Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Mini-Review Article

Antioxidant Potentials and other Biological Activities of Protium heptaphyllum (Aubl.). March: Mini-Review

Author(s): Naiéle Sartori Patias*, Valéria Dornelles Gindri Sinhorin and Adilson Paulo Sinhorin

Volume 13, Issue 7, 2023

Published on: 09 March, 2023

Article ID: e090223213549 Pages: 15

DOI: 10.2174/2210315513666230209143555

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Oxidative stress occurs when the cell's antioxidant defense system is insufficient. This can be corrected by active antioxidant substances, which help to eliminate the consequences of the damage caused or prevent the system from reaching the stress level.

Objective: The actions of antioxidants can inhibit or delay tumor cells' appearance, delaying aging, and preventing other cellular damage resulting from the redox imbalance. Therefore, the present work aimed to research studies already published on Protium heptaphyllum (P. heptaphyllum) and its biological activities, mainly antioxidant effects once resulting from phenolic compounds, such as flavonoids, present in the plant.

Methods: The methodology used was a literature review where information was collected from several studies related to P. heptaphyllum, oxidative stress, polyphenols, and flavonoids in databases, such as Scielo, PubMed, Google Scholar, LILACS, Chemical Abstract, ScienceDirect, among others in the period from 2002 to 2021.

Results: The main studies carried out with metabolites of P. heptaphyllum demonstrated several biological activities such as antioxidant, gastroprotective, anti-inflammatory, analgesic, anxiolytic, antihyperglycemic, hyperlipidemic, among others. Although P. heptaphyllum has been little investigated by pharmacological studies, the results reported in this work may contribute to this plant species' chemical/ pharmacological knowledge. Therefore, the secondary metabolites present in the plant may become test targets in future clinical trials for the drug arsenal.

Conclusion: It can be observed that P. heptaphyllum is a promising source of secondary compounds, mainly flavonoids.

Keywords: Almacega, oxidative stress, flavonoids, polyphenols, antioxidants, Protium heptaphyllum.

Graphical Abstract
[1]
Oliveira, E.; Menini Neto, L. Ethnobotanical survey of medicinal plants used by residents of the village of Manejo, Lima DuarteMG. Rev. Bras. Pl. Med., 2012, 14(2), 311-320.
[2]
Ferrazzano, G.; Amato, I.; Ingenito, A.; Zarrelli, A.; Pinto, G.; Pollio, A. Plant polyphenols and their anti-cariogenic properties: A review. Molecules, 2011, 16(2), 1486-1507.
[http://dx.doi.org/10.3390/molecules16021486] [PMID: 21317840]
[3]
Nageen, B.; Sarfraz, I.; Rasul, A.; Hussain, G.; Rukhsar, F.; Irshad, S.; Riaz, A.; Selamoglu, Z.; Ali, M. Eupatilin: A natural pharmacologically active flavone compound with its wide range applications. J. Asian Nat. Prod. Res., 2020, 22(1), 1-16.
[http://dx.doi.org/10.1080/10286020.2018.1492565] [PMID: 33511872]
[4]
Jiang, D.; Rasul, A.; Batool, R.; Sarfraz, I.; Hussain, G.; Mateen Tahir, M.; Qin, T.; Selamoglu, Z.; Ali, M.; Li, J.; Li, X. Potential anticancer properties and mechanisms of action of formononetin. BioMed Res. Int., 2019, 2019, 1-11.
[http://dx.doi.org/10.1155/2019/5854315] [PMID: 31467899]
[5]
Salehi, B.; Selamoglu, Z.; Sener, B.; Kilic, M.; Kumar Jugran, A.; de Tommasi, N.; Sinisgalli, C.; Milella, L.; Rajkovic, J.; Flaviana, B.; Morais-Braga, M.; F Bezerra, C.; E Rocha, J.; D M Coutinho, H.; Oluwaseun Ademiluyi, A.; Khan Shinwari, Z.; Ahmad Jan, S.; Erol, E.; Ali, Z.; Adrian Ostrander, E.; Sharifi-Rad, J.; de la Luz Cádiz-Gurrea, M.; Taheri, Y.; Martorell, M.; Segura-Carretero, A.; Cho, W.C. Berberis. Plants-drifting from farm to food applications, phytotherapy, and phytopharmacology. Foods, 2019, 8(10), 522.
[http://dx.doi.org/10.3390/foods8100522] [PMID: 31652576]
[6]
Nawaz, J.; Rasul, A.; Shah, M.A.; Hussain, G.; Riaz, A.; Sarfraz, I.; Zafar, S.; Adnan, M.; Khan, A.H.; Selamoglu, Z. Cardamonin: A new player to fight cancer via multiple cancer signaling pathways. Life Sci., 2020, 250, 117591.
[http://dx.doi.org/10.1016/j.lfs.2020.117591]
[7]
Shah, M.A.; Adnan, M.; Rasul, A.; Hussain, G.; Sarfraz, I.; Nageen, B.; Riaz, A.; Khalid, R.; Asrar, M.; Selamoglu, Z.; Adem, Ş.; Sarker, S.D. Physcion and physcion 8-O-β-D-glucopyranoside: Natural anthraquinones with potential anti-cancer activities. Curr. Drug Targets, 2020. Available from: ljmu.ac.uk
[8]
Ozdemir, B.; Gulhan, M.F.; Sahna, E.; Selamoğlu, Z. The investigation of antioxidant and anti-inflammatory potentials of apitherapeutic agents on heart tissues in nitric oxide synthase inhibited rats via Nω-nitro-L-arginine methyl ester. Clin. Exp. Hypertens., 2021, 43(1), 69-76.
[http://dx.doi.org/10.1080/10641963.2020.1806294] [PMID: 32799699]
[9]
Talas, Z.S.; Ilknur, O.; Ozdemir, I.; Ciftci, O.; Cakir, O.; Gulhan, M.F.; Pasaoglu, O.M. Role of propolis on biochemical parameters in kidney and heart tissues against L-NAME induced oxidative injury in rats. Clin. Exp. Hypertens., 2014, 36(7), 492-496.
[http://dx.doi.org/10.3109/10641963.2013.863322]
[10]
Hajam, Y.A.; Rani, R.; Ganie, S.Y.; Sheikh, T.A.; Javaid, D.; Qadri, S.S.; Pramodh, S.; Alsulimani, A.; Alkhanani, M.F.; Harakeh, S.; Hussain, A.; Haque, S.; Reshi, M.S. Oxidative stress in human pathology and aging: Molecular mechanisms and perspectives. Cells, 2022, 11(3), 552.
[http://dx.doi.org/10.3390/cells11030552] [PMID: 35159361]
[11]
Barreiros, A.L.B.S.; David, J.M.; David, J.P. Oxidative stress: Relationship between generation of reactive species and organism defense. New Chem., 2006, 29, 113-123.
[http://dx.doi.org/10.1590/S1516-05722012000200010]
[12]
Z, S. The natural products and healthy life. J. Tradit. Med. Clin. Naturop., 2018, 7(2), e146.
[http://dx.doi.org/10.4172/2573-4555.1000e146]
[13]
Bourchard, J.R.; Wyse, D.L.; Sheaffer, C.C.; Kauppi, K.L.; Fulcher, G.R.; Ehlke, N.J.; Biesboer, D.D.; Bey, R.F. Antioxidant and antimicrobial activity of seed from plants of the Mississippi river basin. J. Med. Plant Res., 2008, 2(4), 81-93. https://www.researchgate.net/journal/Journal-of-Medicinal-Plant-Research-1996-0875
[14]
Rüdiger, A.L.; Veiga-Junior, V.F. Chemodiversity of ursane- and oleanane-type triterpenes in Amazonian Burseraceae oleoresins. Chem. Biodivers., 2013, 10(6), 1142-1153.
[http://dx.doi.org/10.1002/cbdv.201200315] [PMID: 23776030]
[15]
Selamoglu, Z. Polyphenolic compounds in human health with pharmacological properties. J. Tradit. Med. Clin. Naturop., 2017, 6(4)
[http://dx.doi.org/10.4172/2573-4555.1000e138]
[16]
Akalın, G.; Selamoglu, Z. Nutrition and foods for skin health. J. Pharm. Care, 2019, 7(1-2), 31-33.
[http://dx.doi.org/10.18502/jpc.v7i1-2.1620]
[17]
Maia, R.M.; Barbosa, P.R.; Cruz, F.G.; Roque, N.F.; Fascio, M. Triterpenes from Protium heptaphyllum March resin. (Bourseraceae): Characterization in binary mixtures. New Chem., 2000, 23(5), 623-626.
[http://dx.doi.org/10.1590/S0100-40422000000500010]
[18]
Bandeira, P.N.; Pessoa, O.D.L.; Trevisan, M.T.S.; Lemos, T.M.G. Secondary metabolites of Protium heptaphyllum March. New Chem. 2002, 25(6b), 1078-1080.
[http://dx.doi.org/10.1590/S0100]
[19]
Marques, D.D.; Sartori, R.A.; Lemos, T.L.G.; Machado, L.L. Chemical composition of the essential oils from two subspecies of Protium heptaphyllum. Acta Amazonica. 2010, 40(1)
[http://dx.doi.org/10.1590/S0044-59672010000100029]
[20]
Islam, M.R.; Kabir, M.F.; Alam, R.; Dhar, R.; Rana, M.N.; Islam, M.E.; Parvin, M.S.; Hossain, M.A. Sedative, membrane stability, cytotoxic and antioxidant properties of methanol extract of leaves of Protium serratum Wall. Asian Pac. J. Trop. Dis., 2014, 4(2), S928-S933.
[http://dx.doi.org/10.1016/S2222-1808(14)60760-X]
[21]
PPMC.ORG. Aromatic and spice medicinal plants., 2015. https://www.ppmac.org/content/amescla
[22]
Biodiversity4all. Biodiversity Association for All. 2019. Available from: https://www.biodiversity4all.org/photos/31615929
[23]
Barbosa, K.B.F.; Costa, N.M.B.; Alfenas, R.C.G.; De Paula, S.O.; Minim, V.P.R.; Bressan, J. Oxidative stress: Concept, implications and modulatory factors. Rev. Nutr., 2010, 23(4), 629-643.
[http://dx.doi.org/10.1590/S1415-52732010000400013]
[24]
Phaniendra, A.; Jestadi, D.B.; Periyasamy, L. Free radicals: Properties, sources, targets, and their implication in various diseases. Indian J. Clin. Biochem., 2015, 30(1), 11-26.
[http://dx.doi.org/10.1007/s12291-014-0446-0] [PMID: 25646037]
[25]
Durairaj, V.; Hoda, M.; Shakya, G.; Babu, S.P.P.; Rajagopalan, R. Phytochemical screening and analysis of antioxidant properties of aqueous extract of wheatgrass. Asian Pac. J. Trop. Med., 2014, 7, S398-S404.
[http://dx.doi.org/10.1016/S1995-7645(14)60265-0] [PMID: 25312157]
[26]
Bender, D.A. Free Radicals & Antioxidant Nutrients. In: Harper’s Illustrated Biochemistry, 31 Ed. McGraw Hill; 2018; Rodwell, V.W.; Bender, D.A.; Botham, K.M.; Kennelly, P.J.; Weil, P., Eds.; Accessed Julho, 2022. https://accesspharmacy.mhmedical.com/content.aspx?bookid=2386&sectionid=187836421
[27]
Vanzin, S.B.; Camargo, C.P. Understanding cosmeceuticals: Diagnoses and treatments; São Paulo: Santos, 2008, p. 397.
[28]
Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative stress: Harms and benefits for human health. Oxid. Med. Cell. Longev., 2017, 2017, 1-13.
[http://dx.doi.org/10.1155/2017/8416763] [PMID: 28819546]
[29]
Trevisan, P.; Silva Ávila, D. Induction of photoaging by ultraviolet radiation in Caenorhabditis elegans in a DAF-16 dependent pathway. Age, 2021, 13(3) https://periodicos.unipampa.edu.br/index.php/SIEPE/article/view/110652
[30]
Maynard, S.; Schurman, S.H.; Harboe, C.; de Souza-Pinto, N.C.; Bohr, V.A. Base excision repair of oxidative DNA damage and association with cancer and aging. Carcinogenesis, 2008, 30(1), 2-10.
[http://dx.doi.org/10.1093/carcin/bgn250] [PMID: 18978338]
[31]
Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; Abete, P. Oxidative stress, aging, and diseases. Clin. Interv. Aging, 2018, 13(13), 757-772.
[http://dx.doi.org/10.2147/CIA.S158513] [PMID: 29731617]
[32]
Sies, H. On the history of oxidative stress: Concept and some aspects of current development. Curr. Opin. Toxicol., 2018, 7, 122-126.
[http://dx.doi.org/10.1016/j.cotox.2018.01.002]
[33]
Singh, A.; Kukreti, R.; Saso, L.; Kukreti, S. Oxidative stress: A key modulator in neurodegenerative diseases. Molecules, 2019, 24(8), 1583.
[http://dx.doi.org/10.3390/molecules24081583] [PMID: 31013638]
[34]
Huang, D.; Ou, B.; Prior, R.L. The chemistry behind antioxidant capacity assays. J. Agric. Food Chem., 2005, 53(6), 1841-1856.
[http://dx.doi.org/10.1021/jf030723c] [PMID: 15769103]
[35]
Vieira, L.A.S.L.; Souza, R.B.A. Action of antioxidants in combating free radicals and preventing skin aging. id on line. Rev. Mult. Psic., 2019, 13(48), 408-418.
[http://dx.doi.org/10.14295/idonline.v13i48.2210]
[36]
Salehi, B.; Martorell, M.; Arbiser, J.; Sureda, A.; Martins, N.; Maurya, P.; Sharifi-Rad, M.; Kumar, P.; Sharifi-Rad, J. Antioxidants: Positive or negative actors? Biomolecules, 2018, 8(4), 124.
[http://dx.doi.org/10.3390/biom8040124] [PMID: 30366441]
[37]
Gulcin, İ. Antioxidants and antioxidant methods: An updated overview. Arch. Toxicol., 2020, 94(3), 651-715.
[http://dx.doi.org/10.1007/s00204-020-02689-3] [PMID: 32180036]
[38]
Kuriakose, G.C.; Kurup, M.G. Antioxidant and hepatoprotective activity of Aphanizomenon flos-aquae Linn against paracetamol intoxication in rats. Indian J. Exp. Biol., 2010, 48(11), 1123-1130.
[PMID: 21117453]
[39]
Simões, C.M.O.; Schenkel, E.P.; Mello, J.C.P.D.; Mentz, L.A.; Petrovick, P.R. Pharmacognosy. Artemed; August 1999, 6 Ed. Publisher: Editors of the UFSC and UFRGS. Available in: https://www.researchgate.net/publication/315772641_Farmacognosia_da_Planta_ao_Medicamento.
[40]
Blasco, A.J.; Rogerio, M.C.; González, M.C.; Escarpa, A. “Electrochemical Index” as a screening method to determine “total polyphenolics” in foods: A proposal. Anal. Chim. Acta, 2005, 539(1-2), 237-244.
[http://dx.doi.org/10.1016/j.aca.2005.02.056]
[41]
Oliveira, L.F.D.; Maior, J.F.A.S.; Dresch, R.R. Pure pharmacognosy. Porto Alegre. SAGAH. Grupo A., 2018. Available from: https://sagah.maisaedu.com.br/
[42]
Tsuchiya, H. Membrane interactions of phytochemicals as their molecular mechanism applicable to the discovery of drug leads from plants. Molecules, 2015, 20(10), 18923-18966.
[http://dx.doi.org/10.3390/molecules201018923] [PMID: 26501254]
[43]
Agati, G.; Brunetti, C.; Di Ferdinando, M.; Ferrini, F.; Pollastri, S.; Tattini, M. Functional roles of flavonoids in photoprotection: New evidence, lessons from the past. Plant Physiol. Biochem., 2013, 72, 35-45.
[http://dx.doi.org/10.1016/j.plaphy.2013.03.014] [PMID: 23583204]
[44]
Rosa, L.A.; Moreno-Escamilla, J.O.; Rodrigo-García, J.; AlvarezParrilla, E. Phenolic Compounds; Postharvest Biol; Technol. of Fruits and Vegetables, 2019, pp. 253-271.
[http://dx.doi.org/10.1016/B978-0-12-813278-4.00012-9]
[45]
Balasundram, N.; Sundram, K.; Samman, S. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chem., 2006, 99(1), 191-203.
[http://dx.doi.org/10.1016/j.foodchem.2005.07.042]
[46]
Lôbo, G.B.S.; Silvac, A.V.; Menezes, G.B.L. Dietary polyphenols and endothelial function in undiagnosed adults: A systematic review of randomized trials. Braz. J. Dev., 2020, 6, 11.
[http://dx.doi.org/10.34117/bjdv6n11-085]
[47]
Badshah, S.L.; Faisal, S.; Muhammad, A.; Poulson, B.G.; Emwas, A.H.; Jaremko, M. Antiviral activities of flavonoids. Biomed. Pharmacother., 2021, 140, 111596.
[http://dx.doi.org/10.1016/j.biopha.2021.111596]
[48]
Parham, S.; Kharazi, A.Z.; Bakhsheshi-Rad, H.R.; Nur, H.; Ismail, A.F.; Sharif, S.; RamaKrishna, S.; Berto, F. Antioxidant, antimicrobial and antiviral properties of herbal materials. Antioxidants, 2020, 9(12), 1309.
[http://dx.doi.org/10.3390/antiox9121309] [PMID: 33371338]
[49]
Pimentel, C.V.M.B.; Francki, V.M.; Gollücke, A.P.B. Functional foods: Introduction to the main bioactive substances in foods; Varela: São Paulo, 2005.
[50]
Pei, R.; Liu, X.; Bolling, B. Flavonoids and gut health. Curr. Opin. Biotechnol., 2020, 61, 153-159.
[http://dx.doi.org/10.1016/j.copbio.2019.12.018] [PMID: 31954357]
[51]
Devi, S.; Kumar, V.; Singh, S.K.; Dubey, A.K.; Kim, J.J. Flavonoids: Potential candidates for the treatment of neurodegenerative disorders. Biomedicines, 2021, 9(2), 99.
[http://dx.doi.org/10.3390/biomedicines9020099] [PMID: 33498503]
[52]
Lalani, S.; Poh, C.L. Flavonoids as antiviral agents for enterovirus A71 (EV-A71). Viruses, 2020, 12(2), 184.
[http://dx.doi.org/10.3390/v12020184]
[53]
Russo, M.; Moccia, S.; Spagnuolo, C.; Tedesco, I.; Russo, G.L. Roles of flavonoids against coronavirus infection. Chem. Biol. Interact., 2020, 328(328), 109211.
[http://dx.doi.org/10.1016/j.cbi.2020.109211] [PMID: 32735799]
[54]
Lima, R.A. The importance of taxonomy, phytochemistry and bioprospection of vegetable species aiming at combating and facing covid-19. SAJEBTT, 2020, 7(1) Available in: https://periodicos.ufac.br/index.php/SAJEBTT/article/view/3721 Accessed in 04 March 2022
[55]
Freitas, S.T.F.; Benvindo-Souza, M.; Teodoro, L.O.; Goulart, M.M.P.; Pinto, T.F.E.; Azevedo, M.O.; Valentim, A.M.; Pereira, P.S.; Santos, L.R.S.; Dyszy, F.H. Taxonomic aspects of bioprospecting in Brazil: Scientific trend. Oecol. Aust., 2020, 24(4), 770-780.
[http://dx.doi.org/10.4257/oeco.2020.2404.02]
[56]
Oprean, C.; Ivan, A.; Bojin, F.; Cristea, M.; Soica, C.; Drăghia, L.; Caunii, A.; Paunescu, V.; Tatu, C. Selective in vitro anti-melanoma activity of ursolic and oleanolic acids. Toxicol. Mech. Methods, 2018, 28(2), 148-156.
[http://dx.doi.org/10.1080/15376516.2017.1373881] [PMID: 28868958]
[57]
Neuman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod., 2012, 75(3), 311-335.
[http://dx.doi.org/10.1021/np200906s] [PMID: 22316239]
[58]
Rodrigues, A.C.B.C.; Oliveira, F.P.; Dias, R.B.; Sales, C.B.S.; Rocha, C.A.G.; Soares, M.B.P.; Costa, E.V.; Silva, F.M.A.; Rocha, W.C.; Koolen, H.H.F.; Bezerra, D.P. In vitro and in vivo antileukemia activity of the stem bark of Salacia impressifolia (Miers) A. C. Smith (Celastraceae). J. Ethnopharmacol., 2019, 231, 516-524.
[http://dx.doi.org/10.1016/j.jep.2018.11.008] [PMID: 30445109]
[59]
Brito, A.F.; Ribeiro, M.; Abrantes, A.M.; Gonçalves, A.C.; Sarmento-Ribeiro, A.B.; Tralhão, J.G.; Botelho, M.F. Quercetin’s anticancer action in hepatocellular carcinoma: The role of GLUT-1. Portuguese J. Surg., 2013, 2, 23-30. https://revista.spcir.com/index.php/spcir/article/view/310
[60]
Pereira, W.L.; Oliveira, T.T.; Kanashiro, M.; Costa, M.R. Antiproliferative action flavonoid morin and olive leaf extract (Oleaeuropaea L.) against the H460 cell line. Braz. J. Med. Plants, 2015, 17(1), 798-806.
[http://dx.doi.org/10.1590/1983-084X/14_020]
[61]
Mousa, A.M.; El-Sammad, N.M.; Hassan, S.K.; Madboli, A.E.N.A.; Hashim, A.N.; Moustafa, E.S.; Bakry, S.M.; Elsayed, E.A. Antiulcerogenic effect of Cuphea ignea extract against ethanol-induced gastric ulcer in rats. BMC Complement. Altern. Med., 2019, 19(1), 345.
[http://dx.doi.org/10.1186/s12906-019-2760-9] [PMID: 31791313]
[62]
Cappello, A.R.; Dolce, V.; Iacopetta, D.; Martello, M.; Fiorillo, M.; Curcio, R.; Muto, L.; Dhanyalayam, D. Bergamot (Citrus bergamia Risso) flavonoids and their potential benefits in human hyperlipidemia and atherosclerosis: An overview. Mini Rev. Med. Chem., 2016, 16(8), 619-629.
[http://dx.doi.org/10.2174/1389557515666150709110222] [PMID: 26156545]
[63]
Oliveira, F.A.; Costa, C.L.S.; Chaves, M.H.; Almeida, F.R.C.; Cavalcante, Í.J.M.; Lima, A.F.; Lima, R.C.P., Jr; Silva, R.M.; Campos, A.R.; Santos, F.A.; Rao, V.S.N. Attenuation of capsaicininduced acute and visceral nociceptive pain by α- and β-amyrin, a triterpene mixture isolated from Protium heptaphyllum resin in mice. Life Sci., 2005, 77(23), 2942-2952.
[http://dx.doi.org/10.1016/j.lfs.2005.05.031] [PMID: 15964027]
[64]
Nogueira, A.O.; Oliveira, Y.I.S.; Adjafre, B.L.; de Moraes, M.E.A.; Aragão, G.F. Pharmacological effects of the isomeric mixture of alpha and beta amyrin from Protium heptaphyllum: A literature review. Fundam. Clin. Pharmacol., 2019, 33(1), 4-12.
[http://dx.doi.org/10.1111/fcp.12402] [PMID: 30003594]
[65]
Citó, A.G.M.L.; Costa, F.B.; Lopes, J.A.D.; Oliveira, V.M.M.; Chaves, M.H. Identification of volatile constituents of fruits and leaves of Protium heptaphyllum Aubl (March). Braz. J. Med. Plants, 2006, 8(4), 4-7.
[66]
Domene, V.D.; Matos, P.P.; Salis, S.M. Growth of Protium heptaphyllum in the Pantanal of Nhecolândia, Mato Grosso do Sul. 5th Symposium on Socio-Economic Natural Resources of the Wetland. 2010. From 9 to 12 November 2010. 2010. Available from: https://www.alice.cnptia.embrapa.br/handle/doc/869564?locale=en Accessed on June 10, 2022.
[67]
Costa, T.O.G.; Almeida, R.A.; Koolen, H.H.F.; Silva, F.M.A.; Pinto, A.C. Constituintes químicos do caule de Protium hebetatum (Burseraceae). Acta Amazônia, 2012, 42(4), 557. https://www.scielo.br/j/aa/a/YGfqWBJyWfrtJNbXFLZ6YLF/?format=pdf&lang=pt
[68]
Bandeira, P.N.; Fonseca, A.M.; Costa, S.M.O.; Lins, M.U.D.S.; Pessoa, O.D.L.; Monte, F.J.Q.; Nogueira, N.A.P.; Lemos, T.L.G. Anti-bacterial and antioxidant activities of the essential oil of resin of Protium heptaphyllum. Nat. Prod. Commun., 2006, 1(2), 1934578X0600100.
[http://dx.doi.org/10.1177/1934578X0600100207]
[69]
Almeida, E.X.; Conserva, L.M.; Lyra Lemos, R.P. Coumarins, coumarinolignoids and terpenes from Protium heptaphyllum. Biochem. Syst. Ecol., 2002, 30(7), 685-687.
[http://dx.doi.org/10.1016/S0305-1978(01)00130-2]
[70]
Albino, R.C.; Oliveira, P.C.; Prosdocimi, F.; da Silva, O.F.; Bizzo, H.R.; Gama, P.E.; Sakuragui, C.M.; Furtado, C.; de Oliveira, D.R. Oxidation of monoterpenes in Protium heptaphyllum oleoresins. Phytochemistry, 2017, 136, 141-146.
[http://dx.doi.org/10.1016/j.phytochem.2017.01.013] [PMID: 28143669]
[71]
Tafurt-García, G.; Muñoz-Acevedo, A. Metabolitos volátiles presentes em Protium heptaphyllum (Aubl.) March. colectado en Tame (Arauca-Colombia). Bol. Latinoam. Caribe Plantas Med. Aromat., 2012, 11(3), 223-232. https://pesquisa.bvsalud.org/portal/resource/pt/lil-647661
[72]
Holanda Pinto, S.A.; Pinto, L.M.S.; Cunha, G.M.A.; Chaves, M.H.; Santos, F.A.; Rao, V.S. Anti-inflammatory effect of α, β-Amyrin, a pentacyclic triterpene from Protium heptaphyllum in rat model of acute periodontitis. Inflammopharmacol, 2008, 116, 48-52.
[http://dx.doi.org/10.1007/s10787-007-1609-x]
[73]
Aragão, G.F.; Carneiro, L.M.V.; Junior, A.P.F.; Vieira, L.C.; Bandeira, P.N.; Lemos, T.L.G.; Viana, G.S.B. A possible mechanism for anxiolytic and antidepressant effects of alpha- and betaamyrin from Protium heptaphyllum (Aubl.) March. Pharmacol. Biochem. Behav., 2006, 85(4), 827-834.
[http://dx.doi.org/10.1016/j.pbb.2006.11.019] [PMID: 17207523]
[74]
Carvalho, K.M.; Marinho Filho, J.D.T.S.; Melo, A.J.; Araújo, J.S.; Quetz, M.P.; Cunha, K.M.; Melo, A.A.; Silva, A.R.; Tomé, A.; Havt, S.G.; Fonseca, G.A.; Brito, M.H.; Chaves, V.S.; Rao, F.A. The resin from Protium heptaphyllum prevents high-fat dietinduced obesity in mice: Scientific evidence and potential mechanisms. Evid. Based Complement. Alternat. Med., 2015, 53(3), 407-413.
[http://dx.doi.org/10.1155/2015/106157] [PMID: 25709707]
[75]
Oliveira, F.; Vieira-Júnior, G.M.; Chaves, M.H.; Almeida, F.R.; Florêncio, M.G.; Lima, R.C., Jr; Silva, R.M.; Santos, F.A.; Rao, V.S. Gastroprotective and anti-inflammatory effects of resin from Protium heptaphyllum in mice and rats. Pharmacol. Res., 2004, 49(2), 105-111.
[http://dx.doi.org/10.1016/j.phrs.2003.09.001] [PMID: 14643690]
[76]
Cabral, R.S.C.; Alves, C.C.F.; Batista, H.R.F.; Sousa, W.C.; Abrahão, I.S.; Crotti, A.E.M.; Santiago, M.B.; Martins, C.H.G.; Miranda, M.L.D. Chemical composition of essential oils from different parts of Protium heptaphyllum (Aubl.) Marchand and their in vitro antibacterial activity. Nat. Prod. Res., 2020, 34(16), 2378-2383.
[http://dx.doi.org/10.1080/14786419.2018.1536659] [PMID: 30499330]
[77]
Patias, N.S.; Gindri Sinhorin, V.D.; de Moura, F.R.; da Cunha, A.P.S.; da Silva Lima, R.R.; da Costa, T.B.; da Costa, R.J.; Cavalheiro, L.; de Campos Bicudo, R.; Sinhorin, A.P. Identification of Flavonoids by LC-MS/MS in leaves extract from Protium heptaphyllum (Aubl.) March and antioxidant activity in mice. Nat. Prod. J., 2021, 11(5), 715-727.
[http://dx.doi.org/10.2174/2210315510999200817165311]
[78]
Aragão, G.F.; Pinheiro, M.C.C.; Bandeira, P.N.; Lemos, T.L.G.; Viana, G.S.B. Analgesic and anti-inflammatory activities of the isomeric mixture of alpha- and beta-amyrin from Protium heptaphyllum (Aubl.) March. J. Herb. Pharmacother., 2008, 7(2), 31-47.
[http://dx.doi.org/10.1080/J157v07n02_03] [PMID: 18285306]
[79]
Aragão, G.F.; Carneiro, L.M.V. rota-Junior, A.P.; Bandeira, P.N.; Lemos, T.L.G.; Viana, G.S.B. Alterations in brain amino acid metabolism and inhibitory effects on PKC are possibly correlated with anticonvulsant effects of the isomeric mixture of α- and β-amyrin from Protium heptaphyllum. Pharm. Biol., 2015, 53(3), 407-413.
[http://dx.doi.org/10.3109/13880209.2014.923001] [PMID: 25471298]
[80]
Carvalho, K.M. Amyrins from Protium heptaphyllum reduce high-fat diet-induced obesity in mice via modulation of enzymatic, hormonal and inflammatory responses. Planta Medica, 2016, 83(3-4), 285-291.
[http://dx.doi.org/10.1055/s-0042-114222]
[81]
Santos, F.A.; Frota, J.T.; Arruda, B.R.; de Melo, T.S.; da Silva, A.A.C.A.; Brito, G.A.C.; Chaves, M.H.; Rao, V.S. Antihyperglycemic and hypolipidemic effects of α, β-amyrin, a triterpenoid mixture from Protium heptaphyllum in mice. Lipids Health Dis., 2012, 11(1), 98.
[http://dx.doi.org/10.1186/1476-511X-11-98] [PMID: 22867128]
[82]
Melo, C.M.; Morais, T.C.; Tomé, A.R.; Brito, G.A.C.; Chaves, M.H.; Rao, V.S.; Santos, F.A. Anti-inflammatory effect of α,β-amyrin, a triterpene from Protium heptaphyllum, on cerulein-induced acute pancreatitis in mice. Inflamm. Res., 2011, 60(7), 673-681.
[http://dx.doi.org/10.1007/s00011-011-0321-x] [PMID: 21400110]
[83]
Araújo, D.A.O.V.; Takayama, C.; de-Faria, F.M.; Socca, E.A.R.; Dunder, R.J.; Manzo, L.P.; Luiz-Ferreira, A.; Souza-Brito, A.R.M. Gastroprotective effects of essential oil from Protium heptaphyllum on experimental gastric ulcer models in rats. Rev. Bras. Farmacogn., 2011, 21(4), 721-729.
[http://dx.doi.org/10.1590/S0102-695X2011005000117]
[84]
Mannino, G.; Iovino, P.; Lauria, A.; Genova, T.; Asteggiano, A.; Notarbartolo, M.; Porcu, A.; Serio, G.; Chinigò, G.; Occhipinti, A.; Capuzzo, A.; Medana, C.; Munaron, L.; Gentile, C. Bioactive triterpenes of Protium heptaphyllum gum resin extract display cholesterol-lowering potential. Int. J. Mol. Sci., 2021, 22(5), 2664.
[http://dx.doi.org/10.3390/ijms22052664] [PMID: 33800828]
[85]
Mendes, J.L.; de Araújo, T.F.; Geraldo de Carvalho, M.; Aragão Catunda Júnior, F.E.; Albuquerque Costa, R. Chemical composition and mechanism of vibriocidal action of essential oil from resin of Protium heptaphyllum. Scientific World Journal, 2019, 2019, 1-6.
[http://dx.doi.org/10.1155/2019/9563213] [PMID: 31780877]
[86]
Mobin, M.; De Lima, S.G.; Almeida, L.T.G.; Takahashi, J.P.; Teles, J.B.; Szeszs, M.W.; Martins, M.A.; Carvalho, A.A.; Melhem, M.S.C. MDGC-MS analysis of essential oils from Protium heptaphyllum (Aubl.) and their antifungal activity against Candida specie. Rev. Bras. Plantas Med., 2016, 18(2), 531-538.
[http://dx.doi.org/10.1590/1983-084X/15_110]
[87]
Faustino, C.G.; Medeiros, F.A.; Galardo, A.K.R.; Rodrigues, A.B.L.; Martins, R.L.; Lima, Y.M.S.; Tavares, J.F.; Medeiros, M.A.A.; Cruz, J.S.; Almeida, S.S.M.S. Larvicide activity on aedesaegypti of essential oil nanoemulsion from the Protium heptaphyllum resin. Molecules, 2020, 25(22), 5333.
[http://dx.doi.org/10.3390/molecules25225333]
[88]
Endringer, D.C.; de Lima, E.M.; Cazelli, D.S.P.; Pinto, F.E.; Mazuco, R.A.; Kalil, I.C.; Lenz, D.; Scherer, R.; de Andrade, T.U. Essential oil from the resin of Protium heptaphyllum: Chemical composition, cytotoxicity, antimicrobial activity, and antimutagenicity. Pharmacogn. Mag., 2016, 12(45)(Suppl. 1), 42.
[http://dx.doi.org/10.4103/0973-1296.176113] [PMID: 27041857]
[89]
Bernadi, W.A.; Zanotelli, J.C.; Lima, E.M.; Souza, T.D.; Edringer, D.C.; Souza, V.R.C. Effects of topical application of essential oil from resin of almescar Protium heptaphyllum (Aubl.) Marchand in experimentally induced skin wounds in rats. Rev. Bras. Cienc. Vet., 2015, 22(1), 10-15.
[http://dx.doi.org/10.4322/rbcv.2015.311]
[90]
Mobin, M.; de Lima, S.G.; Almeida, L.T.G.; Silva Filho, J.C.; Rocha, M.S.; Oliveira, A.P.; Mendes, M.B.; Carvalho, F.A.A.; Melhem, M.S.C.; Costa, J.G.M. Gas chromatography-triple quadrupole mass spectrometry analysis and vasorelaxant effect of essential oil from Protium heptaphyllum (aubl.) March. Bio. Med. Res. Int., 2017, 2017, 1-6.
[http://dx.doi.org/10.1155/2017/1928171] [PMID: 28951867]
[91]
Oliveira, F.A.; Chaves, M.H.; Almeida, F.R.C.; Lima, R.C.P., Jr; Silva, R.M.; Maia, J.L.; Brito, G.A.A.C.; Santos, F.A.; Rao, V.S. Protective effect of α- and β-amyrin, a triterpene mixture from Protium heptaphyllum (Aubl.) March. trunk wood resin, against acetaminophen-induced liver injury in mice. J. Ethnopharmacol., 2005, 98(1-2), 103-108.
[http://dx.doi.org/10.1016/j.jep.2005.01.036] [PMID: 15763370]
[92]
Pontes, W.J.T.; Oliveira, J.C.G.; Câmara, C.A.G.; Lopes, A.C.H.R.; Godim Júnior, M.G.C.; Oliveira, J.V.; Barros, R.; Schwartz, M.O.E. Chemical composition and acaricidal activity of the leaf and fruit essential oils of Protium heptaphyllum (Aubl.) Marchand (Burseraceae). Acta Amazonica, 2013, 37(1)
[http://dx.doi.org/10.1590/S0044-59672007000100012]
[93]
Wojtunik-Kulesza, K.; Oniszczuk, A.; Oniszczuk, T.; Combrzyński, M.; Nowakowska, D.; Matwijczuk, A. Influence of in vitro digestion on composition, bioaccessibility and antioxidant activity of food polyphenols-A non-systematic review. Nutrients, 2020, 12(5), 1401.
[http://dx.doi.org/10.3390/nu12051401] [PMID: 32414132]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy