Review Article

持久发光纳米粒子在生物成像和肿瘤治疗中的应用前景与展望

卷 31, 期 8, 2024

发表于: 05 April, 2023

页: [938 - 951] 页: 14

弟呕挨: 10.2174/0929867330666230210093411

价格: $65

Open Access Journals Promotions 2
摘要

持久性发光纳米粒子(PLNPs)是在激发光源停止后仍能发光的光致发光材料。近年来,由于其独特的光学性质,PLNPs在生物医学领域引起了广泛的关注。由于PLNPs有效地消除了生物组织的自身荧光干扰,许多研究人员在生物成像和肿瘤治疗领域做出了大量的工作。本文主要介绍了PLNPs的合成方法及其在生物成像和肿瘤治疗中的应用进展,以及面临的挑战和发展前景。

关键词: 持久性发光纳米粒子,合成方法,余辉,光学成像,生物成像,成像引导治疗。

[1]
Meng, X.; Yang, F.; Dong, H.; Dou, L.; Zhang, X. Recent advances in optical imaging of biomarkers in vivo. Nano Today, 2021, 38, 101156.
[http://dx.doi.org/10.1016/j.nantod.2021.101156]
[2]
Kenry; Duan, Y.; Liu, B. Recent advances of optical imaging in the second near-infrared window. Adv. Mater., 2018, 30(47), 1802394.
[http://dx.doi.org/10.1002/adma.201802394]
[3]
Miao, Q.; Pu, K. Organic semiconducting agents for deep-tissue molecular imaging: Second near-infrared fluorescence, self-luminescence, and photoacoustics. Adv. Mater., 2018, 30(49), 1801778.
[http://dx.doi.org/10.1002/adma.201801778] [PMID: 30058244]
[4]
Zhu, S.; Tian, R.; Antaris, A.L.; Chen, X.; Dai, H. Near-infrared-II molecular dyes for cancer imaging and surgery. Adv. Mater., 2019, 31(24), 1900321.
[http://dx.doi.org/10.1002/adma.201900321] [PMID: 31025403]
[5]
Huang, J.; Pu, K. Activatable molecular probes for second near-infrared fluorescence, chemiluminescence, and photoacoustic imaging. Angew. Chem. Int. Ed., 2020, 59(29), 11717-11731.
[http://dx.doi.org/10.1002/anie.202001783] [PMID: 32134156]
[6]
Wu, Y.; Ali, M.R.K.; Chen, K.; Fang, N.; El-Sayed, M.A. Gold nanoparticles in biological optical imaging. Nano Today, 2019, 24, 120-140.
[http://dx.doi.org/10.1016/j.nantod.2018.12.006]
[7]
Zhang, C.; Gao, X.; Chen, W.; He, M.; Yu, Y.; Gao, G.; Sun, T. Advances of gold nanoclusters for bioimaging. iScience, 2022, 25(10), 105022.
[http://dx.doi.org/10.1016/j.isci.2022.105022] [PMID: 36147954]
[8]
Zhu, H.; Zhou, Y.; Wang, Y.; Xu, S.; James, T.D.; Wang, L. Stepwise-enhanced tumor targeting of near-infrared emissive Au nanoclusters with high quantum yields and long-term stability. Anal. Chem., 2022, 94(38), 13189-13196.
[http://dx.doi.org/10.1021/acs.analchem.2c02717] [PMID: 36106565]
[9]
Baghdasaryan, A.; Wang, F.; Ren, F.; Ma, Z.; Li, J.; Zhou, X.; Grigoryan, L.; Xu, C.; Dai, H. Phosphorylcholine-conjugated gold-molecular clusters improve signal for Lymph Node NIR-II fluorescence imaging in preclinical cancer models. Nat. Commun., 2022, 13(1), 5613.
[http://dx.doi.org/10.1038/s41467-022-33341-6] [PMID: 34983933]
[10]
McHugh, K.J.; Jing, L.; Behrens, A.M.; Jayawardena, S.; Tang, W.; Gao, M.; Langer, R.; Jaklenec, A. Biocompatible semiconductor quantum dots as cancer imaging agents. Adv. Mater., 2018, 30(18), 1706356.
[http://dx.doi.org/10.1002/adma.201706356] [PMID: 29468747]
[11]
Li, J.; Rao, J.; Pu, K. Recent progress on semiconducting polymer nanoparticles for molecular imaging and cancer phototherapy. Biomaterials, 2018, 155, 217-235.
[http://dx.doi.org/10.1016/j.biomaterials.2017.11.025] [PMID: 29190479]
[12]
Bai, X.; Wang, K.; Chen, L.; Zhou, J.; Wang, J. Semiconducting polymer dots as fluorescent probes for in vitro biosensing. J. Mater. Chem. B Mater. Biol. Med., 2022, 10(33), 6248-6262.
[http://dx.doi.org/10.1039/D2TB01385A] [PMID: 35971822]
[13]
Guo, L.; Wong, M.S. Multiphoton excited fluorescent materials for frequency upconversion emission and fluorescent probes. Adv. Mater., 2014, 26(31), 5400-5428.
[http://dx.doi.org/10.1002/adma.201400084] [PMID: 24981591]
[14]
Zhu, X.; Wang, X.; Zhang, H.; Zhang, F. Luminescence lifetime imaging based on lanthanide nanoparticles. Angew. Chem. Int. Ed., 2022, 61(42), e202209378.
[http://dx.doi.org/10.1002/anie.202209378] [PMID: 35918764]
[15]
Li, C.; Ye, J.; Yang, X.; Liu, S.; Zhang, Z.; Wang, J.; Zhang, K.; Xu, J.; Fu, Y.; Yang, P. Fe/Mn bimetal-doped ZIF-8-coated luminescent nanoparticles with up/downconversion dual-mode emission for tumor self-enhanced NIR-II imaging and catalytic therapy. ACS Nano, 2022, 16(11), 18143-18156.
[http://dx.doi.org/10.1021/acsnano.2c05152] [PMID: 36260703]
[16]
Jin, Y.; Bae, J.; Kim, T.Y.; Hwang, H.; Kim, T.; Yu, M.; Oh, H.; Hashiya, K.; Bando, T.; Sugiyama, H.; Jo, K. Twelve colors of streptavidin-fluorescent proteins (SA-FPs): a versatile tool to visualize genetic information in single-molecule DNA. Anal. Chem., 2022, 94(48), 16927-16935.
[http://dx.doi.org/10.1021/acs.analchem.2c04344] [PMID: 36377840]
[17]
Liang, G.T.; Lai, C.; Yue, Z.; Zhang, H.; Li, D.; Chen, Z.; Lu, X.; Tao, L.; Subach, F.V.; Piatkevich, K.D. Enhanced small green fluorescent proteins as a multisensing platform for biosensor development. Front. Bioeng. Biotechnol., 2022, 10, 1039317.
[http://dx.doi.org/10.3389/fbioe.2022.1039317] [PMID: 36324888]
[18]
Chen, M.; Feng, Z.; Fan, X.; Sun, J.; Geng, W.; Wu, T.; Sheng, J.; Qian, J.; Xu, Z. Long-term monitoring of intravital biological processes using fluorescent protein-assisted NIR-II imaging. Nat. Commun., 2022, 13(1), 6643-6643.
[http://dx.doi.org/10.1038/s41467-022-34274-w] [PMID: 36333308]
[19]
Hola, K.; Zhang, Y.; Wang, Y.; Giannelis, E.P.; Zboril, R.; Rogach, A.L. Carbon dots-Emerging light emitters for bioimaging, cancer therapy and optoelectronics. Nano Today, 2014, 9(5), 590-603.
[http://dx.doi.org/10.1016/j.nantod.2014.09.004]
[20]
Zhou, B.; Guo, Z.; Lin, Z.; Zhang, L.; Jiang, B.P.; Shen, X.C. Recent insights into near-infrared light-responsive carbon dots for bioimaging and cancer phototherapy. Inorg. Chem. Front., 2019, 6(5), 1116-1128.
[http://dx.doi.org/10.1039/C9QI00201D]
[21]
Patel, K.D.; Singh, R.K.; Kim, H.W. Carbon-based nanomaterials as an emerging platform for theranostics. Mater. Horiz., 2019, 6(3), 434-469.
[http://dx.doi.org/10.1039/C8MH00966J]
[22]
Huang, K.; Le, N.; Wang, J.S.; Huang, L.; Zeng, L.; Xu, W.-C.; Li, Z.; Li, Y.; Han, G. Designing next generation of persistent luminescence: Recent advances in uniform persistent luminescence nanoparticles. 2022, 34(14), 2107962.
[http://dx.doi.org/10.1002/adma.202107962]
[23]
Algar, W.R.; Massey, M.; Rees, K.; Higgins, R.; Krause, K.D.; Darwish, G.H.; Peveler, W.J.; Xiao, Z.; Tsai, H.Y.; Gupta, R.; Lix, K.; Tran, M.V.; Kim, H. Photoluminescent nanoparticles for chemical and biological analysis and imaging. Chem. Rev., 2021, 121(15), 9243-9358.
[http://dx.doi.org/10.1021/acs.chemrev.0c01176] [PMID: 34282906]
[24]
Jiang, Y.; Pu, K. Molecular probes for autofluorescence-free optical imaging. Chem. Rev., 2021, 121(21), 13086-13131.
[http://dx.doi.org/10.1021/acs.chemrev.1c00506] [PMID: 34558282]
[25]
Li, Y.; Gecevicius, M.; Qiu, J. Long persistent phosphors-from fundamentals to applications. Chem. Soc. Rev., 2016, 45(8), 2090-2136.
[http://dx.doi.org/10.1039/C5CS00582E] [PMID: 26839022]
[26]
Liu, H.; Li, Z.; Shen, R.; Li, Z.; Yang, Y.; Yuan, Q. Point-of-care pathogen testing using photonic crystals and machine vision for diagnosis of urinary tract infections. Nano Lett., 2021, 21(7), 2854-2860.
[http://dx.doi.org/10.1021/acs.nanolett.0c04942] [PMID: 33769062]
[27]
Zhao, Y.; Zheng, F.; Shi, L.; Liu, H.; Ke, W. Autoluminescence-free prostate-specific antigen detection by persistent luminous nanorods and Au@Ag@SiO2 nanoparticles. ACS Appl. Mater. Interfaces, 2019, 11(43), 40669-40676.
[http://dx.doi.org/10.1021/acsami.9b14901] [PMID: 31599571]
[28]
Wu, B.Y.; Yan, X.P. Bioconjugated persistent luminescence nanoparticles for Föster resonance energy transfer immunoassay of prostate specific antigen in serum and cell extracts without in situ excitation. Chem. Commun. (Camb.), 2015, 51(18), 3903-3906.
[http://dx.doi.org/10.1039/C5CC00286A] [PMID: 25656741]
[29]
Feng, F.; Chen, X.; Li, G.; Liang, S.; Hong, Z.; Wang, H.F. Afterglow resonance energy transfer inhibition for fibroblast activation protein-α assay. ACS Sens., 2018, 3(9), 1846-1854.
[http://dx.doi.org/10.1021/acssensors.8b00680] [PMID: 30188115]
[30]
Li, J.; Yang, C.; Wang, W.L.; Yan, X.P. Functionalized gold and persistent luminescence nanoparticle-based ratiometric absorption and TR-FRET nanoplatform for high- throughput sequential detection of L-cysteine and insulin. Nanoscale, 2018, 10(31), 14931-14937.
[http://dx.doi.org/10.1039/C8NR04414G] [PMID: 30046773]
[31]
Wang, Y.; Li, Z.; Lin, Q.; Wei, Y.; Wang, J.; Li, Y.; Yang, R.; Yuan, Q. Highly sensitive detection of bladder cancer-related miRNA in urine using time-gated luminescent biochip. ACS Sens., 2019, 4(8), 2124-2130.
[http://dx.doi.org/10.1021/acssensors.9b00927] [PMID: 31313911]
[32]
Wang, X.; Wang, Y.; Chen, S.; Fu, P.; Lin, Y.; Ye, S.; Long, Y.; Gao, G.; Zheng, J. A persistent luminescence resonance energy transfer-based molecular beacon probe for the highly sensitive detection of microRNA in biological samples. Biosens. Bioelectron., 2022, 198, 113849.
[http://dx.doi.org/10.1016/j.bios.2021.113849] [PMID: 34861528]
[33]
Feng, Y.; Zhang, L.; Liu, R.; Lv, Y. Modulating near-infrared persistent luminescence of core-shell nanoplatform for imaging of glutathione in tumor mouse model. Biosens. Bioelectron., 2019, 144, 111671.
[http://dx.doi.org/10.1016/j.bios.2019.111671] [PMID: 31513961]
[34]
Li, J.; Huang, X.; Zhao, X.; Chen, L.J.; Yan, X.P. pH- pH-responsive torpedo-like persistent luminescence nanoparticles for autofluorescence-free biosensing and high-level information encryption. Angew. Chem. Int. Ed., 2021, 60(5), 2398-2405.
[http://dx.doi.org/10.1002/anie.202011553] [PMID: 33073905]
[35]
Pan, Z.; Lu, Y.Y.; Liu, F. Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates. Nat. Mater., 2012, 11(1), 58-63.
[http://dx.doi.org/10.1038/nmat3173] [PMID: 22101812]
[36]
Zhao, F.; Song, Z.; Zhao, J.; Liu, Q. Double perovskite Cs2 AgInCl6 :Cr3+ : Broadband and near-infrared luminescent materials. Inorg. Chem. Front., 2019, 6(12), 3621-3628.
[http://dx.doi.org/10.1039/C9QI00905A]
[37]
Lim, J.H.; Kim, B.N.; Kim, Y.; Kang, S.; Xie, R.J.; Chong, I.S.; Morita, K.; Yoshida, H.; Hiraga, K. Non-rare earth white emission phosphor: Ti-doped MgAl2O4. Appl. Phys. Lett., 2013, 102(3), 031104.
[http://dx.doi.org/10.1063/1.4788929]
[38]
Jin, L.; Zhang, H.; Pan, R.; Xu, P.; Han, J.; Zhang, X.; Yuan, Q.; Zhang, Z.; Wang, X.; Wang, Y.; Song, B. Observation of the long afterglow in AlN helices. Nano Lett., 2015, 15(10), 6575-6581.
[http://dx.doi.org/10.1021/acs.nanolett.5b02300] [PMID: 26372072]
[39]
Wu, S.; Li, Y.; Ding, W.; Xu, L.; Ma, Y.; Zhang, L. Recent advances of persistent luminescence nanoparticles in bioapplications. Nano-Micro Lett., 2020, 12(1), 70.
[http://dx.doi.org/10.1007/s40820-020-0404-8] [PMID: 34138268]
[40]
Luo, H.; Bos, A.J.J.; Dobrowolska, A.; Dorenbos, P. Low-temperature VUV photoluminescence and thermoluminescence of UV excited afterglow phosphor Sr3 Alx Si1−xO5 : Ce3+, Ln 3+ (Ln = Er, Nd, Sm, Dy and Tm). Phys. Chem. Chem. Phys., 2015, 17(23), 15419-15427.
[http://dx.doi.org/10.1039/C5CP01710F] [PMID: 26007307]
[41]
Xia, Z.; Li, Q.; Li, G.; Xiong, M.; Liao, L. Crystal growth of Ca3SiO4Br2: New photoluminescence bromosilicate host. J. Cryst. Growth, 2011, 318(1), 958-961.
[http://dx.doi.org/10.1016/j.jcrysgro.2010.10.058]
[42]
Abdukayum, A.; Chen, J.T.; Zhao, Q.; Yan, X.P. Functional near infrared-emitting Cr3+/Pr3+ co-doped zinc gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging. J. Am. Chem. Soc., 2013, 135(38), 14125-14133.
[http://dx.doi.org/10.1021/ja404243v] [PMID: 23988232]
[43]
le Masne de Chermont, Q.; Chanéac, C.; Seguin, J.; Pellé, F.; Maîtrejean, S.; Jolivet, J.P.; Gourier, D.; Bessodes, M.; Scherman, D. Nanoprobes with near-infrared persistent luminescence for in vivo imaging. Proc. Natl. Acad. Sci. USA, 2007, 104(22), 9266-9271.
[http://dx.doi.org/10.1073/pnas.0702427104] [PMID: 17517614]
[44]
Wang, J.; Ma, Q.; Hu, X.X.; Liu, H.; Zheng, W.; Chen, X.; Yuan, Q.; Tan, W. Autofluorescence-free targeted tumor imaging based on luminous nanoparticles with composition-dependent size and persistent luminescence. ACS Nano, 2017, 11(8), 8010-8017.
[http://dx.doi.org/10.1021/acsnano.7b02643] [PMID: 28771315]
[45]
Li, Z.; Zhang, Y.; Wu, X.; Huang, L.; Li, D.; Fan, W.; Han, G. Direct aqueous-phase synthesis of sub-10 nm “luminous pearls” with enhanced in vivo renewable near-infrared persistent luminescence. J. Am. Chem. Soc., 2015, 137(16), 5304-5307.
[http://dx.doi.org/10.1021/jacs.5b00872] [PMID: 25836338]
[46]
Li, J.L.; Shi, J.P.; Wang, C.C.; Li, P.H.; Yu, Z.F.; Zhang, H.W. Five-nanometer ZnSn2O4: Cr,Eu ultra-small nanoparticles as new near infrared-emitting persistent luminescent nanoprobes for cellular and deep tissue imaging at 800 nm. Nanoscale, 2017, 9(25), 8631-8638.
[http://dx.doi.org/10.1039/C7NR02468A] [PMID: 28608898]
[47]
Shi, J.; Sun, X.; Zhu, J.; Li, J.; Zhang, H. One-step synthesis of amino-functionalized ultrasmall near infrared-emitting persistent luminescent nanoparticles for in vitro and in vivo bioimaging. Nanoscale, 2016, 8(18), 9798-9804.
[http://dx.doi.org/10.1039/C6NR00590J] [PMID: 27120221]
[48]
Wang, J.; Ma, Q.; Zheng, W.; Liu, H.; Yin, C.; Wang, F.; Chen, X.; Yuan, Q.; Tan, W. One-dimensional luminous nanorods featuring tunable persistent luminescence for autofluorescence-free biosensing. ACS Nano, 2017, 11(8), 8185-8191.
[http://dx.doi.org/10.1021/acsnano.7b03128] [PMID: 28665583]
[49]
Zhou, Z.; Zheng, W.; Kong, J.; Liu, Y.; Huang, P.; Zhou, S.; Chen, Z.; Shi, J.; Chen, X. Rechargeable and LED-activated ZnGa2O4: Cr3+ near-infrared persistent luminescence nanoprobes for background-free biodetection. Nanoscale, 2017, 9(20), 6846-6853.
[http://dx.doi.org/10.1039/C7NR01209H] [PMID: 28497817]
[50]
Srivastava, B.B.; Kuang, A.; Mao, Y. Persistent luminescent sub-10 nm Cr doped ZnGa2O4 nanoparticles by a biphasic synthesis route. Chem. Commun. (Camb.), 2015, 51(34), 7372-7375.
[http://dx.doi.org/10.1039/C5CC00377F] [PMID: 25823608]
[51]
Li, Z.; Wang, Q.; Wang, Y.; Ma, Q.; Wang, J.; Li, Z.; Li, Y.; Lv, X.; Wei, W.; Chen, L.; Yuan, Q. Background-free latent fingerprint imaging based on nanocrystals with long-lived luminescence and pH-guided recognition. Nano Res., 2018, 11(12), 6167-6176.
[http://dx.doi.org/10.1007/s12274-018-2133-6]
[52]
Wang, J.; Ma, Q.; Liu, H.; Wang, Y.; Shen, H.; Hu, X.; Ma, C.; Yuan, Q.; Tan, W. Time-gated imaging of latent fingerprints and specific visualization of protein secretions via molecular recognition. Anal. Chem., 2017, 89(23), 12764-12770.
[http://dx.doi.org/10.1021/acs.analchem.7b03003] [PMID: 29111687]
[53]
Chen, W.; Song, Y.; Zhang, W.; Deng, R.; Zhuang, Y.; Xie, R.J. Time-gated imaging of latent fingerprints with level 3 details achieved by persistent luminescent fluoride nanoparticles. ACS Appl. Mater. Interfaces, 2022, 14(24), 28230-28238.
[http://dx.doi.org/10.1021/acsami.2c06097] [PMID: 35687348]
[54]
Huang, K.; Li, Z.; Li, Y.; Yu, N.; Gao, X.; Huang, L.; Lim, S.F.; Han, G. Three-dimensional colloidal controlled growth of core-shell heterostructured persistent luminescence nanocrystals. Nano Lett., 2021, 21(12), 4903-4910.
[http://dx.doi.org/10.1021/acs.nanolett.0c04940] [PMID: 34100617]
[55]
Huang, K.; Dou, X.; Zhang, Y.; Gao, X.; Lin, J.; Qu, J.; Li, Y.; Huang, P.; Han, G. Enhancing light and X-Ray charging in persistent luminescence nanocrystals for orthogonal afterglow anti-counterfeiting. Adv. Funct. Mater., 2021, 31(22), 2009920.
[http://dx.doi.org/10.1002/adfm.202009920]
[56]
Chen, Z.Z.; Wang, L.C.; Manoharan, D.; Lee, C.L.; Wu, L.C.; Huang, W.T.; Huang, E.Y.; Su, C.H.; Sheu, H.S.; Yeh, C.S. Low dose of X-ray-excited long-lasting luminescent concave nanocubes in highly passive targeting deep- seated hepatic tumors. Adv. Mater., 2019, 31(49), 1905087.
[http://dx.doi.org/10.1002/adma.201905087] [PMID: 31625638]
[57]
Wang, J.; Li, Q.; Zhao, H.; Yue, W.; Zhang, K.; Jiang, X.; Li, K. Facile and controllable synthesis of the renal-clearable “luminous pearls” for in vivo afterglow/magnetic resonance imaging. ACS Nano, 2022, 16(1), 462-472.
[http://dx.doi.org/10.1021/acsnano.1c07243] [PMID: 34919374]
[58]
Zou, R.; Gao, Y.; Zhang, Y.; Jiao, J.; Wong, K.L.; Wang, J. 68Ga-labeled magnetic-NIR persistent luminescent hybrid mesoporous nanoparticles for multimodal imaging-guided chemotherapy and photodynamic therapy. ACS Appl. Mater. Interfaces, 2021, 13(8), 9667-9680.
[http://dx.doi.org/10.1021/acsami.0c21623] [PMID: 33617721]
[59]
Wang, J.; Li, J.; Yu, J.; Zhang, H.; Zhang, B. Large hollow cavity luminous nanoparticles with near-infrared persistent luminescence and tunable sizes for tumor afterglow imaging and chemo-/photodynamic therapies. ACS Nano, 2018, 12(5), 4246-4258.
[http://dx.doi.org/10.1021/acsnano.7b07606] [PMID: 29676899]
[60]
Shi, J.; Sun, X.; Zheng, S.; Li, J.; Fu, X.; Zhang, H. A new near-infrared persistent luminescence nanoparticle as a multifunctional nanoplatform for multimodal imaging and cancer therapy. Biomaterials, 2018, 152, 15-23.
[http://dx.doi.org/10.1016/j.biomaterials.2017.10.032] [PMID: 29078137]
[61]
Shi, J.; Sun, X.; Li, J.; Man, H.; Shen, J.; Yu, Y.; Zhang, H. Multifunctional near infrared-emitting long-persistence luminescent nanoprobes for drug delivery and targeted tumor imaging. Biomaterials, 2015, 37, 260-270.
[http://dx.doi.org/10.1016/j.biomaterials.2014.10.033] [PMID: 25453956]
[62]
Zou, R.; Gong, S.; Shi, J.; Jiao, J.; Wong, K.L.; Zhang, H.; Wang, J.; Su, Q. Magnetic-NIR persistent luminescent dual-modal ZGOCS@MSNs@Gd2O3 core–shell nanoprobes for in vivo imaging. Chem. Mater., 2017, 29(9), 3938-3946.
[http://dx.doi.org/10.1021/acs.chemmater.7b00087]
[63]
Shi, J.; Fu, H.; Sun, X.; Shen, J.; Zhang, H. Magnetic, long persistent luminescent and mesoporous nanoparticles as trackable transport drug carriers. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(4), 635-641.
[http://dx.doi.org/10.1039/C4TB01721H] [PMID: 32262346]
[64]
Shi, J.; Sun, M.; Sun, X.; Zhang, H. Near-infrared persistent luminescence hollow mesoporous nanospheres for drug delivery and in vivo renewable imaging. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(48), 7845-7851.
[http://dx.doi.org/10.1039/C6TB02674E] [PMID: 32263774]
[65]
Yu, Z.; Liu, B.; Pan, W.; Zhang, T.; Tong, L.; Li, N.; Tang, B. A simple approach for glutathione functionalized persistent luminescence nanoparticles as versatile platforms for multiple in vivo applications. Chem. Commun. (Camb.), 2018, 54(28), 3504-3507.
[http://dx.doi.org/10.1039/C8CC00743H] [PMID: 29564449]
[66]
Bessière, A.; Lecointre, A.; Priolkar, K.R.; Gourier, D. Role of crystal defects in red long-lasting phosphorescence of CaMgSi2O6:Mn diopsides. J. Mater. Chem., 2012, 22(36), 19039-19046.
[http://dx.doi.org/10.1039/c2jm32953k]
[67]
Fu, X.; Liu, C.; Shi, J.; Man, H.; Xu, J.; Zhang, H. Long persistent near infrared luminescence nanoprobes LiGa5O8:Cr3+-PEG-OCH3 for in vivo imaging. Opt. Mater., 2014, 36(11), 1792-1797.
[http://dx.doi.org/10.1016/j.optmat.2014.04.018]
[68]
Wang, J.; Ma, Q.; Wang, Y.; Shen, H.; Yuan, Q. Recent progress in biomedical applications of persistent luminescence nanoparticles. Nanoscale, 2017, 9(19), 6204-6218.
[http://dx.doi.org/10.1039/C7NR01488K] [PMID: 28466913]
[69]
Maldiney, T.; Viana, B.; Bessière, A.; Gourier, D.; Bessodes, M.; Scherman, D.; Richard, C. In vivo imaging with persistent luminescence silicate-based nanoparticles. Opt. Mater., 2013, 35(10), 1852-1858.
[http://dx.doi.org/10.1016/j.optmat.2013.03.028]
[70]
Wang, Y.; Yang, C.X.; Yan, X.P. Hydrothermal and biomineralization synthesis of a dual-modal nanoprobe for targeted near-infrared persistent luminescence and magnetic resonance imaging. Nanoscale, 2017, 9(26), 9049-9055.
[http://dx.doi.org/10.1039/C7NR02038D] [PMID: 28639659]
[71]
Zou, R.; Huang, J.; Shi, J.; Huang, L.; Zhang, X.; Wong, K.L.; Zhang, H.; Jin, D.; Wang, J.; Su, Q. Silica shell-assisted synthetic route for mono-disperse persistent nanophosphors with enhanced in vivo recharged near-infrared persistent luminescence. Nano Res., 2017, 10(6), 2070-2082.
[http://dx.doi.org/10.1007/s12274-016-1396-z]
[72]
Maldiney, T.; Bessière, A.; Seguin, J.; Teston, E.; Sharma, S.K.; Viana, B.; Bos, A.J.J.; Dorenbos, P.; Bessodes, M.; Gourier, D.; Scherman, D.; Richard, C. The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells. Nat. Mater., 2014, 13(4), 418-426.
[http://dx.doi.org/10.1038/nmat3908] [PMID: 24651431]
[73]
Zhao, H.; Liu, C.; Gu, Z.; Dong, L.; Li, F.; Yao, C.; Yang, D. Persistent luminescent nanoparticles containing hydrogels for targeted, sustained, and autofluorescence-free tumor metastasis imaging. Nano Lett., 2020, 20(1), 252-260.
[http://dx.doi.org/10.1021/acs.nanolett.9b03755] [PMID: 31793303]
[74]
Li, Z.; Huang, L.; Zhang, Y.; Zhao, Y.; Yang, H.; Han, G. Near-infrared light activated persistent luminescence nanoparticles via upconversion. Nano Res., 2017, 10(5), 1840-1846.
[http://dx.doi.org/10.1007/s12274-017-1548-9]
[75]
Song, L.; Lin, X.H.; Song, X.R.; Chen, S.; Chen, X.F.; Li, J.; Yang, H.H. Repeatable deep-tissue activation of persistent luminescent nanoparticles by soft X-ray for high sensitivity long-term in vivo bioimaging. Nanoscale, 2017, 9(8), 2718-2722.
[http://dx.doi.org/10.1039/C6NR09553D] [PMID: 28198899]
[76]
Xue, Z.; Li, X.; Li, Y.; Jiang, M.; Liu, H.; Zeng, S.; Hao, J. X-ray-activated near-infrared persistent luminescent probe for deep-tissue and renewable in vivo bioimaging. ACS Appl. Mater. Interfaces, 2017, 9(27), 22132-22142.
[http://dx.doi.org/10.1021/acsami.7b03802] [PMID: 28603963]
[77]
Lin, X.H.; Song, L.; Chen, S.; Chen, X.F.; Wei, J.J.; Li, J.; Huang, G.; Yang, H.H. Kiwifruit-like persistent luminescent nanoparticles with high-performance and in situ activable near-infrared persistent luminescence for long-term in vivo bioimaging. ACS Appl. Mater. Interfaces, 2017, 9(47), 41181-41187.
[http://dx.doi.org/10.1021/acsami.7b13920] [PMID: 29111643]
[78]
Zheng, S.; Shi, J.; Fu, X.; Wang, C.; Sun, X.; Chen, C.; Zhuang, Y.; Zou, X.; Li, Y.; Zhang, H. X-ray recharged long afterglow luminescent nanoparticles MgGeO3:Mn2+, Yb3+, Li+ in the first and second biological windows for long-term bioimaging. Nanoscale, 2020, 12(26), 14037-14046.
[http://dx.doi.org/10.1039/C9NR10622G] [PMID: 32579636]
[79]
Pei, P.; Chen, Y.; Sun, C.; Fan, Y.; Yang, Y.; Liu, X.; Lu, L.; Zhao, M.; Zhang, H.; Zhao, D.; Liu, X.; Zhang, F. X-ray-activated persistent luminescence nanomaterials for NIR-II imaging. Nat. Nanotechnol., 2021, 16(9), 1011-1018.
[http://dx.doi.org/10.1038/s41565-021-00922-3] [PMID: 34112994]
[80]
Abdukayum, A.; Yang, C.X.; Zhao, Q.; Chen, J.T.; Dong, L.X.; Yan, X.P. Gadolinium complexes functionalized persistent luminescent nanoparticles as a multimodal probe for near-infrared luminescence and magnetic resonance imaging in vivo. Anal. Chem., 2014, 86(9), 4096-4101.
[http://dx.doi.org/10.1021/ac500644x] [PMID: 24702120]
[81]
Maldiney, T.; Doan, B.T.; Alloyeau, D.; Bessodes, M.; Scherman, D.; Richard, C. Gadolinium-doped persistent nanophosphors as versatile tool for multimodal in vivo imaging. Adv. Funct. Mater., 2015, 25(2), 331-338.
[http://dx.doi.org/10.1002/adfm.201401612]
[82]
Lu, Y.C.; Yang, C.X.; Yan, X.P. Radiopaque tantalum oxide coated persistent luminescent nanoparticles as multimodal probes for in vivo near-infrared luminescence and computed tomography bioimaging. Nanoscale, 2015, 7(42), 17929-17937.
[http://dx.doi.org/10.1039/C5NR05623C] [PMID: 26462601]
[83]
Liu, J.M.; Liu, Y.Y.; Zhang, D.D.; Fang, G.Z.; Wang, S. Synthesis of GdAlO3:Mn4+, Ge4+@Au core–shell nanoprobes with plasmon-enhanced near-infrared persistent luminescence for in vivo trimodality bioimaging. ACS Appl. Mater. Interfaces, 2016, 8(44), 29939-29949.
[http://dx.doi.org/10.1021/acsami.6b09580] [PMID: 27759378]
[84]
Zhao, H.; Shu, G.; Zhu, J.; Fu, Y.; Gu, Z.; Yang, D. Persistent luminescent metal-organic frameworks with long-lasting near infrared emission for tumor site activated imaging and drug delivery. Biomaterials, 2019, 217, 119332.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119332] [PMID: 31284124]
[85]
Feng, Y.; Liu, R.; Zhang, L.; Li, Z.; Su, Y.; Lv, Y. Raspberry-like mesoporous Zn1.07Ga2.34Si0.98O6.56: Cr0.01 nanocarriers for enhanced near-infrared afterglow imaging and combined cancer chemotherapy. ACS Appl. Mater. Interfaces, 2019, 11(48), 44978-44988.
[http://dx.doi.org/10.1021/acsami.9b18124] [PMID: 31722170]
[86]
Wang, Z.H.; Liu, J.M.; Zhao, N.; Li, C.Y.; Lv, S.W.; Hu, Y.; Lv, H.; Wang, D.; Wang, S. Cancer cell macrophage membrane camouflaged persistent luminescent nanoparticles for imaging-guided photothermal therapy of colorectal cancer. ACS Appl. Nano Mater., 2020, 3(7), 7105-7118.
[http://dx.doi.org/10.1021/acsanm.0c01433]
[87]
Chen, L.J.; Sun, S.K.; Wang, Y.; Yang, C.X.; Wu, S.Q.; Yan, X.P. Activatable multifunctional persistent luminescence nanoparticle/copper sulfide nanoprobe for in vivo luminescence imaging-guided photothermal therapy. ACS Appl. Mater. Interfaces, 2016, 8(48), 32667-32674.
[http://dx.doi.org/10.1021/acsami.6b10702] [PMID: 27934189]
[88]
Yang, J.; Zhao, Y.; Meng, Y.; Zhu, H.; Yan, D.; Liu, C.; Xu, C.; Zhang, H.; Xu, L.; Li, Y.; Liu, Y. Irradiation-free photodynamic therapy in vivo induced by enhanced deep red afterglow within NIR-I bio-window. Chem. Eng. J., 2020, 387, 124067.
[http://dx.doi.org/10.1016/j.cej.2020.124067]
[89]
Wang, R.; Shi, J.; Song, L.; Zheng, S.; Liu, X.; Hong, M.; Zhang, Y. Sustained antitumor immunity based on persistent luminescence nanoparticles for cancer immunotherapy. Adv. Funct. Mater., 2021, 31(52), 2106884.
[http://dx.doi.org/10.1002/adfm.202106884]
[90]
Wu, S.; Qiao, Z.; Li, Y.; Hu, S.; Ma, Y.; Wei, S.; Zhang, L. Persistent luminescence nanoplatform with fenton-like catalytic activity for tumor multimodal imaging and photoenhanced combination therapy. ACS Appl. Mater. Interfaces, 2020, 12(23), 25572-25580.
[http://dx.doi.org/10.1021/acsami.0c04438] [PMID: 32412741]
[91]
Li, Y.; Teng, X.; Wang, Y.; Yang, C.; Yan, X.; Li, J. Neutrophil delivered hollow titania covered persistent luminescent nanosensitizer for ultrosound augmented chemo/immuno glioblastoma therapy. Adv. Sci. (Weinh.), 2021, 8(17), 2004381.
[http://dx.doi.org/10.1002/advs.202004381] [PMID: 34196474]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy