Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

LncRNA PVT1 as a Novel Biomarker for Diabetes-related Complications

Author(s): Xinyan Qiu, Jinlan Chen, Jingjie Yang, Jiahui Hu, Peng Fan* and Chengfu Yuan*

Volume 31, Issue 6, 2024

Published on: 08 March, 2023

Page: [688 - 696] Pages: 9

DOI: 10.2174/0929867330666230210103447

Price: $65

Open Access Journals Promotions 2
Abstract

Diabetes is now afflicting an expanding population, and it has become a major source of concern for human health. Diabetes affects several organs and causes chronic damage and dysfunction. It is one of the three major diseases that are harmful to human health. Plasmacytoma variant translocation 1 is a member of long non-coding RNA. PVT1 expression profile abnormalities have been reported in diabetes mellitus and its consequences in recent years, suggesting that it may contribute to the disease's progression. Relevant literature from the authoritative database “PubMed” are retrieved and summarized in detail. Mounting evidence reveals that PVT1 has multiple functions. Through sponge miRNA, it can participate in a wide variety of signal pathways and regulate the expression of a target gene. More importantly, PVT1 is crucially implicated in the regulation of apoptosis, inflammation, and so on in different types of diabetes-related complications. PVT1 regulates the occurrence and progression of diabetes-related diseases. Collectively, PVT1 has the potential to be a useful diagnostic and therapeutic target for diabetes and its consequences.

Keywords: Diabetes mellitus, diabetes-related complications, long non-coding RNA, PVT1, insulin, biomarker.

[1]
Alberti, K.G.M.M.; Zimmet, P.Z. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus. Provisional report of a WHO Consultation. Diabet. Med., 1998, 15(7), 539-553.
[http://dx.doi.org/10.1002/(SICI)1096-9136(199807)15:7<539::AID-DIA668>3.0.CO;2-S] [PMID: 9686693]
[2]
Cho, N.H.; Shaw, J.E.; Karuranga, S.; Huang, Y.; da Rocha Fernandes, J.D.; Ohlrogge, A.W.; Malanda, B. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract., 2018, 138, 271-281.
[http://dx.doi.org/10.1016/j.diabres.2018.02.023] [PMID: 29496507]
[3]
Barrett, J.C.; Clayton, D.G.; Concannon, P.; Akolkar, B.; Cooper, J.D.; Erlich, H.A.; Julier, C.; Morahan, G.; Nerup, J.; Nierras, C.; Plagnol, V.; Pociot, F.; Schuilenburg, H.; Smyth, D.J.; Stevens, H.; Todd, J.A.; Walker, N.M.; Rich, S.S. Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat. Genet., 2009, 41(6), 703-707.
[http://dx.doi.org/10.1038/ng.381] [PMID: 19430480]
[4]
Avwioroko, O.J.; Oyetunde, T.T.; Atanu, F.O.; Otuechere, C.A.; Anigboro, A.A.; Dairo, O.F.; Ejoh, A.S.; Ajibade, S.O.; Omorogie, M.O. Exploring the binding interactions of structurally diverse dichalcogenoimidodiphosphinate ligands with α-amylase: Spectroscopic approach coupled with molecular docking. Biochem. Biophys. Rep., 2020, 24, 100837.
[http://dx.doi.org/10.1016/j.bbrep.2020.100837] [PMID: 33251341]
[5]
Cloete, L. Diabetes mellitus: An overview of the types, symptoms, complications and management. Nurs. Stand., 2022, 37(1), 61-66.
[http://dx.doi.org/10.7748/ns.2021.e11709]
[6]
Zheng, Y.; Ley, S.H.; Hu, F.B. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat. Rev. Endocrinol., 2018, 14(2), 88-98.
[http://dx.doi.org/10.1038/nrendo.2017.151] [PMID: 29219149]
[7]
Viigimaa, M.; Sachinidis, A.; Toumpourleka, M.; Koutsampasopoulos, K.; Alliksoo, S.; Titma, T. Macrovascular complications of type 2 diabetes mellitus. Curr. Vasc. Pharmacol., 2020, 18(2), 110-116.
[http://dx.doi.org/10.2174/1570161117666190405165151] [PMID: 30961498]
[8]
Damanik, J.; Yunir, E. Type 2 diabetes mellitus and cognitive impairment. Acta Med. Indones., 2021, 53(2), 213-220.
[PMID: 34251351]
[9]
DiMeglio, L.A.; Evans-Molina, C.; Oram, R.A. Type 1 diabetes. Lancet, 2018, 391(10138), 2449-2462.
[http://dx.doi.org/10.1016/S0140-6736(18)31320-5] [PMID: 29916386]
[10]
DiStefano, J.K. The emerging role of long noncoding RNAs in human disease. Methods Mol. Biol., 2018, 1706, 91-110.
[http://dx.doi.org/10.1007/978-1-4939-7471-9_6] [PMID: 29423795]
[11]
Yoon, J.H.; Kim, J.; Gorospe, M. Long noncoding RNA turnover. Biochimie, 2015, 117, 15-21.
[http://dx.doi.org/10.1016/j.biochi.2015.03.001] [PMID: 25769416]
[12]
Kwok, Z.H.; Tay, Y. Long noncoding RNAs: lincs between human health and disease. Biochem. Soc. Trans., 2017, 45(3), 805-812.
[http://dx.doi.org/10.1042/BST20160376] [PMID: 28620042]
[13]
Schmitz, S.U.; Grote, P.; Herrmann, B.G. Mechanisms of long noncoding RNA function in development and disease. Cell. Mol. Life Sci., 2016, 73(13), 2491-2509.
[http://dx.doi.org/10.1007/s00018-016-2174-5] [PMID: 27007508]
[14]
Yuan, C.L.; Li, H.; Zhu, L.; Liu, Z.; Zhou, J.; Shu, Y. Aberrant expression of long noncoding RNA PVT1 and its diagnostic and prognostic significance in patients with gastric cancer. Neoplasma, 2016, 63(3), 442-449.
[http://dx.doi.org/10.4149/314_150825N45] [PMID: 26925791]
[15]
Hanson, R.L.; Craig, D.W.; Millis, M.P.; Yeatts, K.A.; Kobes, S.; Pearson, J.V.; Lee, A.M.; Knowler, W.C.; Nelson, R.G.; Wolford, J.K. Identification of PVT1 as a candidate gene for end-stage renal disease in type 2 diabetes using a pooling-based genome-wide single nucleotide polymorphism association study. Diabetes, 2007, 56(4), 975-983.
[http://dx.doi.org/10.2337/db06-1072] [PMID: 17395743]
[16]
He, R.Q.; Qin, M.J.; Lin, P.; Luo, Y.H.; Ma, J.; Yang, H.; Hu, X.H.; Chen, G. Prognostic significance of LncRNA PVT1 and its potential target gene network in human cancers: A comprehensive inquiry based upon 21 cancer types and 9972 cases. Biochem. Pharmacol., 2018, 46(2), 591-608.
[17]
Cheng, Y.; Hu, Q.; Zhou, J. Silencing of lncRNA PVT1 ameliorates streptozotocin-induced pancreatic β cell injury and enhances insulin secretory capacity by regulating miR-181a-5p. Can. J. Physiol. Pharmacol., 2021, 99(3), 303-312.
[http://dx.doi.org/10.1139/cjpp-2020-0268] [PMID: 32758099]
[18]
Ge, C.; Xu, M.; Qin, Y.; Gu, T.; Lou, D.; Li, Q.; Hu, L.; Nie, X.; Wang, M.; Tan, J. Fisetin supplementation prevents high fat diet-induced diabetic nephropathy by repressing insulin resistance and RIP3-regulated inflammation. Food Funct., 2019, 10(5), 2970-2985.
[http://dx.doi.org/10.1039/C8FO01653D] [PMID: 31074472]
[19]
Bichu, P.; Nistala, R.; Khan, A.; Sowers, J.R.; Whaley-Connell, A. Angiotensin receptor blockers for the reduction of proteinuria in diabetic patients with overt nephropathy: Results from the AMADEO study. Vasc. Health Risk Manag., 2009, 5(1), 129-140.
[PMID: 19436679]
[20]
Baulida, J.; Díaz, V.M.; García de Herreros, A. Snail1: A transcriptional factor controlled at multiple levels. J. Clin. Med., 2019, 8(6), 757.
[http://dx.doi.org/10.3390/jcm8060757] [PMID: 31141910]
[21]
Qin, B.; Cao, X. LncRNA PVT1 regulates high glucose-induced viability, oxidative stress, fibrosis, and inflammation in diabetic nephropathy via miR-325-3p/Snail1 Axis. Diabetes Metab. Syndr. Obes., 2021, 14, 1741-1750.
[http://dx.doi.org/10.2147/DMSO.S303151] [PMID: 33907435]
[22]
Lawrence, T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb. Perspect. Biol., 2009, 1(6), a001651.
[http://dx.doi.org/10.1101/cshperspect.a001651] [PMID: 20457564]
[23]
Zhong, W.; Zeng, J.; Xue, J.; Du, A.; Xu, Y. Knockdown of lncRNA PVT1 alleviates high glucose-induced proliferation and fibrosis in human mesangial cells by miR-23b-3p/WT1 axis. Diabetol. Metab. Syndr., 2020, 12(1), 33.
[http://dx.doi.org/10.1186/s13098-020-00539-x] [PMID: 32322310]
[24]
Yu, D.; Yang, X.; Zhu, Y.; Xu, F.; Zhang, H.; Qiu, Z. Knockdown of plasmacytoma variant translocation 1 (PVT1) inhibits high glucose-induced proliferation and renal fibrosis in HRMCs by regulating miR-23b-3p/early growth response factor 1 (EGR1). Endocr. J., 2021, 68(5), 519-529.
[http://dx.doi.org/10.1507/endocrj.EJ20-0642] [PMID: 33408314]
[25]
Alvarez, M.L.; Khosroheidari, M.; Eddy, E.; Kiefer, J. Role of microRNA 1207-5P and its host gene, the long non-coding RNA Pvt1, as mediators of extracellular matrix accumulation in the kidney: Implications for diabetic nephropathy. PLoS One, 2013, 8(10), e77468.
[http://dx.doi.org/10.1371/journal.pone.0077468] [PMID: 24204837]
[26]
Liu, D.W.; Zhang, J.H.; Liu, F.X.; Wang, X.T.; Pan, S.K.; Jiang, D.K.; Zhao, Z.H.; Liu, Z.S. Silencing of long noncoding RNA PVT1 inhibits podocyte damage and apoptosis in diabetic nephropathy by upregulating FOXA1. Exp. Mol. Med., 2019, 51(8), 1-15.
[http://dx.doi.org/10.1038/s12276-019-0259-6] [PMID: 31371698]
[27]
Prevalence of doctor-diagnosed arthritis and arthritis-attributable activity limitation--United States, 2010-2012. MMWR Morb. Mortal. Wkly. Rep., 2013, 62(44), 869-873.
[PMID: 24196662]
[28]
Schett, G.; Kleyer, A.; Perricone, C.; Sahinbegovic, E.; Iagnocco, A.; Zwerina, J.; Lorenzini, R.; Aschenbrenner, F.; Berenbaum, F.; D’Agostino, M.A.; Willeit, J.; Kiechl, S. Diabetes is an independent predictor for severe osteoarthritis: Results from a longitudinal cohort study. Diabetes Care, 2013, 36(2), 403-409.
[http://dx.doi.org/10.2337/dc12-0924] [PMID: 23002084]
[29]
Burrage, P.S.; Mix, K.S.; Brinckerhoff, C.E. Matrix metalloproteinases: Role in arthritis. Front. Biosci., 2006, 11(1), 529-543.
[http://dx.doi.org/10.2741/1817] [PMID: 16146751]
[30]
Ding, L.B.; Li, Y.; Liu, G.Y.; Li, T.H.; Li, F.; Guan, J.; Wang, H.J. Long non-coding RNA PVT1, a molecular sponge of miR-26b, is involved in the progression of hyperglycemia-induced collagen degradation in human chondrocytes by targeting CTGF/TGF- β signal ways. Innate Immun., 2020, 26(3), 204-214.
[http://dx.doi.org/10.1177/1753425919881778] [PMID: 31625803]
[31]
Wang, Y.Z.; Yao-Li; Liang, S.K.; Ding, L.B.; Feng-Li; Guan, J.; Wang, H.J. LncPVT1 promotes cartilage degradation in diabetic OA mice by downregulating miR-146a and activating TGF-β/SMAD4 signaling. J. Bone Miner. Metab., 2021, 39(4), 534-546.
[http://dx.doi.org/10.1007/s00774-020-01199-7] [PMID: 33569722]
[32]
Barrett, A.M.; Lucero, M.A.; Le, T.; Robinson, R.L.; Dworkin, R.H.; Chappell, A.S. Epidemiology, public health burden, and treatment of diabetic peripheral neuropathic pain: A review. Pain Med., 2007, 8(Suppl. 2), S50-S62.
[http://dx.doi.org/10.1111/j.1526-4637.2006.00179.x] [PMID: 17714116]
[33]
Albers, J.W.; Pop-Busui, R. Diabetic neuropathy: Mechanisms, emerging treatments, and subtypes. Curr. Neurol. Neurosci. Rep., 2014, 14(8), 473.
[http://dx.doi.org/10.1007/s11910-014-0473-5] [PMID: 24954624]
[34]
Crepaldi, G.; Fedele, D.; Tiengo, A.; Battistin, L.; Negrin, P.; Pozza, G.; Canal, N.; Comi, G.C.; Lenti, G.; Pagano, G.; Bergamini, L.; Troni, W.; Frigato, F.; Ravenna, C.; Mezzina, C.; Gallato, R.; Massari, D.; Massarotti, M.; Matano, R.; Grigoletto, F.; Davis, H.; Klein, M. Ganglioside treatment in diabetic peripheral neuropathy: A multicenter trial. Acta Diabetol. Lat., 1983, 20(3), 265-276.
[http://dx.doi.org/10.1007/BF02581271] [PMID: 6356740]
[35]
Meydan, C.; Üçeyler, N.; Soreq, H. Non-coding RNA regulators of diabetic polyneuropathy. Neurosci. Lett., 2020, 731, 135058.
[http://dx.doi.org/10.1016/j.neulet.2020.135058] [PMID: 32454150]
[36]
Chen, L.; Gong, H.Y.; Xu, L. PVT1 protects diabetic peripheral neuropathy via PI3K/AKT pathway. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(20), 6905-6911.
[PMID: 30402856]
[37]
Yancy, C.W.; Jessup, M.; Bozkurt, B.; Butler, J.; Casey, D.E., Jr; Colvin, M.M.; Drazner, M.H.; Filippatos, G.S.; Fonarow, G.C.; Givertz, M.M.; Hollenberg, S.M.; Lindenfeld, J.; Masoudi, F.A.; McBride, P.E.; Peterson, P.N.; Stevenson, L.W.; Westlake, C. ACC/AHA/HFSA focused update of the 2013 ACCF/AHA guideline for the management of heart failure: A report of the American college of cardiology/American heart association task force on clinical practice guidelines and the heart failure society of America. Circulation, 2017, 136(6), e137-e161.
[http://dx.doi.org/10.1161/CIR.0000000000000509] [PMID: 28455343]
[38]
Xia, Y-W.; Wang, S-B.; Wang, S.B.; Xiao, L.H. Long noncoding RNA PVT1 facilitates high glucose induced cardiomyocyte death through the miR23a3p/CASP10 axis. Cell Biol. Int., 2021, 45(1), 154-163.
[http://dx.doi.org/10.1002/cbin.11479] [PMID: 33049089]
[39]
Šimunović, M.; Paradžik, M.; Škrabić, R.; Unić, I.; Bućan, K.; Škrabić, V. Cataract as early ocular complication in children and adolescents with type 1 diabetes mellitus. Int. J. Endocrinol., 2018, 2018, 1-6.
[http://dx.doi.org/10.1155/2018/6763586] [PMID: 29755521]
[40]
Lim, J.C.; Caballero Arredondo, M.; Braakhuis, A.J.; Donaldson, P.J. Vitamin C and the lens: New insights into delaying the onset of cataract. Nutrients, 2020, 12(10), 3142.
[http://dx.doi.org/10.3390/nu12103142] [PMID: 33066702]
[41]
Yang, J.; Zhao, S.; Tian, F. SP1 mediated lncRNA PVT1 modulates the proliferation and apoptosis of lens epithelial cells in diabetic cataract via miR-214-3p/MMP2 axis. J. Cell. Mol. Med., 2020, 24(1), 554-561.
[http://dx.doi.org/10.1111/jcmm.14762] [PMID: 31755246]
[42]
Benhalima, K.; Van Crombrugge, P.; Moyson, C.; Verhaeghe, J.; Vandeginste, S.; Verlaenen, H.; Vercammen, C.; Maes, T.; Dufraimont, E.; De Block, C.; Jacquemyn, Y.; Mekahli, F.; De Clippel, K.; Van Den Bruel, A.; Loccufier, A.; Laenen, A.; Minschart, C.; Devlieger, R.; Mathieu, C. Prediction of glucose intolerance in early postpartum in women with gestational diabetes mellitus based on the 2013 WHO criteria. J. Clin. Med., 2019, 8(3), 383.
[http://dx.doi.org/10.3390/jcm8030383] [PMID: 30893935]
[43]
Zhu, Y.; Zhang, C. Prevalence of gestational diabetes and risk of progression to type 2 diabetes: A global perspective. Curr. Diab. Rep., 2016, 16(1), 7.
[http://dx.doi.org/10.1007/s11892-015-0699-x] [PMID: 26742932]
[44]
Chu, S.Y.; Callaghan, W.M.; Kim, S.Y.; Schmid, C.H.; Lau, J.; England, L.J.; Dietz, P.M. Maternal obesity and risk of gestational diabetes mellitus. Diabetes Care, 2007, 30(8), 2070-2076.
[http://dx.doi.org/10.2337/dc06-2559a] [PMID: 17416786]
[45]
Wang, Q.; Lu, X.; Li, C.; Zhang, W.; Lv, Y.; Wang, L.; Wu, L.; Meng, L.; Fan, Y.; Ding, H.; Long, W.; Lv, M. Down-regulated long non-coding RNA PVT1 contributes to gestational diabetes mellitus and preeclampsia via regulation of human trophoblast cells. Biomed. Pharmacother., 2019, 120, 109501.
[http://dx.doi.org/10.1016/j.biopha.2019.109501]
[46]
Tanase, D.M.; Gosav, E.M.; Costea, C.F.; Ciocoiu, M.; Lacatusu, C.M.; Maranduca, M.A.; Ouatu, A.; Floria, M. The intricate relationship between type 2 diabetes mellitus (T2DM), insulin resistance (IR), and Nonalcoholic Fatty Liver Disease (NAFLD). J. Diabetes Res., 2020, 2020, 3920196.
[http://dx.doi.org/10.1155/2020/3920196] [PMID: 32832560]
[47]
Brown, A.E.; Walker, M. Genetics of insulin resistance and the metabolic syndrome. Curr. Cardiol. Rep., 2016, 18(8), 75.
[http://dx.doi.org/10.1007/s11886-016-0755-4] [PMID: 27312935]
[48]
Zhang, H.; Niu, Q.; Liang, K.; Li, X.; Jiang, J.; Bian, C. Effect of LncPVT1/miR-20a-5p on lipid metabolism and insulin resistance in NAFLD. Diabetes Metab. Syndr. Obes., 2021, 14, 4599-4608.
[http://dx.doi.org/10.2147/DMSO.S338097] [PMID: 34848984]
[49]
Díaz-Gerevini, G.T.; Daín, A.; Pasqualini, M.E.; López, C.B.; Eynard, A.R.; Repossi, G. Diabetic encephalopathy: Beneficial effects of supplementation with fatty acids ω3 and nordihydroguaiaretic acid in a spontaneous diabetes rat model. Lipids Health Dis., 2019, 18(1), 43.
[http://dx.doi.org/10.1186/s12944-018-0938-7] [PMID: 30736810]
[50]
Shi, R.; Weng, J.; Zhao, L.; Li, X.M.; Gao, T.M.; Kong, J. Excessive autophagy contributes to neuron death in cerebral ischemia. CNS Neurosci. Ther., 2012, 18(3), 250-260.
[http://dx.doi.org/10.1111/j.1755-5949.2012.00295.x] [PMID: 22449108]
[51]
Rami, A.; Langhagen, A.; Steiger, S. Focal cerebral ischemia induces upregulation of Beclin 1 and autophagy-like cell death. Neurobiol. Dis., 2008, 29(1), 132-141.
[http://dx.doi.org/10.1016/j.nbd.2007.08.005] [PMID: 17936001]
[52]
Li, Z.; Hao, S.; Yin, H.; Gao, J.; Yang, Z. Autophagy ameliorates cognitive impairment through activation of PVT1 and apoptosis in diabetes mice. Behav. Brain Res., 2016, 305, 265-277.
[http://dx.doi.org/10.1016/j.bbr.2016.03.023] [PMID: 26971628]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy