Review Article

LncRNA PVT1作为糖尿病相关并发症的新生物标志物

卷 31, 期 6, 2024

发表于: 08 March, 2023

页: [688 - 696] 页: 9

弟呕挨: 10.2174/0929867330666230210103447

价格: $65

摘要

糖尿病现在正折磨着越来越多的人,它已经成为人类健康的一个主要问题。糖尿病会影响几个器官,并导致慢性损伤和功能障碍。它是危害人类健康的三大疾病之一。浆细胞瘤变异体易位1是长链非编码RNA的一个成员。近年来,PVT1表达谱异常在糖尿病及其后果中有报道,表明它可能有助于疾病的进展。从权威数据库“PubMed”中检索相关文献并进行详细总结。越来越多的证据表明PVT1具有多种功能。通过海绵miRNA,它可以参与多种信号通路,调节靶基因的表达。更重要的是,在不同类型的糖尿病相关并发症中,PVT1在调节细胞凋亡、炎症等方面发挥着至关重要的作用。PVT1调节糖尿病相关疾病的发生和进展。总的来说,PVT1有可能成为糖尿病及其后果的有用诊断和治疗靶点。

关键词: 糖尿病,糖尿病相关并发症,长链非编码RNA, PVT1,胰岛素,生物标志物。

[1]
Alberti, K.G.M.M.; Zimmet, P.Z. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus. Provisional report of a WHO Consultation. Diabet. Med., 1998, 15(7), 539-553.
[http://dx.doi.org/10.1002/(SICI)1096-9136(199807)15:7<539::AID-DIA668>3.0.CO;2-S] [PMID: 9686693]
[2]
Cho, N.H.; Shaw, J.E.; Karuranga, S.; Huang, Y.; da Rocha Fernandes, J.D.; Ohlrogge, A.W.; Malanda, B. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract., 2018, 138, 271-281.
[http://dx.doi.org/10.1016/j.diabres.2018.02.023] [PMID: 29496507]
[3]
Barrett, J.C.; Clayton, D.G.; Concannon, P.; Akolkar, B.; Cooper, J.D.; Erlich, H.A.; Julier, C.; Morahan, G.; Nerup, J.; Nierras, C.; Plagnol, V.; Pociot, F.; Schuilenburg, H.; Smyth, D.J.; Stevens, H.; Todd, J.A.; Walker, N.M.; Rich, S.S. Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat. Genet., 2009, 41(6), 703-707.
[http://dx.doi.org/10.1038/ng.381] [PMID: 19430480]
[4]
Avwioroko, O.J.; Oyetunde, T.T.; Atanu, F.O.; Otuechere, C.A.; Anigboro, A.A.; Dairo, O.F.; Ejoh, A.S.; Ajibade, S.O.; Omorogie, M.O. Exploring the binding interactions of structurally diverse dichalcogenoimidodiphosphinate ligands with α-amylase: Spectroscopic approach coupled with molecular docking. Biochem. Biophys. Rep., 2020, 24, 100837.
[http://dx.doi.org/10.1016/j.bbrep.2020.100837] [PMID: 33251341]
[5]
Cloete, L. Diabetes mellitus: An overview of the types, symptoms, complications and management. Nurs. Stand., 2022, 37(1), 61-66.
[http://dx.doi.org/10.7748/ns.2021.e11709]
[6]
Zheng, Y.; Ley, S.H.; Hu, F.B. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat. Rev. Endocrinol., 2018, 14(2), 88-98.
[http://dx.doi.org/10.1038/nrendo.2017.151] [PMID: 29219149]
[7]
Viigimaa, M.; Sachinidis, A.; Toumpourleka, M.; Koutsampasopoulos, K.; Alliksoo, S.; Titma, T. Macrovascular complications of type 2 diabetes mellitus. Curr. Vasc. Pharmacol., 2020, 18(2), 110-116.
[http://dx.doi.org/10.2174/1570161117666190405165151] [PMID: 30961498]
[8]
Damanik, J.; Yunir, E. Type 2 diabetes mellitus and cognitive impairment. Acta Med. Indones., 2021, 53(2), 213-220.
[PMID: 34251351]
[9]
DiMeglio, L.A.; Evans-Molina, C.; Oram, R.A. Type 1 diabetes. Lancet, 2018, 391(10138), 2449-2462.
[http://dx.doi.org/10.1016/S0140-6736(18)31320-5] [PMID: 29916386]
[10]
DiStefano, J.K. The emerging role of long noncoding RNAs in human disease. Methods Mol. Biol., 2018, 1706, 91-110.
[http://dx.doi.org/10.1007/978-1-4939-7471-9_6] [PMID: 29423795]
[11]
Yoon, J.H.; Kim, J.; Gorospe, M. Long noncoding RNA turnover. Biochimie, 2015, 117, 15-21.
[http://dx.doi.org/10.1016/j.biochi.2015.03.001] [PMID: 25769416]
[12]
Kwok, Z.H.; Tay, Y. Long noncoding RNAs: lincs between human health and disease. Biochem. Soc. Trans., 2017, 45(3), 805-812.
[http://dx.doi.org/10.1042/BST20160376] [PMID: 28620042]
[13]
Schmitz, S.U.; Grote, P.; Herrmann, B.G. Mechanisms of long noncoding RNA function in development and disease. Cell. Mol. Life Sci., 2016, 73(13), 2491-2509.
[http://dx.doi.org/10.1007/s00018-016-2174-5] [PMID: 27007508]
[14]
Yuan, C.L.; Li, H.; Zhu, L.; Liu, Z.; Zhou, J.; Shu, Y. Aberrant expression of long noncoding RNA PVT1 and its diagnostic and prognostic significance in patients with gastric cancer. Neoplasma, 2016, 63(3), 442-449.
[http://dx.doi.org/10.4149/314_150825N45] [PMID: 26925791]
[15]
Hanson, R.L.; Craig, D.W.; Millis, M.P.; Yeatts, K.A.; Kobes, S.; Pearson, J.V.; Lee, A.M.; Knowler, W.C.; Nelson, R.G.; Wolford, J.K. Identification of PVT1 as a candidate gene for end-stage renal disease in type 2 diabetes using a pooling-based genome-wide single nucleotide polymorphism association study. Diabetes, 2007, 56(4), 975-983.
[http://dx.doi.org/10.2337/db06-1072] [PMID: 17395743]
[16]
He, R.Q.; Qin, M.J.; Lin, P.; Luo, Y.H.; Ma, J.; Yang, H.; Hu, X.H.; Chen, G. Prognostic significance of LncRNA PVT1 and its potential target gene network in human cancers: A comprehensive inquiry based upon 21 cancer types and 9972 cases. Biochem. Pharmacol., 2018, 46(2), 591-608.
[17]
Cheng, Y.; Hu, Q.; Zhou, J. Silencing of lncRNA PVT1 ameliorates streptozotocin-induced pancreatic β cell injury and enhances insulin secretory capacity by regulating miR-181a-5p. Can. J. Physiol. Pharmacol., 2021, 99(3), 303-312.
[http://dx.doi.org/10.1139/cjpp-2020-0268] [PMID: 32758099]
[18]
Ge, C.; Xu, M.; Qin, Y.; Gu, T.; Lou, D.; Li, Q.; Hu, L.; Nie, X.; Wang, M.; Tan, J. Fisetin supplementation prevents high fat diet-induced diabetic nephropathy by repressing insulin resistance and RIP3-regulated inflammation. Food Funct., 2019, 10(5), 2970-2985.
[http://dx.doi.org/10.1039/C8FO01653D] [PMID: 31074472]
[19]
Bichu, P.; Nistala, R.; Khan, A.; Sowers, J.R.; Whaley-Connell, A. Angiotensin receptor blockers for the reduction of proteinuria in diabetic patients with overt nephropathy: Results from the AMADEO study. Vasc. Health Risk Manag., 2009, 5(1), 129-140.
[PMID: 19436679]
[20]
Baulida, J.; Díaz, V.M.; García de Herreros, A. Snail1: A transcriptional factor controlled at multiple levels. J. Clin. Med., 2019, 8(6), 757.
[http://dx.doi.org/10.3390/jcm8060757] [PMID: 31141910]
[21]
Qin, B.; Cao, X. LncRNA PVT1 regulates high glucose-induced viability, oxidative stress, fibrosis, and inflammation in diabetic nephropathy via miR-325-3p/Snail1 Axis. Diabetes Metab. Syndr. Obes., 2021, 14, 1741-1750.
[http://dx.doi.org/10.2147/DMSO.S303151] [PMID: 33907435]
[22]
Lawrence, T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb. Perspect. Biol., 2009, 1(6), a001651.
[http://dx.doi.org/10.1101/cshperspect.a001651] [PMID: 20457564]
[23]
Zhong, W.; Zeng, J.; Xue, J.; Du, A.; Xu, Y. Knockdown of lncRNA PVT1 alleviates high glucose-induced proliferation and fibrosis in human mesangial cells by miR-23b-3p/WT1 axis. Diabetol. Metab. Syndr., 2020, 12(1), 33.
[http://dx.doi.org/10.1186/s13098-020-00539-x] [PMID: 32322310]
[24]
Yu, D.; Yang, X.; Zhu, Y.; Xu, F.; Zhang, H.; Qiu, Z. Knockdown of plasmacytoma variant translocation 1 (PVT1) inhibits high glucose-induced proliferation and renal fibrosis in HRMCs by regulating miR-23b-3p/early growth response factor 1 (EGR1). Endocr. J., 2021, 68(5), 519-529.
[http://dx.doi.org/10.1507/endocrj.EJ20-0642] [PMID: 33408314]
[25]
Alvarez, M.L.; Khosroheidari, M.; Eddy, E.; Kiefer, J. Role of microRNA 1207-5P and its host gene, the long non-coding RNA Pvt1, as mediators of extracellular matrix accumulation in the kidney: Implications for diabetic nephropathy. PLoS One, 2013, 8(10), e77468.
[http://dx.doi.org/10.1371/journal.pone.0077468] [PMID: 24204837]
[26]
Liu, D.W.; Zhang, J.H.; Liu, F.X.; Wang, X.T.; Pan, S.K.; Jiang, D.K.; Zhao, Z.H.; Liu, Z.S. Silencing of long noncoding RNA PVT1 inhibits podocyte damage and apoptosis in diabetic nephropathy by upregulating FOXA1. Exp. Mol. Med., 2019, 51(8), 1-15.
[http://dx.doi.org/10.1038/s12276-019-0259-6] [PMID: 31371698]
[27]
Prevalence of doctor-diagnosed arthritis and arthritis-attributable activity limitation--United States, 2010-2012. MMWR Morb. Mortal. Wkly. Rep., 2013, 62(44), 869-873.
[PMID: 24196662]
[28]
Schett, G.; Kleyer, A.; Perricone, C.; Sahinbegovic, E.; Iagnocco, A.; Zwerina, J.; Lorenzini, R.; Aschenbrenner, F.; Berenbaum, F.; D’Agostino, M.A.; Willeit, J.; Kiechl, S. Diabetes is an independent predictor for severe osteoarthritis: Results from a longitudinal cohort study. Diabetes Care, 2013, 36(2), 403-409.
[http://dx.doi.org/10.2337/dc12-0924] [PMID: 23002084]
[29]
Burrage, P.S.; Mix, K.S.; Brinckerhoff, C.E. Matrix metalloproteinases: Role in arthritis. Front. Biosci., 2006, 11(1), 529-543.
[http://dx.doi.org/10.2741/1817] [PMID: 16146751]
[30]
Ding, L.B.; Li, Y.; Liu, G.Y.; Li, T.H.; Li, F.; Guan, J.; Wang, H.J. Long non-coding RNA PVT1, a molecular sponge of miR-26b, is involved in the progression of hyperglycemia-induced collagen degradation in human chondrocytes by targeting CTGF/TGF- β signal ways. Innate Immun., 2020, 26(3), 204-214.
[http://dx.doi.org/10.1177/1753425919881778] [PMID: 31625803]
[31]
Wang, Y.Z.; Yao-Li; Liang, S.K.; Ding, L.B.; Feng-Li; Guan, J.; Wang, H.J. LncPVT1 promotes cartilage degradation in diabetic OA mice by downregulating miR-146a and activating TGF-β/SMAD4 signaling. J. Bone Miner. Metab., 2021, 39(4), 534-546.
[http://dx.doi.org/10.1007/s00774-020-01199-7] [PMID: 33569722]
[32]
Barrett, A.M.; Lucero, M.A.; Le, T.; Robinson, R.L.; Dworkin, R.H.; Chappell, A.S. Epidemiology, public health burden, and treatment of diabetic peripheral neuropathic pain: A review. Pain Med., 2007, 8(Suppl. 2), S50-S62.
[http://dx.doi.org/10.1111/j.1526-4637.2006.00179.x] [PMID: 17714116]
[33]
Albers, J.W.; Pop-Busui, R. Diabetic neuropathy: Mechanisms, emerging treatments, and subtypes. Curr. Neurol. Neurosci. Rep., 2014, 14(8), 473.
[http://dx.doi.org/10.1007/s11910-014-0473-5] [PMID: 24954624]
[34]
Crepaldi, G.; Fedele, D.; Tiengo, A.; Battistin, L.; Negrin, P.; Pozza, G.; Canal, N.; Comi, G.C.; Lenti, G.; Pagano, G.; Bergamini, L.; Troni, W.; Frigato, F.; Ravenna, C.; Mezzina, C.; Gallato, R.; Massari, D.; Massarotti, M.; Matano, R.; Grigoletto, F.; Davis, H.; Klein, M. Ganglioside treatment in diabetic peripheral neuropathy: A multicenter trial. Acta Diabetol. Lat., 1983, 20(3), 265-276.
[http://dx.doi.org/10.1007/BF02581271] [PMID: 6356740]
[35]
Meydan, C.; Üçeyler, N.; Soreq, H. Non-coding RNA regulators of diabetic polyneuropathy. Neurosci. Lett., 2020, 731, 135058.
[http://dx.doi.org/10.1016/j.neulet.2020.135058] [PMID: 32454150]
[36]
Chen, L.; Gong, H.Y.; Xu, L. PVT1 protects diabetic peripheral neuropathy via PI3K/AKT pathway. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(20), 6905-6911.
[PMID: 30402856]
[37]
Yancy, C.W.; Jessup, M.; Bozkurt, B.; Butler, J.; Casey, D.E., Jr; Colvin, M.M.; Drazner, M.H.; Filippatos, G.S.; Fonarow, G.C.; Givertz, M.M.; Hollenberg, S.M.; Lindenfeld, J.; Masoudi, F.A.; McBride, P.E.; Peterson, P.N.; Stevenson, L.W.; Westlake, C. ACC/AHA/HFSA focused update of the 2013 ACCF/AHA guideline for the management of heart failure: A report of the American college of cardiology/American heart association task force on clinical practice guidelines and the heart failure society of America. Circulation, 2017, 136(6), e137-e161.
[http://dx.doi.org/10.1161/CIR.0000000000000509] [PMID: 28455343]
[38]
Xia, Y-W.; Wang, S-B.; Wang, S.B.; Xiao, L.H. Long noncoding RNA PVT1 facilitates high glucose induced cardiomyocyte death through the miR23a3p/CASP10 axis. Cell Biol. Int., 2021, 45(1), 154-163.
[http://dx.doi.org/10.1002/cbin.11479] [PMID: 33049089]
[39]
Šimunović, M.; Paradžik, M.; Škrabić, R.; Unić, I.; Bućan, K.; Škrabić, V. Cataract as early ocular complication in children and adolescents with type 1 diabetes mellitus. Int. J. Endocrinol., 2018, 2018, 1-6.
[http://dx.doi.org/10.1155/2018/6763586] [PMID: 29755521]
[40]
Lim, J.C.; Caballero Arredondo, M.; Braakhuis, A.J.; Donaldson, P.J. Vitamin C and the lens: New insights into delaying the onset of cataract. Nutrients, 2020, 12(10), 3142.
[http://dx.doi.org/10.3390/nu12103142] [PMID: 33066702]
[41]
Yang, J.; Zhao, S.; Tian, F. SP1 mediated lncRNA PVT1 modulates the proliferation and apoptosis of lens epithelial cells in diabetic cataract via miR-214-3p/MMP2 axis. J. Cell. Mol. Med., 2020, 24(1), 554-561.
[http://dx.doi.org/10.1111/jcmm.14762] [PMID: 31755246]
[42]
Benhalima, K.; Van Crombrugge, P.; Moyson, C.; Verhaeghe, J.; Vandeginste, S.; Verlaenen, H.; Vercammen, C.; Maes, T.; Dufraimont, E.; De Block, C.; Jacquemyn, Y.; Mekahli, F.; De Clippel, K.; Van Den Bruel, A.; Loccufier, A.; Laenen, A.; Minschart, C.; Devlieger, R.; Mathieu, C. Prediction of glucose intolerance in early postpartum in women with gestational diabetes mellitus based on the 2013 WHO criteria. J. Clin. Med., 2019, 8(3), 383.
[http://dx.doi.org/10.3390/jcm8030383] [PMID: 30893935]
[43]
Zhu, Y.; Zhang, C. Prevalence of gestational diabetes and risk of progression to type 2 diabetes: A global perspective. Curr. Diab. Rep., 2016, 16(1), 7.
[http://dx.doi.org/10.1007/s11892-015-0699-x] [PMID: 26742932]
[44]
Chu, S.Y.; Callaghan, W.M.; Kim, S.Y.; Schmid, C.H.; Lau, J.; England, L.J.; Dietz, P.M. Maternal obesity and risk of gestational diabetes mellitus. Diabetes Care, 2007, 30(8), 2070-2076.
[http://dx.doi.org/10.2337/dc06-2559a] [PMID: 17416786]
[45]
Wang, Q.; Lu, X.; Li, C.; Zhang, W.; Lv, Y.; Wang, L.; Wu, L.; Meng, L.; Fan, Y.; Ding, H.; Long, W.; Lv, M. Down-regulated long non-coding RNA PVT1 contributes to gestational diabetes mellitus and preeclampsia via regulation of human trophoblast cells. Biomed. Pharmacother., 2019, 120, 109501.
[http://dx.doi.org/10.1016/j.biopha.2019.109501]
[46]
Tanase, D.M.; Gosav, E.M.; Costea, C.F.; Ciocoiu, M.; Lacatusu, C.M.; Maranduca, M.A.; Ouatu, A.; Floria, M. The intricate relationship between type 2 diabetes mellitus (T2DM), insulin resistance (IR), and Nonalcoholic Fatty Liver Disease (NAFLD). J. Diabetes Res., 2020, 2020, 3920196.
[http://dx.doi.org/10.1155/2020/3920196] [PMID: 32832560]
[47]
Brown, A.E.; Walker, M. Genetics of insulin resistance and the metabolic syndrome. Curr. Cardiol. Rep., 2016, 18(8), 75.
[http://dx.doi.org/10.1007/s11886-016-0755-4] [PMID: 27312935]
[48]
Zhang, H.; Niu, Q.; Liang, K.; Li, X.; Jiang, J.; Bian, C. Effect of LncPVT1/miR-20a-5p on lipid metabolism and insulin resistance in NAFLD. Diabetes Metab. Syndr. Obes., 2021, 14, 4599-4608.
[http://dx.doi.org/10.2147/DMSO.S338097] [PMID: 34848984]
[49]
Díaz-Gerevini, G.T.; Daín, A.; Pasqualini, M.E.; López, C.B.; Eynard, A.R.; Repossi, G. Diabetic encephalopathy: Beneficial effects of supplementation with fatty acids ω3 and nordihydroguaiaretic acid in a spontaneous diabetes rat model. Lipids Health Dis., 2019, 18(1), 43.
[http://dx.doi.org/10.1186/s12944-018-0938-7] [PMID: 30736810]
[50]
Shi, R.; Weng, J.; Zhao, L.; Li, X.M.; Gao, T.M.; Kong, J. Excessive autophagy contributes to neuron death in cerebral ischemia. CNS Neurosci. Ther., 2012, 18(3), 250-260.
[http://dx.doi.org/10.1111/j.1755-5949.2012.00295.x] [PMID: 22449108]
[51]
Rami, A.; Langhagen, A.; Steiger, S. Focal cerebral ischemia induces upregulation of Beclin 1 and autophagy-like cell death. Neurobiol. Dis., 2008, 29(1), 132-141.
[http://dx.doi.org/10.1016/j.nbd.2007.08.005] [PMID: 17936001]
[52]
Li, Z.; Hao, S.; Yin, H.; Gao, J.; Yang, Z. Autophagy ameliorates cognitive impairment through activation of PVT1 and apoptosis in diabetes mice. Behav. Brain Res., 2016, 305, 265-277.
[http://dx.doi.org/10.1016/j.bbr.2016.03.023] [PMID: 26971628]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy