Review Article

查尔酮衍生物作为抗菌剂:最新综述

卷 31, 期 17, 2024

发表于: 04 April, 2023

页: [2314 - 2329] 页: 16

弟呕挨: 10.2174/0929867330666230220140819

价格: $65

Open Access Journals Promotions 2
摘要

根据世界卫生组织(WHO)的数据,有100万人。从这个意义上说,为了对抗细菌耐药性,几种天然物质,包括查尔酮,已经被描述为与抗菌有关,代表了发现新的抗菌药物的潜在工具。 目的:对近5年来有关查尔酮抗菌潜力的文献进行综述和探讨。 方法:检索主要文献库,对近5年发表的文献进行调查和讨论。除了文献调查外,本综述还进行了前所未有的分子对接研究,以举例说明使用其中一种分子靶点设计具有抗菌活性的新实体的适用性。 结果:近5年来报道了几种查尔酮的抑菌活性,其中对革兰氏阳性菌和革兰氏阴性菌均有较高的抑菌活性,MIC值在纳摩尔范围内。分子对接模拟证明了查尔酮和DNA回旋酶的酶腔残基之间的重要分子间相互作用,DNA回旋酶是开发新型抗菌剂的有效分子靶点之一。 结论:这些数据显示了在具有抗菌特性的药物开发项目中使用查尔酮的潜力,这可能有助于对抗耐药性,这是一个全球性的公共卫生问题。

关键词: 查尔酮,抗菌素耐药性,抗菌,SAR, DNA回转酶,抗生素。

[1]
Leonard, A.F.C.; Morris, D.; Schmitt, H.; Gaze, W.H. Natural recreational waters and the risk that exposure to antibiotic resistant bacteria poses to human health. Curr. Opin. Microbiol., 2022, 65, 40-46.
[http://dx.doi.org/10.1016/j.mib.2021.10.004] [PMID: 34739925]
[2]
Yadav, M. Potential prospective to counter antibiotic-resistant pathogens; Comprehensive Gut Microbiota, 2022. [Epub ahead of print
[3]
Ahamed, M.J.N.; Ibrahim, F.B.; Srinivasan, H. Synergistic interactions of antimicrobials to counteract the drug-resistant microorganisms. Biointerface Res. Appl. Chem., 2022, 12, 861-872.
[http://dx.doi.org/10.33263/briac121.861872]
[4]
Luz, C.F.; van Niekerk, J.M.; Keizer, J.; Beerlage-de Jong, N.; Braakman-Jansen, L.M.A.; Stein, A.; Sinha, B.; van Gemert-Pijnen, J.E.W.C.; Glasner, C. Mapping twenty years of antimicrobial resistance research trends. Artif. Intell. Med., 2022, 123, 102216.
[http://dx.doi.org/10.1016/j.artmed.2021.102216] [PMID: 34998519]
[5]
Moretto, V.T.; Bartley, P.S.; Ferreira, V.M.; Santos, C.S.; Silva, L.K.; Ponce-Terashima, R.A.; Blanton, R.E.; Reis, M.G.; Barbosa, L.M. Microbial source tracking and antimicrobial resistance in one river system of a rural community in Bahia, Brazil. Braz. J. Biol., 2021, 82, e231838.
[http://dx.doi.org/10.1590/1519-6984.231838] [PMID: 33681894]
[6]
Rizvi, S.G.; Ahammad, S.Z. COVID-19 and antimicrobial resistance: A cross-study. Sci. Total Environ., 2022, 807(Pt 2), 150873.
[http://dx.doi.org/10.1016/j.scitotenv.2021.150873] [PMID: 34634340]
[7]
Amarsy, R.; Trystram, D.; Cambau, E.; Monteil, C.; Fournier, S.; Oliary, J.; Junot, H.; Sabatier, P.; Porcher, R.; Robert, J.; Jarlier, V.; Arlet, G.; Lefevre, L.A.; Aubry, A.; Belec, L.; Bercot, B.; Bonacorsi, S.; Calvez, V.; Cambau, E.; Carbonnelle, E.; Chevaliez, S.; Decousser, J-W.; Delaugerre, C.; Descamps, D.; Doucet-Populaire, F.; Gaillard, J-L.; Chenon, A.G. Surging bloodstream infections and antimicrobial resistance during the first wave of COVID-19: A study in a large multihospital institution in the Paris region. Int. J. Infect. Dis., 2022, 114, 90-96.
[http://dx.doi.org/10.1016/j.ijid.2021.10.034] [PMID: 34688945]
[8]
Costa, A.; Junior, A. Bacterial resistance to antibiotics and public health: A brief literature review. Sci. Station, 2017, 7, 45.
[http://dx.doi.org/10.18468/estcien.2017v7n2.p45-57]
[9]
WHO Regional Office for Europe. Preventing the COVID-19 Pandemic from Causing an Antibiotic Resistance Catastrophe., 2020. Available from: https://www.who.int/europe/news/item/18-11-2020-preventing-the-covid-19-pandemic-from-causing-an-antibiotic-resistance-catastrophe
[10]
Wei, W.; Ortwine, J.K.; Mang, N.S.; Joseph, C.; Hall, B.C.; Prokesch, B.C. Limited role for antibiotics in COVID-19: Scarce evidence of bacterial coinfection. medRxiv, 2020.
[11]
Cohen, F.L.; Tartasky, D. Microbial resistance to drug therapy: A review. Am. J. Infect. Control, 1997, 25(1), 51-64.
[http://dx.doi.org/10.1016/s0196-6553(97)90054-7] [PMID: 9057945]
[12]
Sulis, G.; Sayood, S.; Gandra, S. Antimicrobial resistance in low- and middle-income countries: Current status and future directions. Expert Rev. Anti Infect. Ther., 2022, 20(2), 147-160.
[http://dx.doi.org/10.1080/14787210.2021.1951705] [PMID: 34225545]
[13]
Murray, C.J.L.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Robles Aguilar, G.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; Johnson, S.C.; Browne, A.J.; Chipeta, M.G.; Fell, F.; Hackett, S.; Haines-Woodhouse, G.; Kashef Hamadani, B.H.; Kumaran, E.A.P.; McManigal, B.; Agarwal, R.; Akech, S.; Albertson, S.; Amuasi, J.; Andrews, J.; Aravkin, A.; Ashley, E.; Bailey, F.; Baker, S.; Basnyat, B.; Bekker, A.; Bender, R.; Bethou, A.; Bielicki, J.; Boonkasidecha, S.; Bukosia, J.; Carvalheiro, C.; Castañeda-Orjuela, C.; Chansamouth, V.; Chaurasia, S.; Chiurchiù, S.; Chowdhury, F.; Cook, A.J.; Cooper, B.; Cressey, T.R.; Criollo-Mora, E.; Cunningham, M.; Darboe, S.; Day, N.P.J.; De Luca, M.; Dokova, K.; Dramowski, A.; Dunachie, S.J.; Eckmanns, T.; Eibach, D.; Emami, A.; Feasey, N.; Fisher-Pearson, N.; Forrest, K.; Garrett, D.; Gastmeier, P.; Giref, A.Z.; Greer, R.C.; Gupta, V.; Haller, S.; Haselbeck, A.; Hay, S.I.; Holm, M.; Hopkins, S.; Iregbu, K.C.; Jacobs, J.; Jarovsky, D.; Javanmardi, F.; Khorana, M.; Kissoon, N.; Kobeissi, E.; Kostyanev, T.; Krapp, F.; Krumkamp, R.; Kumar, A.; Kyu, H.H.; Lim, C.; Limmathurotsakul, D.; Loftus, M.J.; Lunn, M.; Ma, J.; Mturi, N.; Munera-Huertas, T.; Musicha, P.; Mussi-Pinhata, M.M.; Nakamura, T.; Nanavati, R.; Nangia, S.; Newton, P.; Ngoun, C.; Novotney, A.; Nwakanma, D.; Obiero, C.W.; Olivas-Martinez, A.; Olliaro, P.; Ooko, E.; Ortiz-Brizuela, E.; Peleg, A.Y.; Perrone, C.; Plakkal, N.; Ponce-de-Leon, A.; Raad, M.; Ramdin, T.; Riddell, A.; Roberts, T.; Robotham, J.V.; Roca, A.; Rudd, K.E.; Russell, N.; Schnall, J.; Scott, J.A.G.; Shivamallappa, M.; Sifuentes-Osornio, J.; Steenkeste, N.; Stewardson, A.J.; Stoeva, T.; Tasak, N.; Thaiprakong, A.; Thwaites, G.; Turner, C.; Turner, P.; van Doorn, H.R.; Velaphi, S.; Vongpradith, A.; Vu, H.; Walsh, T.; Waner, S.; Wangrangsimakul, T.; Wozniak, T.; Zheng, P.; Sartorius, B.; Lopez, A.D.; Stergachis, A.; Moore, C.; Dolecek, C.; Naghavi, M. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet, 2022, 399(10325), 629-655.
[http://dx.doi.org/10.1016/S0140-6736(21)02724-0] [PMID: 35065702]
[14]
Mustikasari, K.; Santoso, U.T. The benefits of chalcone and its derivatives as antibacterial agents: A review. BIO Web. Conf., 2020, 20, p. 03007.
[15]
Shah, P.; Westwell, A.D. The role of fluorine in medicinal chemistry. J. Enzyme Inhib. Med. Chem., 2007, 22(5), 527-540.
[http://dx.doi.org/10.1080/14756360701425014] [PMID: 18035820]
[16]
Burmaoglu, S.; Algul, O.; Gobek, A.; Aktas Anil, D.; Ulger, M.; Erturk, B.G.; Kaplan, E.; Dogen, A.; Aslan, G. Design of potent fluoro-substituted chalcones as antimicrobial agents. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 490-495.
[http://dx.doi.org/10.1080/14756366.2016.1265517] [PMID: 28118738]
[17]
Chu, W-C.; Bai, P-Y.; Yang, Z-Q.; Cui, D-Y.; Hua, Y-G.; Yang, Y.; Yang, Q-Q.; Zhang, E.; Qin, S. Synthesis and antibacterial evaluation of novel cationic chalcone derivatives possessing broad spectrum antibacterial activity. Eur. J. Med. Chem., 2018, 143, 905-921.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.009] [PMID: 29227931]
[18]
Zhang, M.; Prior, A.M.; Maddox, M.M.; Shen, W-J.; Hevener, K.E.; Bruhn, D.F.; Lee, R.B.; Singh, A.P.; Reinicke, J.; Simmons, C.J.; Hurdle, J.G.; Lee, R.E.; Sun, D. Pharmacophore modeling, synthesis, and antibacterial evaluation of chalcones and derivatives. ACS Omega, 2018, 3(12), 18343-18360.
[http://dx.doi.org/10.1021/acsomega.8b03174] [PMID: 30613820]
[19]
Prakash, G.; Boopathy, M.; Selvam, R.; Johnsanthosh Kumar, S.; Subramanian, K. The effect of anthracene-based chalcone derivatives in the resazurin dye reduction assay mechanisms for the investigation of gram-positive and gram-negative bacterial and fungal infection. New J. Chem., 2018, 42, 1037-1045.
[http://dx.doi.org/10.1039/C7NJ04125J]
[20]
Meier, D.; Hernández, M.V.; van Geelen, L.; Muharini, R.; Proksch, P.; Bandow, J.E.; Kalscheuer, R. The plant-derived chalcone Xanthoangelol targets the membrane of Gram-positive bacteria. Bioorg. Med. Chem., 2019, 27(23), 115151.
[http://dx.doi.org/10.1016/j.bmc.2019.115151] [PMID: 31648878]
[21]
Jin, H.; Jiang, X.; Yoo, H.; Wang, T.; Sung, C.G.; Choi, U.; Lee, C-R.; Yu, H.; Koo, S. Synthesis of chalcone-derived heteroaromatics with antibacterial activities. ChemistrySelect, 2020, 5, 12421-12424.
[http://dx.doi.org/10.1002/slct.202003397]
[22]
Mustafa, M.; Mostafa, Y.A. A facile synthesis, drug-likeness, and in silico molecular docking of certain new azidosulfonamide–chalcones and their in vitro antimicrobial activity. Monatshefte Chem., 2020, 151, 417-427.
[http://dx.doi.org/10.1007/s00706-020-02568-8]
[23]
Narwal, S.; Kumar, S.; Verma, P.K. Synthesis and biological activity of new chalcone scaffolds as prospective antimicrobial agents. Res. Chem. Intermed., 2021, 47, 1625-1641.
[http://dx.doi.org/10.1007/s11164-020-04359-6]
[24]
Hu, Y.; Hu, C.; Pan, G.; Yu, C.; Ansari, M.F.; Yadav Bheemanaboina, R.R.; Cheng, Y.; Zhou, C.; Zhang, J. Novel chalcone-conjugated, multi-flexible end-group coumarin thiazole hybrids as potential antibacterial repressors against methicillin-resistant Staphylococcus aureus. Eur. J. Med. Chem., 2021, 222, 113628.
[http://dx.doi.org/10.1016/j.ejmech.2021.113628] [PMID: 34139627]
[25]
Yadav, M.; Lal, K.; Kumar, A.; Kumar, A.; Kumar, D. Indole-chalcone linked 1,2,3-triazole hybrids: Facile synthesis, antimicrobial evaluation and docking studies as potential antimicrobial agents. J. Mol. Struct., 2022, 1261, 132867.
[http://dx.doi.org/10.1016/j.molstruc.2022.132867]
[26]
Silver, L.L. Appropriate targets for antibacterial drugs. Cold Spring Harb. Perspect. Med., 2016, 6(12), 1-7.
[http://dx.doi.org/10.1101/cshperspect.a030239] [PMID: 27599531]
[27]
Christensen, D.J.; Gottlin, E.B.; Benson, R.E.; Hamilton, P.T. Phage display for target-based antibacterial drug discovery. Drug Discov. Today, 2001, 6(14), 721-727.
[http://dx.doi.org/10.1016/s1359-6446(01)01853-0] [PMID: 11445463]
[28]
Baron, S. Medical Microbiology, 4th ed; Univ of Texas Medical Branch: USA, 1996.
[29]
Silhavy, T.J.; Kahne, D.; Walker, S. The bacterial cell envelope. Cold Spring Harb. Perspect. Biol., 2010, 2(5), a000414.
[http://dx.doi.org/10.1101/cshperspect.a000414] [PMID: 20452953]
[30]
Uzman, A. Molecular Biology of the Cell 4th Ed.: Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., and Walter, P. Biochem. Mol. Biol. Educ., 2003, 31, 212-214.
[31]
Zgurskaya, H.I.; Löpez, C.A.; Gnanakaran, S. Permeability barrier of gram-negative cell envelopes and approaches to bypass it. ACS Infect. Dis., 2015, 1(11), 512-522.
[http://dx.doi.org/10.1021/acsinfecdis.5b00097] [PMID: 26925460]
[32]
Bush, K. Bradford, P.A. β-lactams and β-lactamase inhibitors: An overview. Cold Spring Harb. Perspect. Med., 2016, 6(8), a025247.
[http://dx.doi.org/10.1101/cshperspect.a025247] [PMID: 27329032]
[33]
Tahlan, K.; Jensen, S.E. Origins of the β-lactam rings in natural products. J. Antibiot., 2013, 66(7), 401-410.
[http://dx.doi.org/10.1038/ja.2013.24] [PMID: 23531986]
[34]
Chukwudi, C.U. rRNA binding sites and the molecular mechanism of action of the tetracyclines. Antimicrob. Agents Chemother., 2016, 60(8), 4433-4441.
[35]
Chellat, M.F.; Raguž, L.; Riedl, R. Targeting antibiotic resistance. Angew. Chem. Int. Ed. Engl., 2016, 55(23), 6600-6626.
[http://dx.doi.org/10.1002/anie.201506818] [PMID: 27000559]
[36]
Drlica, K.; Hiasa, H.; Kerns, R.; Malik, M.; Mustaev, A.; Zhao, X. Quinolones: Action and resistance updated. Curr. Top. Med. Chem., 2009, 9(11), 981-998.
[http://dx.doi.org/10.2174/156802609789630947] [PMID: 19747119]
[37]
Aldred, K.J.; Kerns, R.J.; Osheroff, N. Mechanism of quinolone action and resistance. Biochemistry, 2014, 53(10), 1565-1574.
[http://dx.doi.org/10.1021/bi5000564] [PMID: 24576155]
[38]
Hooper, D.C.; Jacoby, G.A. Topoisomerase inhibitors: Fluoroquinolone mechanisms of action and resistance. Cold Spring Harb. Perspect. Med., 2016, 6(9), 1-21.
[http://dx.doi.org/10.1101/cshperspect.a025320] [PMID: 27449972]
[39]
Poirel, L.; Jayol, A.; Nordmann, P. Polymyxins: Antibacterial activity, susceptibility testing, and resistance mechanisms encoded by plasmids or chromosomes. Clin. Microbiol. Rev., 2017, 30(2), 557-596.
[http://dx.doi.org/10.1128/CMR.00064-16] [PMID: 28275006]
[40]
Kołton, A.; Długosz-Grochowska, O.; Wojciechowska, R.; Czaja, M. Biosynthesis regulation of folates and phenols in plants. Sci. Hortic., 2022, 291, 110561.
[41]
Wallace-Povirk, A.; Tong, N.; Wong-Roushar, J.; O’Connor, C.; Zhou, X.; Hou, Z.; Bao, X.; Garcia, G.E.; Li, J.; Kim, S.; Dann, C.E.; Matherly, L.H.; Gangjee, A. Discovery of 6-substituted thieno[2,3-d]pyrimidine analogs as dual inhibitors of glycinamide ribonucleotide formyltransferase and 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase in de novo purine nucleotide biosynthesis in folate receptor expressing human tumors. Bioorg. Med. Chem., 2021, 37, 116093.
[42]
Feng, G.; Zou, W.; Zhong, Y. Sulfonamides repress cell division in the root apical meristem by inhibiting folates synthesis. J. Hazard. Mater. Adv., 2022, 5, 100045.
[http://dx.doi.org/10.1016/j.hazadv.2022.100045]
[43]
Yang, H.; Zhang, X.; Liu, Y.; Liu, L.; Li, J.; Du, G.; Chen, J. Synthetic biology-driven microbial production of folates: Advances and perspectives. Bioresour. Technol., 2021, 324, 124624.
[44]
The Biochemistry of Folic Acid and Related Pteridines; North-Holland Publishing Company, 1969.
[45]
Lin, S.; Chen, Y.; Li, H.; Liu, J.; Liu, S. Design, synthesis, and evaluation of amphiphilic sofalcone derivatives as potent Gram-positive antibacterial agents. Eur. J. Med. Chem., 2020, 202, 112596.
[http://dx.doi.org/10.1016/j.ejmech.2020.112596] [PMID: 32659547]
[46]
Jones, G.; Willett, P.; Glen, R.C.; Leach, A.R.; Taylor, R. Development and validation of a genetic algorithm for flexible docking. J. Mol. Biol., 1997, 267(3), 727-748.
[http://dx.doi.org/10.1006/jmbi.1996.0897] [PMID: 9126849]
[47]
Korb, O.; Stützle, T.; Exner, T.E. Empirical scoring functions for advanced protein-ligand docking with PLANTS. J. Chem. Inf. Model., 2009, 49(1), 84-96.
[http://dx.doi.org/10.1021/ci800298z] [PMID: 19125657]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy