Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

The Emerging Landscape of Natural Small-molecule Therapeutics for Huntington’s Disease

Author(s): Shahnawaz Ali Bhat*, Shakir Ahamad, Nawab John Dar, Yasir Hassan Siddique* and Aamir Nazir*

Volume 21, Issue 4, 2023

Published on: 23 February, 2023

Page: [867 - 889] Pages: 23

DOI: 10.2174/1570159X21666230216104621

Price: $65

Open Access Journals Promotions 2
Abstract

Huntington’s disease (HD) is a rare and fatal neurodegenerative disorder with no diseasemodifying therapeutics. HD is characterized by extensive neuronal loss and is caused by the inherited expansion of the huntingtin (HTT) gene that encodes a toxic mutant HTT (mHTT) protein having expanded polyglutamine (polyQ) residues. Current HD therapeutics only offer symptomatic relief. In fact, Food and Drug Administration (FDA) approved two synthetic small-molecule VMAT2 inhibitors, tetrabenazine (1) and deutetrabenazine (2), for managing HD chorea and various other diseases in clinical trials. Therefore, the landscape of drug discovery programs for HD is evolving to discover disease- modifying HD therapeutics. Likewise, numerous natural products are being evaluated at different stages of clinical development and have shown the potential to ameliorate HD pathology. The inherent anti-inflammatory and antioxidant properties of natural products mitigate the mHTT-induced oxidative stress and neuroinflammation, improve mitochondrial functions, and augment the anti-apoptotic and pro-autophagic mechanisms for increased survival of neurons in HD. In this review, we have discussed HD pathogenesis and summarized the anti-HD clinical and pre-clinical natural products, focusing on their therapeutic effects and neuroprotective mechanism/s.

Keywords: Natural products, Huntington’s disease, neuroprotective mechanisms, drug discovery, therapeutic interventions, molecules, huntingtin (HTT).

Graphical Abstract
[1]
Pringsheim, T.; Wiltshire, K.; Day, L.; Dykeman, J.; Steeves, T.; Jette, N. The incidence and prevalence of Huntington’s disease: A systematic review and meta-analysis. Mov. Disord., 2012, 27(9), 1083-1091.
[http://dx.doi.org/10.1002/mds.25075] [PMID: 22692795]
[2]
Pan, L.; Feigin, A. Huntington’s disease: New frontiers in therapeutics. Curr. Neurol. Neurosci. Rep., 2021, 21(3), 10.
[http://dx.doi.org/10.1007/s11910-021-01093-3] [PMID: 33586075]
[3]
Nance, M.A.; Myers, R.H. Juvenile onset Huntington’s disease? Clinical and research perspectives. Ment. Retard. Dev. Disabil. Res. Rev., 2001, 7(3), 153-157.
[http://dx.doi.org/10.1002/mrdd.1022] [PMID: 11553930]
[4]
Ross, C.A.; Tabrizi, S.J. Huntington’s disease: From molecular pathogenesis to clinical treatment. Lancet Neurol., 2011, 10(1), 83-98.
[http://dx.doi.org/10.1016/S1474-4422(10)70245-3] [PMID: 21163446]
[5]
Ross, C.A.; Truant, R. A unifying mechanism in neurodegeneration. Nature, 2017, 541(7635), 34-35.
[http://dx.doi.org/10.1038/nature21107] [PMID: 28002410]
[6]
Tabrizi, S.J.; Flower, M.D.; Ross, C.A.; Wild, E.J. Huntington disease: New insights into molecular pathogenesis and therapeutic opportunities. Nat. Rev. Neurol., 2020, 16(10), 529-546.
[http://dx.doi.org/10.1038/s41582-020-0389-4] [PMID: 32796930]
[7]
Pradhan, S.; Gao, R.; Bush, K.; Zhang, N.; Wairkar, Y.P.; Sarkar, P.S. Polyglutamine expansion in huntingtin and mechanism of DNA damage repair defects in Huntington’s disease. Front. Cell. Neurosci., 2022, 16, 837576.
[http://dx.doi.org/10.3389/fncel.2022.837576] [PMID: 35444517]
[8]
Geevasinga, N.; Richards, F.H.; Jones, K.J.; Ryan, M.M. Juvenile Huntington disease. J. Paediatr. Child Health, 2006, 42(9), 552-554.
[http://dx.doi.org/10.1111/j.1440-1754.2006.00921.x] [PMID: 16925544]
[9]
Jimenez-Sanchez, M.; Licitra, F.; Underwood, B.R.; Rubinsztein, D.C. Huntington’s disease: Mechanisms of pathogenesis and therapeutic strategies. Cold Spring Harb. Perspect. Med., 2017, 7(7), a024240.
[http://dx.doi.org/10.1101/cshperspect.a024240] [PMID: 27940602]
[10]
Subhan, I.; Siddique, Y.H. Modulation of Huntington’s disease in drosophila. CNS Neurol. Disord. Drug Targets, 2021, 20(10), 894-903.
[http://dx.doi.org/10.2174/1871527320666210412155508] [PMID: 33845728]
[11]
Desmond, C.R.; Atwal, R.S.; Xia, J.; Truant, R. Identification of a karyopherin β1/β2 proline-tyrosine nuclear localization signal in huntingtin protein. J. Biol. Chem., 2012, 287(47), 39626-39633.
[http://dx.doi.org/10.1074/jbc.M112.412379] [PMID: 23012356]
[12]
Xia, J. Huntingtin contains a highly conserved nuclear export signal. Hum. Mol. Genet., 2003, 12(>12), 1393-1403.
[http://dx.doi.org/10.1093/hmg/ddg156]
[13]
Cornett, J.; Cao, F.; Wang, C.E.; Ross, C.A.; Bates, G.P.; Li, S.H.; Li, X.J. Polyglutamine expansion of huntingtin impairs its nuclear export. Nat. Genet., 2005, 37(2), 198-204.
[http://dx.doi.org/10.1038/ng1503] [PMID: 15654337]
[14]
DiFiglia, M.; Sapp, E.; Chase, K. O.; Davies, S. W.; Bates, G. P.; Vonsattel, J. P.; Aronin, N. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science (80-.), 1997, 277(5334), 1990-1993.
[http://dx.doi.org/10.1126/science.277.5334.1990]
[15]
Huntington Study Group. Tetrabenazine as antichorea therapy in Huntington disease: A randomized controlled trial. Neurology, 2006, 66(3), 366-372.
[http://dx.doi.org/10.1212/01.wnl.0000198586.85250.13] [PMID: 16476934]
[16]
Frank, S.; Testa, C.M.; Stamler, D.; Kayson, E.; Davis, C.; Edmondson, M.C.; Kinel, S.; Leavitt, B.; Oakes, D.; O’Neill, C.; Vaughan, C.; Goldstein, J.; Herzog, M.; Snively, V.; Whaley, J.; Wong, C.; Suter, G.; Jankovic, J.; Jimenez-Shahed, J.; Hunter, C.; Claassen, D.O.; Roman, O.C.; Sung, V.; Smith, J.; Janicki, S.; Clouse, R.; Saint-Hilaire, M.; Hohler, A.; Turpin, D.; James, R.C.; Rodriguez, R.; Rizer, K.; Anderson, K.E.; Heller, H.; Carlson, A.; Criswell, S.; Racette, B.A.; Revilla, F.J.; Nucifora, F., Jr; Margolis, R.L.; Ong, M.; Mendis, T.; Mendis, N.; Singer, C.; Quesada, M.; Paulsen, J.S.; Brashers-Krug, T.; Miller, A.; Kerr, J.; Dubinsky, R.M.; Gray, C.; Factor, S.A.; Sperin, E.; Molho, E.; Eglow, M.; Evans, S.; Kumar, R.; Reeves, C.; Samii, A.; Chouinard, S.; Beland, M.; Scott, B.L.; Hickey, P.T.; Esmail, S.; Fung, W.L.A.; Gibbons, C.; Qi, L.; Colcher, A.; Hackmyer, C.; McGarry, A.; Klos, K.; Gudesblatt, M.; Fafard, L.; Graffitti, L.; Schneider, D.P.; Dhall, R.; Wojcieszek, J.M.; LaFaver, K.; Duker, A.; Neefus, E.; Wilson-Perez, H.; Shprecher, D.; Wall, P.; Blindauer, K.A.; Wheeler, L.; Boyd, J.T.; Houston, E.; Farbman, E.S.; Agarwal, P.; Eberly, S.W.; Watts, A.; Tariot, P.N.; Feigin, A.; Evans, S.; Beck, C.; Orme, C.; Edicola, J.; Christopher, E. Effect of deutetrabenazine on chorea among patients with huntington disease. JAMA, 2016, 316(1), 40-50.
[http://dx.doi.org/10.1001/jama.2016.8655] [PMID: 27380342]
[17]
Stahl, C.M.; Feigin, A. Medical, surgical, and genetic treatment of huntington disease. Neurol. Clin., 2020, 38(2), 367-378.
[http://dx.doi.org/10.1016/j.ncl.2020.01.010] [PMID: 32279715]
[18]
Nasir, J.; Floresco, S.B.; O’Kusky, J.R.; Diewert, V.M.; Richman, J.M.; Zeisler, J.; Borowski, A.; Marth, J.D.; Phillips, A.G.; Hayden, M.R. Targeted disruption of the Huntington’s disease gene results in embryonic lethality and behavioral and morphological changes in heterozygotes. Cell, 1995, 81(5), 811-823.
[http://dx.doi.org/10.1016/0092-8674(95)90542-1] [PMID: 7774020]
[19]
Nguyen, G.D.; Gokhan, S.; Molero, A.E.; Mehler, M.F. Selective roles of normal and mutant huntingtin in neural induction and early neurogenesis. PLoS One, 2013, 8(5), e64368.
[http://dx.doi.org/10.1371/journal.pone.0064368] [PMID: 23691206]
[20]
Lo Sardo, V.; Zuccato, C.; Gaudenzi, G.; Vitali, B.; Ramos, C.; Tartari, M.; Myre, M.A.; Walker, J.A.; Pistocchi, A.; Conti, L.; Valenza, M.; Drung, B.; Schmidt, B.; Gusella, J.; Zeitlin, S.; Cotelli, F.; Cattaneo, E. An evolutionary recent neuroepithelial cell adhesion function of huntingtin implicates ADAM10-Ncadherin. Nat. Neurosci., 2012, 15(5), 713-721.
[http://dx.doi.org/10.1038/nn.3080] [PMID: 22466506]
[21]
Godin, J.D.; Colombo, K.; Molina-Calavita, M.; Keryer, G.; Zala, D.; Charrin, B.C.; Dietrich, P.; Volvert, M.L.; Guillemot, F.; Dragatsis, I.; Bellaiche, Y.; Saudou, F.; Nguyen, L.; Humbert, S. Huntingtin is required for mitotic spindle orientation and mammalian neurogenesis. Neuron, 2010, 67(3), 392-406.
[http://dx.doi.org/10.1016/j.neuron.2010.06.027] [PMID: 20696378]
[22]
Kegel, K.B.; Meloni, A.R.; Yi, Y.; Kim, Y.J.; Doyle, E.; Cuiffo, B.G.; Sapp, E.; Wang, Y.; Qin, Z.H.; Chen, J.D.; Nevins, J.R.; Aronin, N.; DiFiglia, M. Huntingtin is present in the nucleus, interacts with the transcriptional corepressor C-terminal binding protein, and represses transcription. J. Biol. Chem., 2002, 277(9), 7466-7476.
[http://dx.doi.org/10.1074/jbc.M103946200] [PMID: 11739372]
[23]
Zuccato, C.; Tartari, M.; Crotti, A.; Goffredo, D.; Valenza, M.; Conti, L.; Cataudella, T.; Leavitt, B.R.; Hayden, M.R.; Timmusk, T.; Rigamonti, D.; Cattaneo, E. Huntingtin interacts with REST/NRSF to modulate the transcription of NRSE-controlled neuronal genes. Nat. Genet., 2003, 35(1), 76-83.
[http://dx.doi.org/10.1038/ng1219] [PMID: 12881722]
[24]
McFarland, K.N.; Huizenga, M.N.; Darnell, S.B.; Sangrey, G.R.; Berezovska, O.; Cha, J.H.J.; Outeiro, T.F.; Sadri-Vakili, G. MeCP2: A novel Huntingtin interactor. Hum. Mol. Genet., 2014, 23(4), 1036-1044.
[http://dx.doi.org/10.1093/hmg/ddt499] [PMID: 24105466]
[25]
Marcora, E.; Kennedy, M.B. The Huntington’s disease mutation impairs Huntingtin’s role in the transport of NF-κB from the synapse to the nucleus. Hum. Mol. Genet., 2010, 19(22), 4373-4384.
[http://dx.doi.org/10.1093/hmg/ddq358] [PMID: 20739295]
[26]
McKinstry, S.U.; Karadeniz, Y.B.; Worthington, A.K.; Hayrapetyan, V.Y.; Ozlu, M.I.; Serafin-Molina, K.; Risher, W.C.; Ustunkaya, T.; Dragatsis, I.; Zeitlin, S.; Yin, H.H.; Eroglu, C. Huntingtin is required for normal excitatory synapse development in cortical and striatal circuits. J. Neurosci., 2014, 34(28), 9455-9472.
[http://dx.doi.org/10.1523/JNEUROSCI.4699-13.2014] [PMID: 25009276]
[27]
Tabrizi, S.J.; Leavitt, B.R.; Landwehrmeyer, G.B.; Wild, E.J.; Saft, C.; Barker, R.A.; Blair, N.F.; Craufurd, D.; Priller, J.; Rickards, H.; Rosser, A.; Kordasiewicz, H.B.; Czech, C.; Swayze, E.E.; Norris, D.A.; Baumann, T.; Gerlach, I.; Schobel, S.A.; Paz, E.; Smith, A.V.; Bennett, C.F.; Lane, R.M. Targeting huntingtin expression in patients with huntington’s disease. N. Engl. J. Med., 2019, 380(24), 2307-2316.
[http://dx.doi.org/10.1056/NEJMoa1900907] [PMID: 31059641]
[28]
Rodrigues, F.B.; Wild, E.J. Huntington’s disease clinical trials corner: April 2020. J. Huntingtons Dis., 2020, 9(2), 185-197.
[http://dx.doi.org/10.3233/JHD-200002] [PMID: 32250312]
[29]
Stanek, L.M.; Sardi, S.P.; Mastis, B.; Richards, A.R.; Treleaven, C.M.; Taksir, T.; Misra, K.; Cheng, S.H.; Shihabuddin, L.S. Silencing mutant huntingtin by adeno-associated virus-mediated RNA interference ameliorates disease manifestations in the YAC128 mouse model of Huntington’s disease. Hum. Gene Ther., 2014, 25(5), 461-474.
[http://dx.doi.org/10.1089/hum.2013.200] [PMID: 24484067]
[30]
Pfister, E.L.; DiNardo, N.; Mondo, E.; Borel, F.; Conroy, F.; Fraser, C.; Gernoux, G.; Han, X.; Hu, D.; Johnson, E.; Kennington, L.; Liu, P.; Reid, S.J.; Sapp, E.; Vodicka, P.; Kuchel, T.; Morton, A.J.; Howland, D.; Moser, R.; Sena-Esteves, M.; Gao, G.; Mueller, C.; DiFiglia, M.; Aronin, N. Artificial miRNAs reduce human mutant huntingtin throughout the striatum in a transgenic sheep model of huntington’s disease. Hum. Gene Ther., 2018, 29(6), 663-673.
[http://dx.doi.org/10.1089/hum.2017.199] [PMID: 29207890]
[31]
Dragatsis, I.; Levine, M.S.; Zeitlin, S. Inactivation of Hdh in the brain and testis results in progressive neurodegeneration and sterility in mice. Nat. Genet., 2000, 26(3), 300-306.
[http://dx.doi.org/10.1038/81593] [PMID: 11062468]
[32]
O’Kusky, J.R.; Nasir, J.; Cicchetti, F.; Parent, A.; Hayden, M.R. Neuronal degeneration in the basal ganglia and loss of pallido-subthalamic synapses in mice with targeted disruption of the Huntington’s disease gene. Brain Res., 1999, 818(2), 468-479.
[http://dx.doi.org/10.1016/S0006-8993(98)01312-2] [PMID: 10082833]
[33]
Becher, M.W.; Kotzuk, J.A.; Sharp, A.H.; Davies, S.W.; Bates, G.P.; Price, D.L.; Ross, C.A. Intranuclear neuronal inclusions in Huntington’s disease and dentatorubral and pallidoluysian atrophy: Correlation between the density of inclusions and IT15 CAG triplet repeat length. Neurobiol. Dis., 1998, 4(6), 387-397.
[http://dx.doi.org/10.1006/nbdi.1998.0168] [PMID: 9666478]
[34]
Perutz, M.F.; Windle, A.H. Cause of neural death in neurodegenerative diseases attributable to expansion of glutamine repeats. Nature, 2001, 412(6843), 143-144.
[http://dx.doi.org/10.1038/35084141] [PMID: 11449262]
[35]
McGowan, D.P.; van Roon-Mom, W.; Holloway, H.; Bates, G.P.; Mangiarini, L.; Cooper, G.J.S.; Faull, R.L.M.; Snell, R.G. Amyloid-like inclusions in Huntington’s disease. Neuroscience, 2000, 100(4), 677-680.
[http://dx.doi.org/10.1016/S0306-4522(00)00391-2] [PMID: 11036200]
[36]
Chen, S.; Berthelier, V.; Hamilton, J.B.; O’Nuallai, B.; Wetzel, R. Amyloid-like features of polyglutamine aggregates and their assembly kinetics. Biochemistry, 2002, 41(23), 7391-7399.
[http://dx.doi.org/10.1021/bi011772q] [PMID: 12044172]
[37]
Gutekunst, C.A.; Li, S.H.; Yi, H.; Mulroy, J.S.; Kuemmerle, S.; Jones, R.; Rye, D.; Ferrante, R.J.; Hersch, S.M.; Li, X.J. Nuclear and neuropil aggregates in Huntington’s disease: Relationship to neuropathology. J. Neurosci., 1999, 19(7), 2522-2534.
[http://dx.doi.org/10.1523/JNEUROSCI.19-07-02522.1999] [PMID: 10087066]
[38]
Martindale, D.; Hackam, A.; Wieczorek, A.; Ellerby, L.; Wellington, C.; McCutcheon, K.; Singaraja, R.; Kazemi-Esfarjani, P.; Devon, R.; Kim, S.U.; Bredesen, D.E.; Tufaro, F.; Hayden, M.R. Length of huntingtin and its polyglutamine tract influences localization and frequency of intracellular aggregates. Nat. Genet., 1998, 18(2), 150-154.
[http://dx.doi.org/10.1038/ng0298-150] [PMID: 9462744]
[39]
Cooper, J.; Schilling, G.; Peters, M.F.; Herring, W.J.; Sharp, A.H.; Kaminsky, Z.; Masone, J.; Khan, F.A.; Delanoy, M.; Borchelt, D.R.; Dawson, V.L.; Dawson, T.M.; Ross, C.A. Truncated N-terminal fragments of huntingtin with expanded glutamine repeats form nuclear and cytoplasmic aggregates in cell culture. Hum. Mol. Genet., 1998, 7(5), 783-790.
[http://dx.doi.org/10.1093/hmg/7.5.783] [PMID: 9536081]
[40]
Ast, A.; Buntru, A.; Schindler, F.; Hasenkopf, R.; Schulz, A.; Brusendorf, L.; Klockmeier, K.; Grelle, G.; McMahon, B.; Niederlechner, H.; Jansen, I.; Diez, L.; Edel, J.; Boeddrich, A.; Franklin, S.A.; Baldo, B.; Schnoegl, S.; Kunz, S.; Purfürst, B.; Gaertner, A.; Kampinga, H.H.; Morton, A.J.; Petersén, Å.; Kirstein, J.; Bates, G.P.; Wanker, E.E. mHTT Seeding Activity: A Marker of Disease Progression and Neurotoxicity in Models of Huntington’s Disease. Mol. Cell, 2018, 71(5), 675-688.e6.
[http://dx.doi.org/10.1016/j.molcel.2018.07.032] [PMID: 30193095]
[41]
Legleiter, J.; Mitchell, E.; Lotz, G.P.; Sapp, E.; Ng, C.; DiFiglia, M.; Thompson, L.M.; Muchowski, P.J. Mutant huntingtin fragments form oligomers in a polyglutamine length-dependent manner in vitro and in vivo. J. Biol. Chem., 2010, 285(19), 14777-14790.
[http://dx.doi.org/10.1074/jbc.M109.093708] [PMID: 20220138]
[42]
Pieri, L.; Madiona, K.; Bousset, L.; Melki, R. Fibrillar α-synuclein and huntingtin exon 1 assemblies are toxic to the cells. Biophys. J., 2012, 102(12), 2894-2905.
[http://dx.doi.org/10.1016/j.bpj.2012.04.050] [PMID: 22735540]
[43]
Davies, S.W.; Beardsall, K.; Turmaine, M.; DiFiglia, M.; Aronin, N.; Bates, G.P. Are neuronal intranuclear inclusions the common neuropathology of triplet-repeat disorders with polyglutamine-repeat expansions? Lancet, 1998, 351(9096), 131-133.
[http://dx.doi.org/10.1016/S0140-6736(97)08360-8] [PMID: 9439509]
[44]
Sathasivam, K.; Neueder, A.; Gipson, T.A.; Landles, C.; Benjamin, A.C.; Bondulich, M.K.; Smith, D.L.; Faull, R.L.M.; Roos, R.A.C.; Howland, D.; Detloff, P.J.; Housman, D.E.; Bates, G.P. Aberrant splicing of HTT generates the pathogenic exon 1 protein in Huntington disease. Proc. Natl. Acad. Sci. USA, 2013, 110(6), 2366-2370.
[http://dx.doi.org/10.1073/pnas.1221891110] [PMID: 23341618]
[45]
Hoffner, G.; Island, M.L.; Djian, P. Purification of neuronal inclusions of patients with Huntington’s disease reveals a broad range of N-terminal fragments of expanded huntingtin and insoluble polymers. J. Neurochem., 2005, 95(1), 125-136.
[http://dx.doi.org/10.1111/j.1471-4159.2005.03348.x] [PMID: 16181417]
[46]
Yang, W.; Dunlap, J.R.; Andrews, R.B.; Wetzel, R. Aggregated polyglutamine peptides delivered to nuclei are toxic to mammalian cells. Hum. Mol. Genet., 2002, 11(23), 2905-2917.
[http://dx.doi.org/10.1093/hmg/11.23.2905] [PMID: 12393802]
[47]
Monsellier, E. Bousset, L.; Melki, R. α-Synuclein and huntingtin exon 1 amyloid fibrils bind laterally to the cellular membrane. Sci. Rep., 2016, 6(1), 19180.
[http://dx.doi.org/10.1038/srep19180] [PMID: 26757959]
[48]
Costanzo, M.; Abounit, S.; Marzo, L.; Danckaert, A.; Chamoun, Z.; Roux, P.; Zurzolo, C. Transfer of polyglutamine aggregates in neuronal cells occurs in tunneling nanotubes. J. Cell Sci., 2013, 126(Pt 16), jcs.126086.
[http://dx.doi.org/10.1242/jcs.126086] [PMID: 23781027]
[49]
Herrera, F.; Tenreiro, S.; Miller-Fleming, L.; Outeiro, T.F. Visualization of cell-to-cell transmission of mutant huntingtin oligomers. PLoS Curr., 2011, 3, RRN1210.
[http://dx.doi.org/10.1371/currents.RRN1210] [PMID: 21331289]
[50]
Babcock, D.T.; Ganetzky, B. Transcellular spreading of huntingtin aggregates in the Drosophila brain. Proc. Natl. Acad. Sci. USA, 2015, 112(39), E5427-E5433.
[http://dx.doi.org/10.1073/pnas.1516217112] [PMID: 26351672]
[51]
Pearce, M.M.P.; Spartz, E.J.; Hong, W.; Luo, L.; Kopito, R.R. Prion-like transmission of neuronal huntingtin aggregates to phagocytic glia in the Drosophila brain. Nat. Commun., 2015, 6(1), 6768.
[http://dx.doi.org/10.1038/ncomms7768] [PMID: 25866135]
[52]
Luthi-Carter, R.; Cha, J.H.J. Mechanisms of transcriptional dysregulation in Huntington’s disease. Clin. Neurosci. Res., 2003, 3(3), 165-177.
[http://dx.doi.org/10.1016/S1566-2772(03)00059-8]
[53]
Raymond, L.A.; André, V.M.; Cepeda, C.; Gladding, C.M.; Milnerwood, A.J.; Levine, M.S. Pathophysiology of Huntington’s disease: Time-dependent alterations in synaptic and receptor function. Neuroscience, 2011, 198, 252-273.
[http://dx.doi.org/10.1016/j.neuroscience.2011.08.052] [PMID: 21907762]
[54]
Siddiqui, A.; Rivera-Sánchez, S.; Castro, M.R.; Acevedo-Torres, K.; Rane, A.; Torres-Ramos, C.A.; Nicholls, D.G.; Andersen, J.K.; Ayala-Torres, S. Mitochondrial DNA damage Is associated with reduced mitochondrial bioenergetics in Huntington’s disease. Free Radic. Biol. Med., 2012, 53(7), 1478-1488.
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.06.008] [PMID: 22709585]
[55]
Wellington, C.L.; Ellerby, L.M.; Gutekunst, C.A.; Rogers, D.; Warby, S.; Graham, R.K.; Loubser, O.; van Raamsdonk, J.; Singaraja, R.; Yang, Y.Z.; Gafni, J.; Bredesen, D.; Hersch, S.M.; Leavitt, B.R.; Roy, S.; Nicholson, D.W.; Hayden, M.R. Caspase cleavage of mutant huntingtin precedes neurodegeneration in Huntington’s disease. J. Neurosci., 2002, 22(18), 7862-7872.
[http://dx.doi.org/10.1523/JNEUROSCI.22-18-07862.2002] [PMID: 12223539]
[56]
Davies, S.W.; Turmaine, M.; Cozens, B.A.; DiFiglia, M.; Sharp, A.H.; Ross, C.A.; Scherzinger, E.; Wanker, E.E.; Mangiarini, L.; Bates, G.P. Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell, 1997, 90(3), 537-548.
[http://dx.doi.org/10.1016/S0092-8674(00)80513-9] [PMID: 9267033]
[57]
Hackam, A.S.; Singaraja, R.; Wellington, C.L.; Metzler, M.; McCutcheon, K.; Zhang, T.; Kalchman, M.; Hayden, M.R. The influence of huntingtin protein size on nuclear localization and cellular toxicity. J. Cell Biol., 1998, 141(5), 1097-1105.
[http://dx.doi.org/10.1083/jcb.141.5.1097] [PMID: 9606203]
[58]
Luo, S.; Vacher, C.; Davies, J.E.; Rubinsztein, D.C. Cdk5 phosphorylation of huntingtin reduces its cleavage by caspases. J. Cell Biol., 2005, 169(4), 647-656.
[http://dx.doi.org/10.1083/jcb.200412071] [PMID: 15911879]
[59]
Schilling, B.; Gafni, J.; Torcassi, C.; Cong, X.; Row, R.H.; LaFevre-Bernt, M.A.; Cusack, M.P.; Ratovitski, T.; Hirschhorn, R.; Ross, C.A.; Gibson, B.W.; Ellerby, L.M. Huntingtin phosphorylation sites mapped by mass spectrometry. Modulation of cleavage and toxicity. J. Biol. Chem., 2006, 281(33), 23686-23697.
[http://dx.doi.org/10.1074/jbc.M513507200] [PMID: 16782707]
[60]
Luthi-Carter, R.; Strand, A.; Peters, N.L.; Solano, S.M.; Hollingsworth, Z.R.; Menon, A.S.; Frey, A.S.; Spektor, B.S.; Penney, E.B.; Schilling, G.; Ross, C.A.; Borchelt, D.R.; Tapscott, S.J.; Young, A.B.; Cha, J.H.; Olson, J.M. Decreased expression of striatal signaling genes in a mouse model of Huntington’s disease. Hum. Mol. Genet., 2000, 9(9), 1259-1271.
[http://dx.doi.org/10.1093/hmg/9.9.1259] [PMID: 10814708]
[61]
Sipione, S.; Rigamonti, D.; Valenza, M.; Zuccato, C.; Conti, L.; Pritchard, J.; Kooperberg, C.; Olson, J.M.; Cattaneo, E. Early transcriptional profiles in huntingtin-inducible striatal cells by microarray analyses. Hum. Mol. Genet., 2002, 11(17), 1953-1965.
[http://dx.doi.org/10.1093/hmg/11.17.1953] [PMID: 12165557]
[62]
Nucifora, F. C.; Sasaki, M.; Peters, M. F.; Huang, H.; Cooper, J. K.; Yamada, M.; Takahashi, H.; Tsuji, S.; Troncoso, J.; Dawson, V. L.; Dawson, T. M.; Ross, C. A. Interference by huntingtin and atrophin-1 with cbp-mediated transcription leading to cellular toxicity. Science (80-.), 2001, 291(5512), 2423-2428.
[http://dx.doi.org/10.1126/science.1056784]
[63]
Cui, L.; Jeong, H.; Borovecki, F.; Parkhurst, C.N.; Tanese, N.; Krainc, D. Transcriptional repression of PGC-1α by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration. Cell, 2006, 127(1), 59-69.
[http://dx.doi.org/10.1016/j.cell.2006.09.015] [PMID: 17018277]
[64]
Chaturvedi, R.K.; Calingasan, N.Y.; Yang, L.; Hennessey, T.; Johri, A.; Beal, M.F. Impairment of PGC-1alpha expression, neuropathology and hepatic steatosis in a transgenic mouse model of Huntington’s disease following chronic energy deprivation. Hum. Mol. Genet., 2010, 19(16), 3190-3205.
[http://dx.doi.org/10.1093/hmg/ddq229] [PMID: 20529956]
[65]
Zhai, W.; Jeong, H.; Cui, L.; Krainc, D.; Tjian, R. In vitro analysis of huntingtin-mediated transcriptional repression reveals multiple transcription factor targets. Cell, 2005, 123(7), 1241-1253.
[http://dx.doi.org/10.1016/j.cell.2005.10.030] [PMID: 16377565]
[66]
Dunah, A. W.; Jeong, H.; Griffin, A.; Kim, Y.-M.; Standaert, D. G.; Hersch, S. M.; Mouradian, M. M.; Young, A. B.; Tanese, N.; Krainc, D. Sp1 and TAFII130 transcriptional activity disrupted in early huntington’s disease. Science (80-.), 2002, 296(5576), 2238-2243.
[http://dx.doi.org/10.1126/science.1072613]
[67]
Liot, G.; Zala, D.; Pla, P.; Mottet, G.; Piel, M.; Saudou, F. Mutant Huntingtin alters retrograde transport of TrkB receptors in striatal dendrites. J. Neurosci., 2013, 33(15), 6298-6309.
[http://dx.doi.org/10.1523/JNEUROSCI.2033-12.2013] [PMID: 23575829]
[68]
Gauthier, L.R.; Charrin, B.C.; Borrell-Pagès, M.; Dompierre, J.P.; Rangone, H.; Cordelières, F.P.; De Mey, J.; MacDonald, M.E.; Leßmann, V.; Humbert, S.; Saudou, F. Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules. Cell, 2004, 118(1), 127-138.
[http://dx.doi.org/10.1016/j.cell.2004.06.018] [PMID: 15242649]
[69]
Zuccato, C.; Ciammola, A.; Rigamonti, D.; Leavitt, B. R.; Goffredo, D.; Conti, L.; MacDonald, M. E.; Friedlander, R. M.; Silani, V.; Hayden, M. R.; Timmusk, T.; Sipione, S.; Cattaneo, E. Loss of huntingtin-mediated bdnf gene transcription in huntington’s disease. Science (80-.), 2001, 293(5529), 493-498.
[http://dx.doi.org/10.1126/science.1059581]
[70]
Plotkin, J.L.; Day, M.; Peterson, J.D.; Xie, Z.; Kress, G.J.; Rafalovich, I.; Kondapalli, J.; Gertler, T.S.; Flajolet, M.; Greengard, P.; Stavarache, M.; Kaplitt, M.G.; Rosinski, J.; Chan, C.S.; Surmeier, D.J. Impaired TrkB receptor signaling underlies corticostriatal dysfunction in Huntington’s disease. Neuron, 2014, 83(1), 178-188.
[http://dx.doi.org/10.1016/j.neuron.2014.05.032] [PMID: 24991961]
[71]
Jiang, M.; Peng, Q.; Liu, X.; Jin, J.; Hou, Z.; Zhang, J.; Mori, S.; Ross, C.A.; Ye, K.; Duan, W. Small-molecule TrkB receptor agonists improve motor function and extend survival in a mouse model of Huntington’s disease. Hum. Mol. Genet., 2013, 22(12), 2462-2470.
[http://dx.doi.org/10.1093/hmg/ddt098] [PMID: 23446639]
[72]
Brito, V.; Puigdellívol, M.; Giralt, A.; del Toro, D.; Alberch, J.; Ginés, S. Imbalance of p75NTR/TrkB protein expression in Huntington’s disease: Implication for neuroprotective therapies. Cell Death Dis., 2013, 4(4), e595-e595.
[http://dx.doi.org/10.1038/cddis.2013.116] [PMID: 23598407]
[73]
Simmons, D.A.; Belichenko, N.P.; Yang, T.; Condon, C.; Monbureau, M.; Shamloo, M.; Jing, D.; Massa, S.M.; Longo, F.M. A small molecule TrkB ligand reduces motor impairment and neuropathology in R6/2 and BACHD mouse models of Huntington’s disease. J. Neurosci., 2013, 33(48), 18712-18727.
[http://dx.doi.org/10.1523/JNEUROSCI.1310-13.2013] [PMID: 24285878]
[74]
Enokido, Y.; Tamura, T.; Ito, H.; Arumughan, A.; Komuro, A.; Shiwaku, H.; Sone, M.; Foulle, R.; Sawada, H.; Ishiguro, H.; Ono, T.; Murata, M.; Kanazawa, I.; Tomilin, N.; Tagawa, K.; Wanker, E.E.; Okazawa, H. Mutant huntingtin impairs Ku70-mediated DNA repair. J. Cell Biol., 2010, 189(3), 425-443.
[http://dx.doi.org/10.1083/jcb.200905138] [PMID: 20439996]
[75]
Tamura, T.; Sone, M.; Iwatsubo, T.; Tagawa, K.; Wanker, E.E.; Okazawa, H. Ku70 alleviates neurodegeneration in Drosophila models of Huntington’s disease. PLoS One, 2011, 6(11), e27408.
[http://dx.doi.org/10.1371/journal.pone.0027408] [PMID: 22096569]
[76]
Gao, R.; Chakraborty, A.; Geater, C.; Pradhan, S.; Gordon, K.L.; Snowden, J.; Yuan, S.; Dickey, A.S.; Choudhary, S.; Ashizawa, T.; Ellerby, L.M.; La Spada, A.R.; Thompson, L.M.; Hazra, T.K.; Sarkar, P.S. Mutant huntingtin impairs PNKP and ATXN3, disrupting DNA repair and transcription. eLife, 2019, 8, e42988.
[http://dx.doi.org/10.7554/eLife.42988] [PMID: 30994454]
[77]
Maiuri, T.; Suart, C.E.; Hung, C.L.K.; Graham, K.J.; Barba Bazan, C.A.; Truant, R. DNA damage repair in Huntington’s disease and other neurodegenerative diseases. Neurotherapeutics, 2019, 16(4), 948-956.
[http://dx.doi.org/10.1007/s13311-019-00768-7] [PMID: 31364066]
[78]
Lee, J.M.; Wheeler, V.C.; Chao, M.J.; Vonsattel, J.P.G.; Pinto, R.M.; Lucente, D.; Abu-Elneel, K.; Ramos, E.M.; Mysore, J.S.; Gillis, T.; MacDonald, M.E.; Gusella, J.F.; Harold, D.; Stone, T.C.; Escott-Price, V.; Han, J.; Vedernikov, A.; Holmans, P.; Jones, L.; Kwak, S.; Mahmoudi, M.; Orth, M.; Landwehrmeyer, G.B.; Paulsen, J.S.; Dorsey, E.R.; Shoulson, I.; Myers, R.H. Identification of genetic factors that modify clinical onset of Huntington’s disease. Cell, 2015, 162(3), 516-526.
[http://dx.doi.org/10.1016/j.cell.2015.07.003] [PMID: 26232222]
[79]
Ravikumar, B.; Duden, R.; Rubinsztein, D.C. Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum. Mol. Genet., 2002, 11(9), 1107-1117.
[http://dx.doi.org/10.1093/hmg/11.9.1107] [PMID: 11978769]
[80]
Waelter, S.; Boeddrich, A.; Lurz, R.; Scherzinger, E.; Lueder, G.; Lehrach, H.; Wanker, E.E. Accumulation of mutant huntingtin fragments in aggresome-like inclusion bodies as a result of insufficient protein degradation. Mol. Biol. Cell, 2001, 12(5), 1393-1407.
[http://dx.doi.org/10.1091/mbc.12.5.1393] [PMID: 11359930]
[81]
Holmberg, C.I.; Staniszewski, K.E.; Mensah, K.N.; Matouschek, A.; Morimoto, R.I. Inefficient degradation of truncated polyglutamine proteins by the proteasome. EMBO J., 2004, 23(21), 4307-4318.
[http://dx.doi.org/10.1038/sj.emboj.7600426] [PMID: 15470501]
[82]
Venkatraman, P.; Wetzel, R.; Tanaka, M.; Nukina, N.; Goldberg, A.L. Eukaryotic proteasomes cannot digest polyglutamine sequences and release them during degradation of polyglutamine-containing proteins. Mol. Cell, 2004, 14(1), 95-104.
[http://dx.doi.org/10.1016/S1097-2765(04)00151-0] [PMID: 15068806]
[83]
Ortega, Z.; Díaz-Hernández, M.; Maynard, C.J.; Hernández, F.; Dantuma, N.P.; Lucas, J.J. Acute polyglutamine expression in inducible mouse model unravels ubiquitin/proteasome system impairment and permanent recovery attributable to aggregate formation. J. Neurosci., 2010, 30(10), 3675-3688.
[http://dx.doi.org/10.1523/JNEUROSCI.5673-09.2010] [PMID: 20220001]
[84]
Mitra, S.; Tsvetkov, A.S.; Finkbeiner, S. Single neuron ubiquitin-proteasome dynamics accompanying inclusion body formation in huntington disease. J. Biol. Chem., 2009, 284(7), 4398-4403.
[http://dx.doi.org/10.1074/jbc.M806269200] [PMID: 19074152]
[85]
Zheng, S.; Clabough, E.B.D.; Sarkar, S.; Futter, M.; Rubinsztein, D.C.; Zeitlin, S.O. Deletion of the huntingtin polyglutamine stretch enhances neuronal autophagy and longevity in mice. PLoS Genet., 2010, 6(2), e1000838.
[http://dx.doi.org/10.1371/journal.pgen.1000838] [PMID: 20140187]
[86]
Kegel, K.B.; Kim, M.; Sapp, E.; McIntyre, C.; Castaño, J.G.; Aronin, N.; DiFiglia, M. Huntingtin expression stimulates endosomal-lysosomal activity, endosome tubulation, and autophagy. J. Neurosci., 2000, 20(19), 7268-7278.
[http://dx.doi.org/10.1523/JNEUROSCI.20-19-07268.2000] [PMID: 11007884]
[87]
Ochaba, J.; Lukacsovich, T.; Csikos, G.; Zheng, S.; Margulis, J.; Salazar, L.; Mao, K.; Lau, A.L.; Yeung, S.Y.; Humbert, S.; Saudou, F.; Klionsky, D.J.; Finkbeiner, S.; Zeitlin, S.O.; Marsh, J.L.; Housman, D.E.; Thompson, L.M.; Steffan, J.S. Potential function for the Huntingtin protein as a scaffold for selective autophagy. Proc. Natl. Acad. Sci. USA, 2014, 111(47), 16889-16894.
[http://dx.doi.org/10.1073/pnas.1420103111] [PMID: 25385587]
[88]
Wong, Y.C.; Holzbaur, E.L.F. The regulation of autophagosome dynamics by huntingtin and HAP1 is disrupted by expression of mutant huntingtin, leading to defective cargo degradation. J. Neurosci., 2014, 34(4), 1293-1305.
[http://dx.doi.org/10.1523/JNEUROSCI.1870-13.2014] [PMID: 24453320]
[89]
Ravikumar, B.; Acevedo-Arozena, A.; Imarisio, S.; Berger, Z.; Vacher, C.; O’Kane, C.J.; Brown, S.D.M.; Rubinsztein, D.C. Dynein mutations impair autophagic clearance of aggregate-prone proteins. Nat. Genet., 2005, 37(7), 771-776.
[http://dx.doi.org/10.1038/ng1591] [PMID: 15980862]
[90]
Milnerwood, A.J.; Gladding, C.M.; Pouladi, M.A.; Kaufman, A.M.; Hines, R.M.; Boyd, J.D.; Ko, R.W.Y.; Vasuta, O.C.; Graham, R.K.; Hayden, M.R.; Murphy, T.H.; Raymond, L.A. Early increase in extrasynaptic NMDA receptor signaling and expression contributes to phenotype onset in Huntington’s disease mice. Neuron, 2010, 65(2), 178-190.
[http://dx.doi.org/10.1016/j.neuron.2010.01.008] [PMID: 20152125]
[91]
Cummings, D.M.; Milnerwood, A.J.; Dallérac, G.M.; Waights, V.; Brown, J.Y.; Vatsavayai, S.C.; Hirst, M.C.; Murphy, K.P.S.J. Aberrant cortical synaptic plasticity and dopaminergic dysfunction in a mouse model of huntington’s disease. Hum. Mol. Genet., 2006, 15(19), 2856-2868.
[http://dx.doi.org/10.1093/hmg/ddl224] [PMID: 16905556]
[92]
Usdin, M.T.; Shelbourne, P.F.; Myers, R.M.; Madison, D.V. Impaired synaptic plasticity in mice carrying the Huntington’s disease mutation. Hum. Mol. Genet., 1999, 8(5), 839-846.
[http://dx.doi.org/10.1093/hmg/8.5.839] [PMID: 10196373]
[93]
Trushina, E.; Dyer, R.B.; Badger, J.D., II; Ure, D.; Eide, L.; Tran, D.D.; Vrieze, B.T.; Legendre-Guillemin, V.; McPherson, P.S.; Mandavilli, B.S.; Van Houten, B.; Zeitlin, S.; McNiven, M.; Aebersold, R.; Hayden, M.; Parisi, J.E.; Seeberg, E.; Dragatsis, I.; Doyle, K.; Bender, A.; Chacko, C.; McMurray, C.T. Mutant huntingtin impairs axonal trafficking in mammalian neurons in vivo and in vitro. Mol. Cell. Biol., 2004, 24(18), 8195-8209.
[http://dx.doi.org/10.1128/MCB.24.18.8195-8209.2004] [PMID: 15340079]
[94]
Morfini, G.A.; You, Y.M.; Pollema, S.L.; Kaminska, A.; Liu, K.; Yoshioka, K.; Björkblom, B.; Coffey, E.T.; Bagnato, C.; Han, D.; Huang, C.F.; Banker, G.; Pigino, G.; Brady, S.T. Pathogenic huntingtin inhibits fast axonal transport by activating JNK3 and phosphorylating kinesin. Nat. Neurosci., 2009, 12(7), 864-871.
[http://dx.doi.org/10.1038/nn.2346] [PMID: 19525941]
[95]
Lee, W.C.M.; Yoshihara, M.; Littleton, J.T. Cytoplasmic aggregates trap polyglutamine-containing proteins and block axonal transport in a Drosophila model of Huntington’s disease. Proc. Natl. Acad. Sci. USA, 2004, 101(9), 3224-3229.
[http://dx.doi.org/10.1073/pnas.0400243101] [PMID: 14978262]
[96]
Li, H.; Li, S.H.; Yu, Z.X.; Shelbourne, P.; Li, X.J. Huntingtin aggregate-associated axonal degeneration is an early pathological event in Huntington’s disease mice. J. Neurosci., 2001, 21(21), 8473-8481.
[http://dx.doi.org/10.1523/JNEUROSCI.21-21-08473.2001] [PMID: 11606636]
[97]
Colin, E.; Zala, D.; Liot, G.; Rangone, H.; Borrell-Pagès, M.; Li, X.J.; Saudou, F.; Humbert, S. Huntingtin phosphorylation acts as a molecular switch for anterograde/retrograde transport in neurons. EMBO J., 2008, 27(15), 2124-2134.
[http://dx.doi.org/10.1038/emboj.2008.133] [PMID: 18615096]
[98]
Caviston, J.P.; Ross, J.L.; Antony, S.M.; Tokito, M.; Holzbaur, E.L.F. Huntingtin facilitates dynein/dynactin-mediated vesicle transport. Proc. Natl. Acad. Sci. USA, 2007, 104(24), 10045-10050.
[http://dx.doi.org/10.1073/pnas.0610628104] [PMID: 17548833]
[99]
Molokanova, E.; Akhtar, M.W.; Sanz-Blasco, S.; Tu, S.; Piña-Crespo, J.C.; McKercher, S.R.; Lipton, S.A. Differential effects of synaptic and extrasynaptic NMDA receptors on Aβ-induced nitric oxide production in cerebrocortical neurons. J. Neurosci., 2014, 34(14), 5023-5028.
[http://dx.doi.org/10.1523/JNEUROSCI.2907-13.2014] [PMID: 24695719]
[100]
Fan, M.M.Y.; Fernandes, H.B.; Zhang, L.Y.J.; Hayden, M.R.; Raymond, L.A. Altered NMDA receptor trafficking in a yeast artificial chromosome transgenic mouse model of Huntington’s disease. J. Neurosci., 2007, 27(14), 3768-3779.
[http://dx.doi.org/10.1523/JNEUROSCI.4356-06.2007] [PMID: 17409241]
[101]
Panov, A.V.; Gutekunst, C.A.; Leavitt, B.R.; Hayden, M.R.; Burke, J.R.; Strittmatter, W.J.; Greenamyre, J.T. Early mitochondrial calcium defects in Huntington’s disease are a direct effect of polyglutamines. Nat. Neurosci., 2002, 5(8), 731-736.
[http://dx.doi.org/10.1038/nn884] [PMID: 12089530]
[102]
Song, W.; Chen, J.; Petrilli, A.; Liot, G.; Klinglmayr, E.; Zhou, Y.; Poquiz, P.; Tjong, J.; Pouladi, M.A.; Hayden, M.R.; Masliah, E.; Ellisman, M.; Rouiller, I.; Schwarzenbacher, R.; Bossy, B.; Perkins, G.; Bossy-Wetzel, E. Mutant huntingtin binds the mitochondrial fission GTPase dynamin-related protein-1 and increases its enzymatic activity. Nat. Med., 2011, 17(3), 377-382.
[http://dx.doi.org/10.1038/nm.2313] [PMID: 21336284]
[103]
Choo, Y.S.; Johnson, G.V.W.; MacDonald, M.; Detloff, P.J.; Lesort, M. Mutant huntingtin directly increases susceptibility of mitochondria to the calcium-induced permeability transition and cytochrome c release. Hum. Mol. Genet., 2004, 13(14), 1407-1420.
[http://dx.doi.org/10.1093/hmg/ddh162] [PMID: 15163634]
[104]
Orr, A.L.; Li, S.; Wang, C.E.; Li, H.; Wang, J.; Rong, J.; Xu, X.; Mastroberardino, P.G.; Greenamyre, J.T.; Li, X.J. N-terminal mutant huntingtin associates with mitochondria and impairs mitochondrial trafficking. J. Neurosci., 2008, 28(11), 2783-2792.
[http://dx.doi.org/10.1523/JNEUROSCI.0106-08.2008] [PMID: 18337408]
[105]
Shirendeb, U.P.; Calkins, M.J.; Manczak, M.; Anekonda, V.; Dufour, B.; McBride, J.L.; Mao, P.; Reddy, P.H. Mutant huntingtin’s interaction with mitochondrial protein Drp1 impairs mitochondrial biogenesis and causes defective axonal transport and synaptic degeneration in Huntington’s disease. Hum. Mol. Genet., 2012, 21(2), 406-420.
[http://dx.doi.org/10.1093/hmg/ddr475] [PMID: 21997870]
[106]
Paul, B.D.; Sbodio, J.I.; Xu, R.; Vandiver, M.S.; Cha, J.Y.; Snowman, A.M.; Snyder, S.H. Cystathionine γ-lyase deficiency mediates neurodegeneration in Huntington’s disease. Nature, 2014, 509(7498), 96-100.
[http://dx.doi.org/10.1038/nature13136] [PMID: 24670645]
[107]
Yano, H.; Baranov, S.V.; Baranova, O.V.; Kim, J.; Pan, Y.; Yablonska, S.; Carlisle, D.L.; Ferrante, R.J.; Kim, A.H.; Friedlander, R.M. Inhibition of mitochondrial protein import by mutant huntingtin. Nat. Neurosci., 2014, 17(6), 822-831.
[http://dx.doi.org/10.1038/nn.3721] [PMID: 24836077]
[108]
Stoy, N.; Mackay, G.M.; Forrest, C.M.; Christofides, J.; Egerton, M.; Stone, T.W.; Darlington, L.G. Tryptophan metabolism and oxidative stress in patients with Huntington’s disease. J. Neurochem., 2005, 93(3), 611-623.
[http://dx.doi.org/10.1111/j.1471-4159.2005.03070.x] [PMID: 15836620]
[109]
Sorolla, M.A.; Reverter-Branchat, G.; Tamarit, J.; Ferrer, I.; Ros, J.; Cabiscol, E. Proteomic and oxidative stress analysis in human brain samples of Huntington disease. Free Radic. Biol. Med., 2008, 45(5), 667-678.
[http://dx.doi.org/10.1016/j.freeradbiomed.2008.05.014] [PMID: 18588971]
[110]
Perluigi, M.; Poon, H.F.; Maragos, W.; Pierce, W.M.; Klein, J.B.; Calabrese, V.; Cini, C.; De Marco, C.; Butterfield, D.A. Proteomic analysis of protein expression and oxidative modification in r6/2 transgenic mice: A model of Huntington disease. Mol. Cell. Proteomics, 2005, 4(12), 1849-1861.
[http://dx.doi.org/10.1074/mcp.M500090-MCP200] [PMID: 15968004]
[111]
Wild, E.; Magnusson, A.; Lahiri, N.; Krus, U.; Orth, M.; Tabrizi, S.J.; Björkqvist, M. Abnormal peripheral chemokine profile in Huntington’s disease. PLoS Curr., 2011, 3, RRN1231.
[http://dx.doi.org/10.1371/currents.RRN1231] [PMID: 21826115]
[112]
Yu, Z.X.; Li, S.H.; Evans, J.; Pillarisetti, A.; Li, H.; Li, X.J. Mutant huntingtin causes context-dependent neurodegeneration in mice with Huntington’s disease. J. Neurosci., 2003, 23(6), 2193-2202.
[http://dx.doi.org/10.1523/JNEUROSCI.23-06-02193.2003] [PMID: 12657678]
[113]
Bradford, J.; Shin, J.Y.; Roberts, M.; Wang, C.E.; Sheng, G.; Li, S.; Li, X.J. Mutant huntingtin in glial cells exacerbates neurological symptoms of Huntington disease mice. J. Biol. Chem., 2010, 285(14), 10653-10661.
[http://dx.doi.org/10.1074/jbc.M109.083287] [PMID: 20145253]
[114]
Bradford, J.; Shin, J.Y.; Roberts, M.; Wang, C.E.; Li, X.J.; Li, S. Expression of mutant huntingtin in mouse brain astrocytes causes age-dependent neurological symptoms. Proc. Natl. Acad. Sci. USA, 2009, 106(52), 22480-22485.
[http://dx.doi.org/10.1073/pnas.0911503106] [PMID: 20018729]
[115]
Tong, X.; Ao, Y.; Faas, G.C.; Nwaobi, S.E.; Xu, J.; Haustein, M.D.; Anderson, M.A.; Mody, I.; Olsen, M.L.; Sofroniew, M.V.; Khakh, B.S. Astrocyte Kir4.1 ion channel deficits contribute to neuronal dysfunction in Huntington’s disease model mice. Nat. Neurosci., 2014, 17(5), 694-703.
[http://dx.doi.org/10.1038/nn.3691] [PMID: 24686787]
[116]
Wang, L.; Lin, F.; Wang, J.; Wu, J.; Han, R.; Zhu, L.; DiFiglia, M.; Qin, Z. Expression of mutant N-terminal huntingtin fragment (htt552-100Q) in astrocytes suppresses the secretion of BDNF. Brain Res., 2012, 1449, 69-82.
[http://dx.doi.org/10.1016/j.brainres.2012.01.077] [PMID: 22410294]
[117]
Chou, S.Y.; Weng, J.Y.; Lai, H.L.; Liao, F.; Sun, S.H.; Tu, P.H.; Dickson, D.W.; Chern, Y. Expanded-polyglutamine huntingtin protein suppresses the secretion and production of a chemokine (CCL5/RANTES) by astrocytes. J. Neurosci., 2008, 28(13), 3277-3290.
[http://dx.doi.org/10.1523/JNEUROSCI.0116-08.2008] [PMID: 18367595]
[118]
Crotti, A.; Benner, C.; Kerman, B.E.; Gosselin, D.; Lagier-Tourenne, C.; Zuccato, C.; Cattaneo, E.; Gage, F.H.; Cleveland, D.W.; Glass, C.K. Mutant Huntingtin promotes autonomous microglia activation via myeloid lineage-determining factors. Nat. Neurosci., 2014, 17(4), 513-521.
[http://dx.doi.org/10.1038/nn.3668] [PMID: 24584051]
[119]
Träger, U.; Andre, R.; Lahiri, N.; Magnusson-Lind, A.; Weiss, A.; Grueninger, S.; McKinnon, C.; Sirinathsinghji, E.; Kahlon, S.; Pfister, E.L.; Moser, R.; Hummerich, H.; Antoniou, M.; Bates, G.P.; Luthi-Carter, R.; Lowdell, M.W.; Björkqvist, M.; Ostroff, G.R.; Aronin, N.; Tabrizi, S.J. HTT-lowering reverses Huntington’s disease immune dysfunction caused by NFκB pathway dysregulation. Brain, 2014, 137(3), 819-833.
[http://dx.doi.org/10.1093/brain/awt355] [PMID: 24459107]
[120]
Bouchard, J.; Truong, J.; Bouchard, K.; Dunkelberger, D.; Desrayaud, S.; Moussaoui, S.; Tabrizi, S.J.; Stella, N.; Muchowski, P.J. Cannabinoid receptor 2 signaling in peripheral immune cells modulates disease onset and severity in mouse models of Huntington’s disease. J. Neurosci., 2012, 32(50), 18259-18268.
[http://dx.doi.org/10.1523/JNEUROSCI.4008-12.2012] [PMID: 23238740]
[121]
Palazuelos, J.; Aguado, T.; Pazos, M.R.; Julien, B.; Carrasco, C.; Resel, E.; Sagredo, O.; Benito, C.; Romero, J.; Azcoitia, I.; Fernández-Ruiz, J.; Guzmán, M.; Galve-Roperh, I. Microglial CB2 cannabinoid receptors are neuroprotective in Huntington’s disease excitotoxicity. Brain, 2009, 132(11), 3152-3164.
[http://dx.doi.org/10.1093/brain/awp239] [PMID: 19805493]
[122]
Kwan, W.; Träger, U.; Davalos, D.; Chou, A.; Bouchard, J.; Andre, R.; Miller, A.; Weiss, A.; Giorgini, F.; Cheah, C.; Möller, T.; Stella, N.; Akassoglou, K.; Tabrizi, S.J.; Muchowski, P.J. Mutant huntingtin impairs immune cell migration in Huntington disease. J. Clin. Invest., 2012, 122(12), 4737-4747.
[http://dx.doi.org/10.1172/JCI64484] [PMID: 23160193]
[123]
Kwan, W.; Magnusson, A.; Chou, A.; Adame, A.; Carson, M.J.; Kohsaka, S.; Masliah, E.; Möller, T.; Ransohoff, R.; Tabrizi, S.J.; Björkqvist, M.; Muchowski, P.J. Bone marrow transplantation confers modest benefits in mouse models of Huntington’s disease. J. Neurosci., 2012, 32(1), 133-142.
[http://dx.doi.org/10.1523/JNEUROSCI.4846-11.2012] [PMID: 22219276]
[124]
Yu, D.; Zarate, N.; White, A.; Coates, D.; Tsai, W.; Nanclares, C.; Cuccu, F.; Yue, J.S.; Brown, T.G.; Mansky, R.H.; Jiang, K.; Kim, H.; Nichols-Meade, T.; Larson, S.N.; Gundry, K.; Zhang, Y.; Tomas-Zapico, C.; Lucas, J.J.; Benneyworth, M.; Öz, G.; Cvetanovic, M.; Araque, A.; Gomez-Pastor, R. CK2 alpha prime and alpha-synuclein pathogenic functional interaction mediates synaptic dysregulation in Huntington’s disease. Acta Neuropathol. Commun., 2022, 10(1), 83.
[http://dx.doi.org/10.1186/s40478-022-01379-8] [PMID: 35659303]
[125]
Poças, G.M.; Branco-Santos, J.; Herrera, F.; Outeiro, T.F. Domingos, P.M. -Synuclein modifies mutant huntingtin aggregation and neurotoxicity in Drosophila. Hum. Mol. Genet., 2015, 24(7), 1898-1907.
[http://dx.doi.org/10.1093/hmg/ddu606] [PMID: 25452431]
[126]
Herrera, F. Outeiro, T.F. α-Synuclein modifies huntingtin aggregation in living cells. FEBS Lett., 2012, 586(1), 7-12.
[http://dx.doi.org/10.1016/j.febslet.2011.11.019] [PMID: 22119730]
[127]
Charles, V.; Mezey, E.; Reddy, P.H.; Dehejia, A.; Young, T.A.; Polymeropoulos, M.H.; Brownstein, M.J.; Tagle, D.A. Alpha-synuclein immunoreactivity of huntingtin polyglutamine aggregates in striatum and cortex of Huntington’s disease patients and transgenic mouse models. Neurosci. Lett., 2000, 289(1), 29-32.
[http://dx.doi.org/10.1016/S0304-3940(00)01247-7] [PMID: 10899401]
[128]
Tomás-Zapico, C. Díez-Zaera, M.; Ferrer, I.; Gómez-Ramos, P.; Morán, M.A.; Miras-Portugal, M.T.; Díaz-Hernández, M.; Lucas, J.J. α-Synuclein accumulates in huntingtin inclusions but forms independent filaments and its deficiency attenuates early phenotype in a mouse model of Huntington’s disease. Hum. Mol. Genet., 2012, 21(3), 495-510.
[http://dx.doi.org/10.1093/hmg/ddr507] [PMID: 22045698]
[129]
Corrochano, S. Renna, M.; Carter, S.; Chrobot, N.; Kent, R.; Stewart, M.; Cooper, J.; Brown, S.D.M.; Rubinsztein, D.C.; Acevedo-Arozena, A. α-Synuclein levels modulate Huntington’s disease in mice. Hum. Mol. Genet., 2012, 21(3), 485-494.
[http://dx.doi.org/10.1093/hmg/ddr477] [PMID: 22010050]
[130]
Winslow, A.R. Chen, C.W.; Corrochano, S.; Acevedo-Arozena, A.; Gordon, D.E.; Peden, A.A.; Lichtenberg, M.; Menzies, F.M.; Ravikumar, B.; Imarisio, S.; Brown, S.; O’Kane, C.J.; Rubinsztein, D.C. α-Synuclein impairs macroautophagy: Implications for Parkinson’s disease. J. Cell Biol., 2010, 190(6), 1023-1037.
[http://dx.doi.org/10.1083/jcb.201003122] [PMID: 20855506]
[131]
Magistrelli, L.; Contaldi, E.; Comi, C. The impact of SNCA variations and its product alpha-synuclein on non-motor features of parkinson’s disease. Life (Basel), 2021, 11(8), 804.
[http://dx.doi.org/10.3390/life11080804] [PMID: 34440548]
[132]
Alpaugh, M.; Masnata, M.; de Rus Jacquet, A.; Lepinay, E.; Denis, H.L.; Saint-Pierre, M.; Davies, P.; Planel, E.; Cicchetti, F. Passive immunization against phosphorylated tau improves features of Huntington’s disease pathology. Mol. Ther., 2022, 30(4), 1500-1522.
[http://dx.doi.org/10.1016/j.ymthe.2022.01.020] [PMID: 35051614]
[133]
Fernández-Nogales, M.; Lucas, J.J. Altered levels and isoforms of tau and nuclear membrane invaginations in huntington’s disease. Front. Cell. Neurosci., 2020, 13, 574.
[http://dx.doi.org/10.3389/fncel.2019.00574] [PMID: 32009905]
[134]
Fernández-Nogales, M.; Cabrera, J.R.; Santos-Galindo, M.; Hoozemans, J.J.M.; Ferrer, I.; Rozemuller, A.J.M.; Hernández, F.; Avila, J.; Lucas, J.J. Huntington’s disease is a four-repeat tauopathy with tau nuclear rods. Nat. Med., 2014, 20(8), 881-885.
[http://dx.doi.org/10.1038/nm.3617] [PMID: 25038828]
[135]
Blum, D.; Herrera, F.; Francelle, L.; Mendes, T.; Basquin, M.; Obriot, H.; Demeyer, D.; Sergeant, N.; Gerhardt, E.; Brouillet, E.; Buée, L.; Outeiro, T.F. Mutant huntingtin alters Tau phosphorylation and subcellular distribution. Hum. Mol. Genet., 2015, 24(1), 76-85.
[http://dx.doi.org/10.1093/hmg/ddu421] [PMID: 25143394]
[136]
van der Burg, J.M.M.; Gardiner, S.L.; Ludolph, A.C.; Landwehrmeyer, G.B.; Roos, R.A.C.; Aziz, N.A. Body weight is a robust predictor of clinical progression in Huntington disease. Ann. Neurol., 2017, 82(3), 479-483.
[http://dx.doi.org/10.1002/ana.25007] [PMID: 28779551]
[137]
Kong, G.; Ellul, S.; Narayana, V.K.; Kanojia, K.; Ha, H.T.T.; Li, S.; Renoir, T.; Cao, K.A.L.; Hannan, A.J. An integrated metagenomics and metabolomics approach implicates the microbiota-gut-brain axis in the pathogenesis of Huntington’s disease. Neurobiol. Dis., 2021, 148, 105199.
[http://dx.doi.org/10.1016/j.nbd.2020.105199] [PMID: 33249136]
[138]
Gubert, C.; Choo, J.M.; Love, C.J.; Kodikara, S.; Masson, B.A.; Liew, J.J.M.; Wang, Y.; Kong, G.; Narayana, V.K.; Renoir, T.; Lê Cao, K.A.; Rogers, G.B.; Hannan, A.J. Faecal microbiota transplant ameliorates gut dysbiosis and cognitive deficits in Huntington’s disease mice. Brain Commun., 2022, 4(4), fcac205.
[http://dx.doi.org/10.1093/braincomms/fcac205] [PMID: 36035436]
[139]
Wasser, C.I.; Mercieca, E.C.; Kong, G.; Hannan, A.J.; McKeown, S.J.; Glikmann-Johnston, Y.; Stout, J.C. Gut dysbiosis in Huntington’s disease: Associations among gut microbiota, cognitive performance and clinical outcomes. Brain Commun., 2020, 2(2), fcaa110.
[http://dx.doi.org/10.1093/braincomms/fcaa110] [PMID: 33005892]
[140]
van der Burg, J.M.M.; Winqvist, A.; Aziz, N.A.; Maat-Schieman, M.L.C.; Roos, R.A.C.; Bates, G.P.; Brundin, P.; Björkqvist, M.; Wierup, N. Gastrointestinal dysfunction contributes to weight loss in Huntington’s disease mice. Neurobiol. Dis., 2011, 44(1), 1-8.
[http://dx.doi.org/10.1016/j.nbd.2011.05.006] [PMID: 21624468]
[141]
Kong, G.; Cao, K.A.L.; Judd, L.M.; Li, S.; Renoir, T.; Hannan, A.J. Microbiome profiling reveals gut dysbiosis in a transgenic mouse model of Huntington’s disease. Neurobiol. Dis., 2020, 135, 104268.
[http://dx.doi.org/10.1016/j.nbd.2018.09.001] [PMID: 30194046]
[142]
Murugaiyah, V.; Mattson, M.P. Neurohormetic phytochemicals: An evolutionary-bioenergetic perspective. Neurochem. Int., 2015, 89, 271-280.
[http://dx.doi.org/10.1016/j.neuint.2015.03.009] [PMID: 25861940]
[143]
Calabrese, V.; Cornelius, C.; Dinkova-Kostova, A.T.; Calabrese, E.J.; Mattson, M.P. Cellular stress responses, the hormesis paradigm, and vitagenes: Novel targets for therapeutic intervention in neurodegenerative disorders. Antioxid. Redox Signal., 2010, 13(11), 1763-1811.
[http://dx.doi.org/10.1089/ars.2009.3074] [PMID: 20446769]
[144]
Calabrese, E.J. Preconditioning is hormesis part II: How the conditioning dose mediates protection: Dose optimization within temporal and mechanistic frameworks. Pharmacol. Res., 2016, 110, 265-275.
[http://dx.doi.org/10.1016/j.phrs.2015.12.020] [PMID: 26748033]
[145]
Calabrese, V.; Mancuso, C.; Calvani, M.; Rizzarelli, E.; Butterfield, D.A.; Giuffrida Stella, A.M. Nitric oxide in the central nervous system: Neuroprotection versus neurotoxicity. Nat. Rev. Neurosci., 2007, 8(10), 766-775.
[http://dx.doi.org/10.1038/nrn2214] [PMID: 17882254]
[146]
Kaplan, A.; Stockwell, B.R. Therapeutic approaches to preventing cell death in Huntington disease. Prog. Neurobiol., 2012, 99(3), 262-280.
[http://dx.doi.org/10.1016/j.pneurobio.2012.08.004] [PMID: 22967354]
[147]
Devadiga, S.J.; Bharate, S.S. Recent developments in the management of Huntington’s disease. Bioorg. Chem., 2022, 120, 105642.
[http://dx.doi.org/10.1016/j.bioorg.2022.105642] [PMID: 35121553]
[148]
Ahamad, S.; Mathew, S.; Khan, W.A.; Mohanan, K. Development of small-molecule PCSK9 inhibitors for the treatment of hypercholesterolemia. Drug Discov. Today, 2022, 27(5), 1332-1349.
[http://dx.doi.org/10.1016/j.drudis.2022.01.014] [PMID: 35121175]
[149]
Fecke, W.; Gianfriddo, M.; Gaviraghi, G.; Terstappen, G.C.; Heitz, F. Small molecule drug discovery for Huntington’s Disease. Drug Discov. Today, 2009, 14(9-10), 453-464.
[http://dx.doi.org/10.1016/j.drudis.2009.02.006] [PMID: 19429504]
[150]
Lum, P.T.; Sekar, M.; Gan, S.H.; Bonam, S.R.; Shaikh, M.F. Protective effect of natural products against huntington’s disease: An overview of scientific evidence and understanding their mechanism of action. ACS Chem. Neurosci., 2021, 12(3), 391-418.
[http://dx.doi.org/10.1021/acschemneuro.0c00824] [PMID: 33475334]
[151]
Zanforlin, E.; Zagotto, G.; Ribaudo, G. The medicinal chemistry of natural and semisynthetic compounds against parkinson’s and huntington’s diseases. ACS Chem. Neurosci., 2017, 8(11), 2356-2368.
[http://dx.doi.org/10.1021/acschemneuro.7b00283] [PMID: 28862431]
[152]
Mu, S.; Li, Y.; Liu, B.; Wang, W.; Chen, S.; Wu, J.; OuYang, L.; Zhu, Y.; Li, K.; Zhan, M.; Liu, Z.; Jia, Y.; Ma, Y.; Lei, W. Dihydromyricetin ameliorates 3np-induced behavioral deficits and striatal injury in rats. J. Mol. Neurosci., 2016, 60(2), 267-275.
[http://dx.doi.org/10.1007/s12031-016-0801-0] [PMID: 27501707]
[153]
Shivasharan, B.D.; Nagakannan, P.; Thippeswamy, B.S.; Veerapur, V.P.; Bansal, P.; Unnikrishnan, M.K. Protective effect of Calendula officinalis Linn. flowers against 3-nitropropionic acid induced experimental Huntington’s disease in rats. Drug Chem. Toxicol., 2013, 36(4), 466-473.
[http://dx.doi.org/10.3109/01480545.2013.776583] [PMID: 23590827]
[154]
Huang, N.K.; Lin, J.H.; Lin, J.T.; Lin, C.I.; Liu, E.M.; Lin, C.J.; Chen, W.P.; Shen, Y.C.; Chen, H.M.; Chen, J.B.; Lai, H.L.; Yang, C.W.; Chiang, M.C.; Wu, Y.S.; Chang, C.; Chen, J.F.; Fang, J.M.; Lin, Y.L.; Chern, Y. A new drug design targeting the adenosinergic system for Huntington’s disease. PLoS One, 2011, 6(6), e20934.
[http://dx.doi.org/10.1371/journal.pone.0020934] [PMID: 21713039]
[155]
Mahdy, H.M.; Mohamed, M.R.; Emam, M.A.; Karim, A.M.; Abdel-Naim, A.; Khalifa, A.E. The anti-apoptotic and anti-inflammatory properties of puerarin attenuate 3-nitropropionic-acid induced neurotoxicity in rats. Can. J. Physiol. Pharmacol., 2014, 92(3), 252-258.
[http://dx.doi.org/10.1139/cjpp-2013-0398]
[156]
Menze, E.T.; Esmat, A.; Tadros, M.G.; Abdel-Naim, A.B.; Khalifa, A.E. Genistein improves 3-NPA-induced memory impairment in ovariectomized rats: Impact of its antioxidant, anti-inflammatory and acetylcholinesterase modulatory properties. PLoS One, 2015, 10(2), e0117223.
[http://dx.doi.org/10.1371/journal.pone.0117223] [PMID: 25675218]
[157]
Chiu, H.F.; Venkatakrishnan, K.; Wang, C.K. The role of nutraceuticals as a complementary therapy against various neurodegenerative diseases: A mini-review. J. Tradit. Complement. Med., 2020, 10(5), 434-439.
[http://dx.doi.org/10.1016/j.jtcme.2020.03.008] [PMID: 32953558]
[158]
Dar, N.J.; Hamid, A.; Ahmad, M. Pharmacologic overview of Withania somnifera, the Indian Ginseng. Cell. Mol. Life Sci., 2015, 72(23), 4445-4460.
[http://dx.doi.org/10.1007/s00018-015-2012-1] [PMID: 26306935]
[159]
Malik, J.; Karan, M.; Dogra, R. Ameliorating effect of Celastrus paniculatus standardized extract and its fractions on 3-nitropropionic acid induced neuronal damage in rats: Possible antioxidant mechanism. Pharm. Biol., 2017, 55(1), 980-990.
[http://dx.doi.org/10.1080/13880209.2017.1285945] [PMID: 28164735]
[160]
Shinomol, G.K.; Ravikumar, H. Muralidhara, Prophylaxis with Centella asiatica confers protection to prepubertal mice against 3-nitropropionic-acid-induced oxidative stress in brain. Phytother. Res., 2010, 24(6), 885-892.
[http://dx.doi.org/10.1002/ptr.3042] [PMID: 19943239]
[161]
Malik, J.; Choudhary, S.; Kumar, P. Protective effect of Convolvulus pluricaulis standardized extract and its fractions against 3-nitropropionic acid-induced neurotoxicity in rats. Pharm. Biol., 2015, 53(10), 1448-1457.
[http://dx.doi.org/10.3109/13880209.2014.984856] [PMID: 25853968]
[162]
Kaur, M.; Prakash, A.; Kalia, A.N. Neuroprotective potential of antioxidant potent fractions from Convolvulus pluricaulis Chois. in 3-nitropropionic acid challenged rats. Nutr. Neurosci., 2016, 19(2), 70-78.
[http://dx.doi.org/10.1179/1476830515Y.0000000022] [PMID: 25896328]
[163]
Courtes, A.A.; Arantes, L.P.; Barcelos, R.P.; da Silva, I.K.; Boligon, A.A.; Athayde, M.L.; Puntel, R.L.; Soares, F.A.A. Protective effects of aqueous extract of Luehea divaricata against behavioral and oxidative changes induced by 3-nitropropionic acid in rats. Evid. Based Complement. Alternat. Med., 2015, 2015, 1-11.
[http://dx.doi.org/10.1155/2015/723431] [PMID: 26604972]
[164]
Kumar, P.; Kumar, A. Possible neuroprotective effect of Withania somnifera root extract against 3-nitropropionic acid-induced behavioral, biochemical, and mitochondrial dysfunction in an animal model of Huntington’s disease. J. Med. Food, 2009, 12(3), 591-600.
[http://dx.doi.org/10.1089/jmf.2008.0028] [PMID: 19627208]
[165]
Lian, X.Y.; Zhang, Z.; Stringer, J.L. Protective effects of ginseng components in a rodent model of neurodegeneration. Ann. Neurol., 2005, 57(5), 642-648.
[http://dx.doi.org/10.1002/ana.20450] [PMID: 15852378]
[166]
Jang, M.; Lee, M.J.; Kim, C.S.; Cho, I.H. Korean red ginseng extract attenuates 3-nitropropionic acid-induced Huntington’s-like symptoms. Evid. Based Complement. Alternat. Med., 2013, 2013, 1-17.
[http://dx.doi.org/10.1155/2013/237207] [PMID: 23431333]
[167]
Sharma, M. Neuroprotective effect of Zingiber officinale in 3-np-induced huntington disease. IOSR J. Pharm., 2012, 2(6), 61-70.
[http://dx.doi.org/10.9790/3013-26206170]
[168]
McGarry, A.; McDermott, M.; Kieburtz, K.; de Blieck, E.A.; Beal, F.; Marder, K.; Ross, C.; Shoulson, I.; Gilbert, P.; Mallonee, W.M.; Guttman, M.; Wojcieszek, J.; Kumar, R.; LeDoux, M.S.; Jenkins, M.; Rosas, H.D.; Nance, M.; Biglan, K.; Como, P.; Dubinsky, R.M.; Shannon, K.M.; O’Suilleabhain, P.; Chou, K.; Walker, F.; Martin, W.; Wheelock, V.L.; McCusker, E.; Jankovic, J.; Singer, C.; Sanchez-Ramos, J.; Scott, B.; Suchowersky, O.; Factor, S.A.; Higgins, D.S., Jr; Molho, E.; Revilla, F.; Caviness, J.N.; Friedman, J.H.; Perlmutter, J.S.; Feigin, A.; Anderson, K.; Rodriguez, R.; McFarland, N.R.; Margolis, R.L.; Farbman, E.S.; Raymond, L.A.; Suski, V.; Kostyk, S.; Colcher, A.; Seeberger, L.; Epping, E.; Esmail, S.; Diaz, N.; Fung, W.L.A.; Diamond, A.; Frank, S.; Hanna, P.; Hermanowicz, N.; Dure, L.S.; Cudkowicz, M. A randomized, double-blind, placebo-controlled trial of coenzyme Q10 in Huntington disease. Neurology, 2017, 88(2), 152-159.
[http://dx.doi.org/10.1212/WNL.0000000000003478] [PMID: 27913695]
[169]
Jamwal, S.; Kumar, P. Insight into the emerging role of striatal neurotransmitters in the pathophysiology of parkinson’s disease and huntington’s disease: A review. Curr. Neuropharmacol., 2019, 17(2), 165-175.
[http://dx.doi.org/10.2174/1570159X16666180302115032] [PMID: 29512464]
[170]
Zou, S.; Kumar, U. Cannabinoid receptors and the endocannabinoid system: Signaling and function in the central nervous system. Int. J. Mol. Sci., 2018, 19(3), 833.
[http://dx.doi.org/10.3390/ijms19030833] [PMID: 29533978]
[171]
Escribano, B.; Colín-González, A.; Santamaría, A.; Túnez, I. The role of melatonin in multiple sclerosis, Huntington’s disease and cerebral ischemia. CNS Neurol. Disord. Drug Targets, 2014, 13(6), 1096-1119.
[http://dx.doi.org/10.2174/1871527313666140806160400] [PMID: 25106623]
[172]
Jang, M.; Choi, J.H.; Chang, Y.; Lee, S.J.; Nah, S.Y.; Cho, I.H. Gintonin, a ginseng-derived ingredient, as a novel therapeutic strategy for Huntington’s disease: Activation of the Nrf2 pathway through lysophosphatidic acid receptors. Brain Behav. Immun., 2019, 80, 146-162.
[http://dx.doi.org/10.1016/j.bbi.2019.03.001] [PMID: 30853569]
[173]
Mehan, S.; Monga, V.; Rani, M.; Dudi, R.; Ghimire, K. Neuroprotective effect of solanesol against 3-nitropropionic acid-induced Huntington’s disease-like behavioral, biochemical, and cellular alterations: Restoration of coenzyme-Q10-mediated mitochondrial dysfunction. Indian J. Pharmacol., 2018, 50(6), 309-319.
[http://dx.doi.org/10.4103/ijp.IJP_11_18] [PMID: 30783323]
[174]
Wu, J.; Jeong, H.K.; Bulin, S.E.; Kwon, S.W.; Park, J.H.; Bezprozvanny, I. Ginsenosides protect striatal neurons in a cellular model of Huntington’s disease. J. Neurosci. Res., 2009, 87(8), 1904-1912.
[http://dx.doi.org/10.1002/jnr.22017] [PMID: 19185022]
[175]
Gao, Y.; Chu, S.; Li, J.; Zhang, Z.; Yan, J.; Wen, Z.; Xia, C.; Mou, Z.; Wang, Z.; He, W.; Guo, X.; Wei, G.; Chen, N. Protopanaxtriol protects against 3-nitropropionic acid-induced oxidative stress in a rat model of Huntington’s disease. Acta Pharmacol. Sin., 2015, 36(3), 311-322.
[http://dx.doi.org/10.1038/aps.2014.107] [PMID: 25640478]
[176]
Westerheide, S.D.; Bosman, J.D.; Mbadugha, B.N.A.; Kawahara, T.L.A.; Matsumoto, G.; Kim, S.; Gu, W.; Devlin, J.P.; Silverman, R.B.; Morimoto, R.I. Celastrols as inducers of the heat shock response and cytoprotection. J. Biol. Chem., 2004, 279(53), 56053-56060.
[http://dx.doi.org/10.1074/jbc.M409267200] [PMID: 15509580]
[177]
Chen, L.; Shi, M.; Lv, C.; Song, Y.; Wu, Y.; Liu, S.; Zheng, Z.; Lu, X.; Qin, S. Dihydromyricetin acts as a potential redox balance mediator in cancer chemoprevention. Mediators Inflamm., 2021, 2021, 1-18.
[http://dx.doi.org/10.1155/2021/6692579] [PMID: 33776577]
[178]
Wang, L.; Wang, J.; Yang, L.; Zhou, S.; Guan, S.; Yang, L.; Shi, Q.; Zhao, M.G.; Yang, Q. Effect of Praeruptorin C on 3-nitropropionic acid induced Huntington’s disease-like symptoms in mice. Biomed. Pharmacother., 2017, 86, 81-87.
[http://dx.doi.org/10.1016/j.biopha.2016.11.111] [PMID: 27939523]
[179]
Yang, Q. The anti-depressant effect of praeruptorin c on the chronic unpredictable mild stress mouse modely. Clin. Exp. Pharmacol., 2015, 5(6)
[http://dx.doi.org/10.4172/2161-1459.1000195]
[180]
Dhadde, S.B.; Nagakannan, P.; Roopesh, M.; Anand Kumar, S.R.; Thippeswamy, B.S.; Veerapur, V.P.; Badami, S. Effect of embelin against 3-nitropropionic acid-induced Huntington’s disease in rats. Biomed. Pharmacother., 2016, 77, 52-58.
[http://dx.doi.org/10.1016/j.biopha.2015.11.009] [PMID: 26796265]
[181]
Túnez, I.; Montilla, P.; Muñoz, M.C.; Drucker-Colín, R. Effect of nicotine on 3-nitropropionic acid-induced oxidative stress in synaptosomes. Eur. J. Pharmacol., 2004, 504(3), 169-175.
[http://dx.doi.org/10.1016/j.ejphar.2004.09.061] [PMID: 15541418]
[182]
Karandikar, A.; Thangarajan, S. Protective activity of esculetin against 3-nitropropionic acid induced neurotoxicity via scavenging reactive oxygen species in male wistar rats. Int. J. Pharmacog. Phytochem. Res., 2017, 9(5)
[http://dx.doi.org/10.25258/phyto.v9i5.8155]
[183]
Mehan, S.; Parveen, S.; Kalra, S. Adenyl cyclase activator forskolin protects against Huntington’s disease-like neurodegenerative disorders. Neural Regen. Res., 2017, 12(2), 290-300.
[http://dx.doi.org/10.4103/1673-5374.200812] [PMID: 28400813]
[184]
Ikram, M.; Ullah, R.; Khan, A.; Kim, M.O. Ongoing research on the role of gintonin in the management of neurodegenerative disorders. Cells, 2020, 9(6), 1464.
[http://dx.doi.org/10.3390/cells9061464] [PMID: 32549286]
[185]
Binawade, Y.; Jagtap, A. Neuroprotective effect of lutein against 3-nitropropionic acid-induced Huntington’s disease-like symptoms: Possible behavioral, biochemical, and cellular alterations. J. Med. Food, 2013, 16(10), 934-943.
[http://dx.doi.org/10.1089/jmf.2012.2698] [PMID: 24138168]
[186]
Sandhir, R.; Mehrotra, A.; Kamboj, S.S. Lycopene prevents 3-nitropropionic acid-induced mitochondrial oxidative stress and dysfunctions in nervous system. Neurochem. Int., 2010, 57(5), 579-587.
[http://dx.doi.org/10.1016/j.neuint.2010.07.005] [PMID: 20643176]
[187]
Jamwal, S.; Kumar, P. Spermidine ameliorates 3-nitropropionic acid (3-NP)-induced striatal toxicity: Possible role of oxidative stress, neuroinflammation, and neurotransmitters. Physiol. Behav., 2016, 155, 180-187.
[http://dx.doi.org/10.1016/j.physbeh.2015.12.015] [PMID: 26703234]
[188]
Jang, M.; Cho, I.H. Sulforaphane ameliorates 3-nitropropionic acid-induced striatal toxicity by activating the Keap1-Nrf2-ARE Pathway and inhibiting the MAPKs and NF-κB pathways. Mol. Neurobiol., 2016, 53(4), 2619-2635.
[http://dx.doi.org/10.1007/s12035-015-9230-2] [PMID: 26096705]
[189]
Danduga, R.C.S.R.; Dondapati, S.R.; Kola, P.K.; Grace, L.; Tadigiri, R.V.B.; Kanakaraju, V.K. Neuroprotective activity of tetramethylpyrazine against 3-nitropropionic acid induced Huntington’s disease-like symptoms in rats. Biomed. Pharmacother., 2018, 105, 1254-1268.
[http://dx.doi.org/10.1016/j.biopha.2018.06.079] [PMID: 30021362]
[190]
Pedraza-Chaverrí, J.; Reyes-Fermín, L.M.; Nolasco-Amaya, E.G.; Orozco-Ibarra, M.; Medina-Campos, O.N.; González-Cuahutencos, O.; Rivero-Cruz, I.; Mata, R. ROS scavenging capacity and neuroprotective effect of α-mangostin against 3-nitropropionic acid in cerebellar granule neurons. Exp. Toxicol. Pathol., 2009, 61(5), 491-501.
[http://dx.doi.org/10.1016/j.etp.2008.11.002] [PMID: 19108999]
[191]
Thangarajan, S.; Deivasigamani, A.; Natarajan, S.S.; Krishnan, P.; Mohanan, S.K. Neuroprotective activity of L -theanine on 3-nitropropionic acid-induced neurotoxicity in rat striatum. Int. J. Neurosci., 2014, 124(9), 673-684.
[http://dx.doi.org/10.3109/00207454.2013.872642] [PMID: 24325390]
[192]
Chakraborty, J.; Singh, R.; Dutta, D.; Naskar, A.; Rajamma, U.; Mohanakumar, K.P. Quercetin improves behavioral deficiencies, restores astrocytes and microglia, and reduces serotonin metabolism in 3-nitropropionic acid-induced rat model of Huntington’s Disease. CNS Neurosci. Ther., 2014, 20(1), 10-19.
[http://dx.doi.org/10.1111/cns.12189] [PMID: 24188794]
[193]
Kumar, P.; Kalonia, H.; Kumar, A. Sesamol attenuate 3-nitropropionic acid-induced Huntington-like behavioral, biochemical, and cellular alterations in rats. J. Asian Nat. Prod. Res., 2009, 11(5), 439-450.
[http://dx.doi.org/10.1080/10286020902862194] [PMID: 19504387]
[194]
Hasan Siddique, Y. Rahul; Varshney, H.; Mantasha, I.; Shahid, M. Effect of luteolin on the transgenic Drosophila model of Huntington’s disease. Comput. Toxicol., 2021, 17, 100148.
[http://dx.doi.org/10.1016/j.comtox.2020.100148]
[195]
Ehrnhoefer, D.E.; Duennwald, M.; Markovic, P.; Wacker, J.L.; Engemann, S.; Roark, M.; Legleiter, J.; Marsh, J.L.; Thompson, L.M.; Lindquist, S.; Muchowski, P.J.; Wanker, E.E. Green tea (−)-epigallocatechin-gallate modulates early events in huntingtin misfolding and reduces toxicity in Huntington’s disease models. Hum. Mol. Genet., 2006, 15(18), 2743-2751.
[http://dx.doi.org/10.1093/hmg/ddl210] [PMID: 16893904]
[196]
Pasquini, S.; Contri, C.; Cappello, M.; Borea, P.A.; Varani, K.; Vincenzi, F. Update on the recent development of allosteric modulators for adenosine receptors and their therapeutic applications. Front. Pharmacol., 2022, 13(13), 1030895.
[http://dx.doi.org/10.3389/fphar.2022.1030895] [PMID: 36278183]
[197]
Kim, A.; Lalonde, K.; Truesdell, A.; Gomes Welter, P.; Brocardo, P.S.; Rosenstock, T.R.; Gil-Mohapel, J. New avenues for the treatment of huntington’s disease. Int. J. Mol. Sci., 2021, 22(16), 8363.
[http://dx.doi.org/10.3390/ijms22168363] [PMID: 34445070]
[198]
Picó, S.; Parras, A.; Santos-Galindo, M.; Pose-Utrilla, J.; Castro, M.; Fraga, E.; Hernández, I.H.; Elorza, A.; Anta, H.; Wang, N.; Martí-Sánchez, L.; Belloc, E.; Garcia-Esparcia, P.; Garrido, J.J.; Ferrer, I.; Macías-García, D.; Mir, P.; Artuch, R.; Pérez, B.; Hernández, F.; Navarro, P.; López-Sendón, J.L.; Iglesias, T.; Yang, X.W.; Méndez, R.; Lucas, J.J. CPEB alteration and aberrant transcriptome-polyadenylation lead to a treatable SLC19A3 deficiency in Huntington’s disease. Sci. Transl. Med., 2021, 13(613), eabe7104.
[http://dx.doi.org/10.1126/scitranslmed.abe7104] [PMID: 34586830]
[199]
Pasinetti, G.M.; Wang, J.; Marambaud, P.; Ferruzzi, M.; Gregor, P.; Knable, L.A.; Ho, L. Neuroprotective and metabolic effects of resveratrol: Therapeutic implications for Huntington’s disease and other neurodegenerative disorders. Exp. Neurol., 2011, 232(1), 1-6.
[http://dx.doi.org/10.1016/j.expneurol.2011.08.014] [PMID: 21907197]
[200]
Ho, D.J.; Calingasan, N.Y.; Wille, E.; Dumont, M.; Beal, M.F. Resveratrol protects against peripheral deficits in a mouse model of Huntington’s disease. Exp. Neurol., 2010, 225(1), 74-84.
[http://dx.doi.org/10.1016/j.expneurol.2010.05.006] [PMID: 20561979]
[201]
Verny, C.; Bachoud-Lévi, A.C.; Durr, A.; Goizet, C.; Azulay, J.P.; Simonin, C.; Tranchant, C.; Calvas, F.; Krystkowiak, P.; Charles, P.; Youssov, K.; Scherer, C.; Prundean, A.; Olivier, A.; Reynier, P.; Saudou, F.; Maison, P.; Allain, P.; von Studnitz, E.; Bonneau, D. A randomized, double-blind, placebo-controlled trial evaluating cysteamine in Huntington’s disease. Mov. Disord., 2017, 32(6), 932-936.
[http://dx.doi.org/10.1002/mds.27010] [PMID: 28436572]
[202]
Kumar, P.; Kumar, A. Protective effects of epigallocatechin gallate following 3-nitropropionic acid-induced brain damage: Possible nitric oxide mechanisms. Psychopharmacology (Berl.), 2009, 207(2), 257-270.
[http://dx.doi.org/10.1007/s00213-009-1652-y] [PMID: 19763544]
[203]
Kulasekaran, G.; Ganapasam, S. Neuroprotective efficacy of naringin on 3-nitropropionic acid-induced mitochondrial dysfunction through the modulation of Nrf2 signaling pathway in PC12 cells. Mol. Cell. Biochem., 2015, 409(1-2), 199-211.
[http://dx.doi.org/10.1007/s11010-015-2525-9] [PMID: 26280522]
[204]
Gopinath, K.; Prakash, D.; Sudhandiran, G. Neuroprotective effect of naringin, a dietary flavonoid against 3-Nitropropionic acid-induced neuronal apoptosis. Neurochem. Int., 2011, 59(7), 1066-1073.
[http://dx.doi.org/10.1016/j.neuint.2011.08.022] [PMID: 21945202]
[205]
Gopinath, K.; Sudhandiran, G. Protective effect of naringin on 3-nitropropionic acid-induced neurodegeneration through the modulation of matrix metalloproteinases and glial fibrillary acidic protein. Can. J. Physiol. Pharmacol., 2016, 94(1), 65-71.
[http://dx.doi.org/10.1139/cjpp-2015-0035] [PMID: 26544788]
[206]
Rajkhowa, B.; Mehan, S.; Sethi, P.; Prajapati, A.; Suri, M.; Kumar, S.; Bhalla, S.; Narula, A.S.; Alshammari, A.; Alharbi, M.; Alkahtani, N.; Alghamdi, S.; Kalfin, R. Activating SIRT-1 signalling with the mitochondrial-coq10 activator solanesol improves neurobehavioral and neurochemical defects in ouabain-induced experimental model of bipolar disorder. Pharmaceuticals (Basel), 2022, 15(8), 959.
[http://dx.doi.org/10.3390/ph15080959] [PMID: 36015107]
[207]
Wong, V.; Wu, A.; Wang, J.; Liu, L.; Law, B. Neferine attenuates the protein level and toxicity of mutant huntingtin in PC-12 cells via induction of autophagy. Molecules, 2015, 20(3), 3496-3514.
[http://dx.doi.org/10.3390/molecules20033496] [PMID: 25699594]
[208]
Wu, A.G.; Wong, V.; Xu, S.W.; Chan, W.K.; Ng, C.I.; Liu, L.; Law, B.; Onjisaponin, B. Onjisaponin B derived from Radix Polygalae enhances autophagy and accelerates the degradation of mutant α-synuclein and huntingtin in PC-12 cells. Int. J. Mol. Sci., 2013, 14(11), 22618-22641.
[http://dx.doi.org/10.3390/ijms141122618] [PMID: 24248062]
[209]
Walter, G.M.; Raveh, A.; Mok, S.A.; McQuade, T.J.; Arevang, C.J.; Schultz, P.J.; Smith, M.C.; Asare, S.; Cruz, P.G.; Wisen, S.; Matainaho, T.; Sherman, D.H.; Gestwicki, J.E. High-throughput screen of natural product extracts in a yeast model of polyglutamine proteotoxicity. Chem. Biol. Drug Des., 2014, 83(4), 440-449.
[http://dx.doi.org/10.1111/cbdd.12259] [PMID: 24636344]
[210]
Jiang, W.; Wei, W.; Gaertig, M.A.; Li, S.; Li, X.J. Therapeutic Effect of Berberine on Huntington’s Disease Transgenic Mouse Model. PLoS One, 2015, 10(7), e0134142.
[http://dx.doi.org/10.1371/journal.pone.0134142] [PMID: 26225560]
[211]
Sahebnasagh, A.; Eghbali, S.; Saghafi, F.; Sureda, A.; Avan, R. Neurohormetic phytochemicals in the pathogenesis of neurodegenerative diseases. Immun. Ageing, 2022, 19(1), 36.
[http://dx.doi.org/10.1186/s12979-022-00292-x] [PMID: 35953850]
[212]
Gargiulo, M.; Lejeune, S.; Tanguy, M.L.; Lahlou-Laforêt, K.; Faudet, A.; Cohen, D.; Feingold, J.; Durr, A. Long-term outcome of presymptomatic testing in Huntington disease. Eur. J. Hum. Genet., 2009, 17(2), 165-171.
[http://dx.doi.org/10.1038/ejhg.2008.146] [PMID: 18716614]
[213]
Du, X.; Pang, T.Y.C.; Hannan, A.J. A tale of two maladies? Pathogenesis of depression with and without the huntington’s disease gene mutation. Front. Neurol., 2013, 4, 81.
[http://dx.doi.org/10.3389/fneur.2013.00081] [PMID: 23847583]
[214]
Cavanagh, J.T.O.; Carson, A.J.; Sharpe, M.; Lawrie, S.M. Psychological autopsy studies of suicide: A systematic review. Psychol. Med., 2003, 33(3), 395-405.
[http://dx.doi.org/10.1017/S0033291702006943] [PMID: 12701661]
[215]
Larsson, M.U.; Luszcz, M.A.; Bui, T.H.; Wahlin, T.B.R. Depression and suicidal ideation after predictive testing for Huntington’s disease: A two-year follow-up study. J. Genet. Couns., 2006, 15(5), 361-374.
[http://dx.doi.org/10.1007/s10897-006-9027-6] [PMID: 16967331]
[216]
Yohrling, G.J., IV; Jiang, G.C.T.; DeJohn, M.M.; Robertson, D.J.; Vrana, K.E.; Cha, J.H.J. Inhibition of tryptophan hydroxylase activity and decreased 5-HT1A receptor binding in a mouse model of Huntington’s disease. J. Neurochem., 2002, 82(6), 1416-1423.
[http://dx.doi.org/10.1046/j.1471-4159.2002.01084.x] [PMID: 12354289]
[217]
Császár-Nagy, N.; Bob, P.; Bókkon, I. A multidisciplinary hypothesis about serotonergic psychedelics. Is it possible that a portion of brain serotonin comes from the gut? J. Integr. Neurosci., 2022, 21(5), 148.
[http://dx.doi.org/10.31083/j.jin2105148] [PMID: 36137971]
[218]
Szőke, H.; Kovács, Z.; Bókkon, I.; Vagedes, J.; Szabó, A.E.; Hegyi, G.; Sterner, M.G.; Kiss, Á.; Kapócs, G. Gut dysbiosis and serotonin: Intestinal 5-HT as a ubiquitous membrane permeability regulator in host tissues, organs, and the brain. Rev. Neurosci., 2020, 31(4), 415-425.
[http://dx.doi.org/10.1515/revneuro-2019-0095] [PMID: 32007948]
[219]
Császár, N.; Bókkon, I. Gut serotonin as a general membrane permeability regulator. Curr. Neuropharmacol., 2022, 20(2), 269-271.
[http://dx.doi.org/10.2174/1570159X19666210921100542] [PMID: 34548000]
[220]
Jones, L.A.; Sun, E.W.; Martin, A.M.; Keating, D.J. The ever-changing roles of serotonin. Int. J. Biochem. Cell Biol., 2020, 125, 105776.
[http://dx.doi.org/10.1016/j.biocel.2020.105776] [PMID: 32479926]
[221]
Vuotto, C.; Battistini, L.; Caltagirone, C.; Borsellino, G. Gut microbiota and disorders of the central nervous system. Neuroscientist, 2020, 26(5-6), 487-502.
[http://dx.doi.org/10.1177/1073858420918826] [PMID: 32441219]
[222]
Gubert, C.; Love, C.J.; Kodikara, S.; Mei Liew, J.J.; Renoir, T.; Lê Cao, K-A.; Hannan, A.J.; Elorza, A.; Anta, H.; Wang, N.; Martí-Sánchez, L.; Belloc, E.; Garcia-Esparcia, P.; Garrido, J.J.; Ferrer, I.; Macías-García, D.; Mir, P.; Artuch, R.; Pérez, B.; Hernández, F.; Navarro, P.; López-Sendón, J.L.; Iglesias, T.; Yang, X.W.; Méndez, R.; Lucas, J.J. Gene-environment-gut interactions in Huntington’s disease mice are associated with environmental modulation of the gut microbiome. iScience, 2022, 25(1), 103687.
[http://dx.doi.org/10.1016/j.isci.2021.103687] [PMID: 35059604]
[223]
Di Meo, F.; Donato, S.; Di Pardo, A.; Maglione, V.; Filosa, S.; Crispi, S.; Hernández, I.H.; Elorza, A.; Anta, H.; Wang, N.; Martí-Sánchez, L.; Belloc, E.; Garcia-Esparcia, P.; Garrido, J.J.; Ferrer, I.; Macías-García, D.; Mir, P.; Artuch, R.; Pérez, B.; Hernández, F.; Navarro, P.; López-Sendón, J.L.; Iglesias, T.; Yang, X.W.; Méndez, R.; Lucas, J.J. New therapeutic drugs from bioactive natural molecules: The role of gut microbiota metabolism in neurodegenerative diseases. Curr. Drug Metab., 2018, 19(6), 478-489.
[http://dx.doi.org/10.2174/1389200219666180404094147] [PMID: 29623833]
[224]
Selma, M.V.; Espín, J.C.; Tomás-Barberán, F.A.; Pose-Utrilla, J.; Castro, M.; Fraga, E.; Hernández, I.H.; Elorza, A.; Anta, H.; Wang, N.; Martí-Sánchez, L.; Belloc, E.; Garcia-Esparcia, P.; Garrido, J.J.; Ferrer, I.; Macías-García, D.; Mir, P.; Artuch, R.; Pérez, B.; Hernández, F.; Navarro, P.; López-Sendón, J.L.; Iglesias, T.; Yang, X.W.; Méndez, R.; Lucas, J.J. Interaction between phenolics and gut microbiota: Role in human health. J. Agric. Food Chem., 2009, 57(15), 6485-6501.
[http://dx.doi.org/10.1021/jf902107d] [PMID: 19580283]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy