3), 427.
[http://dx.doi.org/10.3390/biom10030427] [PMID: 32182909]
[130]
Jin, Z.; Piao, L.; Sun, G.; Lv, C.; Jing, Y.; Jin, R. Dual functional nanoparticles efficiently across the blood-brain barrier to combat glio-blastoma via simultaneously inhibit the PI3K pathway and NKG2A axis. J. Drug Target., 2021, 29(3), 323-335.
[http://dx.doi.org/10.1080/1061186X.2020.1841214] [PMID: 33108906]
[131]
Liu, X.; Li, G.; Su, Z.; Jiang, Z.; Chen, L.; Wang, J.; Yu, S.; Liu, Z. Poly(amido amine) is an ideal carrier of miR-7 for enhancing gene silencing effects on the EGFR pathway in U251 glioma cells. Oncol. Rep., 2013, 29(4), 1387-1394.
[http://dx.doi.org/10.3892/or.2013.2283] [PMID: 23404538]
[132]
Kuang, Y.; An, S.; Guo, Y.; Huang, S.; Shao, K.; Liu, Y.; Li, J.; Ma, H.; Jiang, C. T7 peptide-functionalized nanoparticles utilizing RNA interference for glioma dual targeting. Int. J. Pharm., 2013, 454(1), 11-20.
[http://dx.doi.org/10.1016/j.ijpharm.2013.07.019] [PMID: 23867728]
[133]
Janiszewska, J.; Posadas, I.; Játiva, P.; Bugaj-Zarebska, M.; Urbanczyk-Lipkowska, Z.; Ceña, V. Second generation amphiphilic poly-lysine dendrons inhibit glioblastoma cell proliferation without toxicity for neurons or astrocytes. PLoS One, 2016, 11(11), e0165704.
[http://dx.doi.org/10.1371/journal.pone.0165704] [PMID: 27832093]
[134]
Stenström, P.; Manzanares, D.; Zhang, Y.; Ceña, V.; Malkoch, M. Evaluation of amino-functional polyester dendrimers based on Bis-MPA as nonviral vectors for siRNA delivery. Molecules, 2018, 23(8), 2028.
[http://dx.doi.org/10.3390/molecules23082028] [PMID: 30110914]
[135]
Qiu, J.; Kong, L.; Cao, X.; Li, A.; Wei, P.; Wang, L.; Mignani, S.; Caminade, A.M.; Majoral, J.P.; Shi, X. Enhanced delivery of therapeutic siRNA into glioblastoma cells using dendrimer-entrapped gold nanoparticles conjugated with β-Cyclodextrin. Nanomaterials, 2018, 8(3), 131.
[http://dx.doi.org/10.3390/nano8030131] [PMID: 29495429]
[136]
Kong, L.; Wu, Y.; Alves, C.S.; Shi, X. Efficient delivery of therapeutic siRNA into glioblastoma cells using multifunctional dendrimer-entrapped gold nanoparticles. Nanomedicine, 2016, 11(23), 3103-3115.
[http://dx.doi.org/10.2217/nnm-2016-0240] [PMID: 27809656]
[137]
Ellert-Miklaszewska, A.; Ochocka, N.; Maleszewska, M.; Ding, L.; Laurini, E.; Jiang, Y.; Roura, A.J.; Giorgio, S.; Gielniewski, B.; Pricl, S.; Peng, L.; Kaminska, B. Efficient and innocuous delivery of small interfering RNA to microglia using an amphiphilic dendrimer nanovec-tor. Nanomedicine, 2019, 14(18), 2441-2459.
[http://dx.doi.org/10.2217/nnm-2019-0176] [PMID: 31456476]
[138]
Sill, T.J.; von Recum, H.A. Electrospinning: Applications in drug delivery and tissue engineering. Biomaterials, 2008, 29(13), 1989-2006.
[http://dx.doi.org/10.1016/j.biomaterials.2008.01.011] [PMID: 18281090]
[139]
Cui, W.; Zhou, Y.; Chang, J. Electrospun nanofibrous materials for tissue engineering and drug delivery. Sci. Technol. Adv. Mater., 2010, 11(1), 014108.
[http://dx.doi.org/10.1088/1468-6996/11/1/014108] [PMID: 27877323]
[140]
Liang, D.; Hsiao, B.S.; Chu, B. Functional electrospun nanofibrous scaffolds for biomedical applications. Adv. Drug Deliv. Rev., 2007, 59(14), 1392-1412.
[http://dx.doi.org/10.1016/j.addr.2007.04.021] [PMID: 17884240]
[141]
Son, Y.J.; Kim, W.J.; Yoo, H.S. Therapeutic applications of electrospun nanofibers for drug delivery systems. Arch. Pharm. Res., 2014, 37(1), 69-78.
[http://dx.doi.org/10.1007/s12272-013-0284-2] [PMID: 24234913]
[142]
Norouzi, M.; Boroujeni, S.M.; Omidvarkordshouli, N.; Soleimani, M. Advances in skin regeneration: Application of electrospun scaffolds. Adv. Healthc. Mater., 2015, 4(8), 1114-1133.
[http://dx.doi.org/10.1002/adhm.201500001] [PMID: 25721694]
[143]
Hu, X.; Liu, S.; Zhou, G.; Huang, Y.; Xie, Z.; Jing, X. Electrospinning of polymeric nanofibers for drug delivery applications. J. Control. Release, 2014, 185, 12-21.
[http://dx.doi.org/10.1016/j.jconrel.2014.04.018] [PMID: 24768792]
[144]
Liu, S.; Zhou, G.; Liu, D.; Xie, Z.; Huang, Y.; Wang, X.; Wu, W.; Jing, X. Inhibition of orthotopic secondary hepatic carcinoma in mice by doxorubicin-loaded electrospun polylactide nanofibers. J. Mater. Chem. B Mater. Biol. Med., 2013, 1(1), 101-109.
[http://dx.doi.org/10.1039/C2TB00121G] [PMID: 32260617]
[145]
Bastiancich, C.; Danhier, P.; Préat, V.; Danhier, F. Anticancer drug-loaded hydrogels as drug delivery systems for the local treatment of glioblastoma. J. Control. Release, 2016, 243, 29-42.
[http://dx.doi.org/10.1016/j.jconrel.2016.09.034] [PMID: 27693428]
[146]
Bhujbal, S.V.; de Vos, P.; Niclou, S.P. Drug and cell encapsulation: Alternative delivery options for the treatment of malignant brain tu-mors. Adv. Drug Deliv. Rev., 2014, 67-68, 142-153.
[http://dx.doi.org/10.1016/j.addr.2014.01.010] [PMID: 24491927]
[147]
Lin, F.W.; Chen, P.Y.; Wei, K.C.; Huang, C.Y.; Wang, C.K.; Yang, H.W. Rapid in situ MRI traceable gel-forming dual-drug delivery for synergistic therapy of brain tumor. Theranostics, 2017, 7(9), 2524-2536.
[http://dx.doi.org/10.7150/thno.19856] [PMID: 28744332]
[148]
Johnson, J.; Nowicki, M.O.; Lee, C.H.; Chiocca, E.A.; Viapiano, M.S.; Lawler, S.E.; Lannutti, J.J. Quantitative analysis of complex glioma cell migration on electrospun polycaprolactone using time-lapse microscopy. Tissue Eng. Part C Methods, 2009, 15(4), 531-540.
[http://dx.doi.org/10.1089/ten.tec.2008.0486] [PMID: 19199562]
[149]
Agudelo-Garcia, P.A.; De Jesus, J.K.; Williams, S.P.; Nowicki, M.O.; Chiocca, E.A.; Liyanarachchi, S.; Li, P.K.; Lannutti, J.J.; Johnson, J.K.; Lawler, S.E.; Viapiano, M.S. Glioma cell migration on three-dimensional nanofiber scaffolds is regulated by substrate topography and abolished by inhibition of STAT3 signaling. Neoplasia, 2011, 13(9), 831-IN22.
[http://dx.doi.org/10.1593/neo.11612] [PMID: 21969816]
[150]
Steffens, L.; Morás, A.M.; Arantes, P.R.; Masterson, K.; Cao, Z.; Nugent, M.; Moura, D.J. Electrospun PVA-dacarbazine nanofibers as a novel nano brain-implant for treatment of glioblastoma: In silico and in vitro characterization. Eur. J. Pharm. Sci., 2020, 143, 105183.
[http://dx.doi.org/10.1016/j.ejps.2019.105183] [PMID: 31846696]
[151]
Graham-Gurysh, E.G.; Moore, K.M.; Schorzman, A.N.; Lee, T.; Zamboni, W.C.; Hingtgen, S.D.; Bachelder, E.M.; Ainslie, K.M. Tumor responsive and tunable polymeric platform for optimized delivery of paclitaxel to treat glioblastoma. ACS Appl. Mater. Interfaces, 2020, 12(17), 19345-19356.
[http://dx.doi.org/10.1021/acsami.0c04102] [PMID: 32252517]
[152]
Graham-Gurysh, E.; Moore, K.M.; Satterlee, A.B.; Sheets, K.T.; Lin, F.C.; Bachelder, E.M.; Miller, C.R.; Hingtgen, S.D.; Ainslie, K.M. Sustained delivery of doxorubicin via acetalated dextran scaffold prevents glioblastoma recurrence after surgical resection. Mol. Pharm., 2018, 15(3), 1309-1318.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b01114] [PMID: 29342360]
[153]
Lock, L.L.; Li, Y.; Mao, X.; Chen, H.; Staedtke, V.; Bai, R.; Ma, W.; Lin, R.; Li, Y.; Liu, G.; Cui, H. One-component supramolecular fila-ment hydrogels as theranostic label-free magnetic resonance imaging agents. ACS Nano, 2017, 11(1), 797-805.
[http://dx.doi.org/10.1021/acsnano.6b07196] [PMID: 28075559]
[154]
Zhu, Y.; Jia, J.; Zhao, G.; Huang, X.; Wang, L.; Zhang, Y.; Zhang, L.; Konduru, N.; Xie, J.; Yu, R.; Liu, H. Multi-responsive nanofibers composite gel for local drug delivery to inhibit recurrence of glioma after operation. J. Nanobiotechnology, 2021, 19(1), 198.
[http://dx.doi.org/10.1186/s12951-021-00943-z] [PMID: 34217325]
[155]
Srikanth, M.; Das, S.; Berns, E.J.; Kim, J.; Stupp, S.I.; Kessler, J.A. Nanofiber-mediated inhibition of focal adhesion kinase sensitizes glioma stemlike cells to epidermal growth factor receptor inhibition. Neuro-oncol., 2013, 15(3), 319-329.
[http://dx.doi.org/10.1093/neuonc/nos316] [PMID: 23328812]
[156]
Wang, B.; Li, H.; Yao, Q.; Zhang, Y.; Zhu, X.; Xia, T.; Wang, J.; Li, G.; Li, X.; Ni, S. Local in vitro delivery of rapamycin from electrospun PEO/PDLLA nanofibers for glioblastoma treatment. Biomed. Pharmacother., 2016, 83, 1345-1352.
[http://dx.doi.org/10.1016/j.biopha.2016.08.033] [PMID: 27580454]
[157]
Xue, F.; Shen, R.; Chen, X. Analysis of gene profiles in glioma cells identifies potential genes, miRNAs, and target sites of migratory cells. Tumori, 2015, 101(5), 542-548.
[http://dx.doi.org/10.5301/tj.5000226] [PMID: 25953448]
[158]
Norouzi, M.; Abdali, Z.; Liu, S.; Miller, D.W. Salinomycin-loaded nanofibers for glioblastoma therapy. Sci. Rep., 2018, 8(1), 9377.
[http://dx.doi.org/10.1038/s41598-018-27733-2] [PMID: 29925966]
[159]
Karan, A.; Darder, M.; Kansakar, U.; Norcross, Z.; DeCoster, M. Integration of a copper-containing biohybrid (CuHARS) with cellulose for subsequent degradation and biomedical control. Int. J. Environ. Res. Public Health, 2018, 15(5), 844.
[http://dx.doi.org/10.3390/ijerph15050844] [PMID: 29693569]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy