Review Article

新型合成酪氨酸酶抑制剂:系统专利综述(2012年至今)

卷 31, 期 3, 2024

发表于: 21 March, 2023

页: [308 - 335] 页: 28

弟呕挨: 10.2174/0929867330666230203111437

价格: $65

Open Access Journals Promotions 2
摘要

酪氨酸是一种负责黑色素生成的酶。它在身体不同部位的异常积累被称为色素沉着过度。酪氨酸酶抑制剂已被用作治疗此类美容和医疗问题的主要方法之一。本综述旨在通过研究最近的专利申请(2012-2022 年)来讨论此类抑制剂的专利进展,重点关注合成抑制剂。我们利用欧洲专利局的 Espacenet 数据库进行了筛选,从中选出了 15 项发明并进行了充分研究。中国的专利申请较多,全部集中在合成方法上,其中大多数申请了至少两项附加申请,如水果和蔬菜的抗褐变剂、生物农药以及治疗帕金森病或黑色素瘤等疾病的药物。研究人员采用的策略侧重于对先前文献的审查,这些文献以已发现的具有良好抑制活性的结构类型为导向;该研究还检查了它们的反应机制的各个方面以及有关构效关系的信息。对于某些抑制剂组,例如苯甲醛和蒽醌衍生物,数据是有意义且广泛的。相比之下,由于研究工作有限,精氨酰和肌钙蛋白化合物很难分析。

关键词: 酪氨酸酶,黑色素,黑色素生成,色素沉着过度,合成抑制剂,酪氨酸酶。

[1]
Kim, Y.J.; Uyama, H. Tyrosinase inhibitors from natural and synthetic sources: Structure, inhibition mechanism and perspective for the future. Cell. Mol. Life Sci., 2005, 62(15), 1707-1723.
[http://dx.doi.org/10.1007/s00018-005-5054-y] [PMID: 15968468]
[2]
Chang, T.S. An updated review of tyrosinase inhibitors. Int. J. Mol. Sci., 2009, 10(6), 2440-2475.
[http://dx.doi.org/10.3390/ijms10062440] [PMID: 19582213]
[3]
Schallreuter, K.U.; Kothari, S.; Chavan, B.; Spencer, J.D. Regulation of melanogenesis - controversies and new concepts. Exp. Dermatol., 2008, 17(5), 395-404.
[http://dx.doi.org/10.1111/j.1600-0625.2007.00675.x] [PMID: 18177348]
[4]
Sánchez-Ferrer, Á.; Rodríguez-López, N.J.; García-Cánovas, F.; García-Carmona, F. Tyrosinase: A comprehensive review of its mechanism. Biochim. Biophys. Acta Protein Struct. Mol. Enzymol., 1995, 1247(1), 1-11.
[http://dx.doi.org/10.1016/0167-4838(94)00204-T]
[5]
Zeng, H.; Sun, D.; Chu, S.; Zhang, J.; Hu, G.; Yang, R. Inhibitory effects of four anthraquinones on tyrosinase activity: Insight from spectroscopic analysis and molecular docking. Int. J. Biol. Macromol., 2020, 160, 153-163.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.05.193] [PMID: 32464200]
[6]
Knight, H. Patent strategy for researchers and research managers, (3rd ed.); Willy: New Jersey, USA, 2013.
[7]
Peters, P. Mind the gap: Spanning the divide between patents and journal articles. 2019. Available from: https://www.cas.org/resources/blog/mind-gap-spanning-divide-between-patents-and-journal-articles [accessed Aug 12, 2022].
[8]
Chen, C.; Lin, L.; Yang, W.; Bordon, J.; Wang, D.H. An updated organic classification of tyrosinase inhibitors on melanin biosynthesis. Curr. Org. Chem., 2015, 19(1), 4-18.
[http://dx.doi.org/10.2174/1385272819666141107224806]
[9]
Chen, L.H.; Hu, Y.H.; Song, W.; Song, K.K.; Liu, X.; Jia, Y.L.; Zhuang, J.X.; Chen, Q.X. Synthesis and antityrosinase mechanism of benzaldehyde thiosemicarbazones: Novel tyrosinase inhibitors. J. Agric. Food Chem., 2012, 60(6), 1542-1547.
[http://dx.doi.org/10.1021/jf204420x] [PMID: 22250887]
[10]
Lee, S.Y.; Baek, N.; Nam, T. Natural, semisynthetic and synthetic tyrosinase inhibitors. J. Enzyme Inhib. Med. Chem., 2016, 31(1), 1-13.
[http://dx.doi.org/10.3109/14756366.2015.1004058] [PMID: 25683082]
[11]
Kubo, I.; Chen, Q.X.; Nihei, K. Molecular design of antibrowning agents: antioxidative tyrosinase inhibitors. Food Chem., 2003, 81(2), 241-247.
[http://dx.doi.org/10.1016/S0308-8146(02)00418-1]
[12]
Yi, W.; Wu, X.; Cao, R.; Song, H.; Ma, L. Biological evaluations of novel vitamin C esters as mushroom tyrosinase inhibitors and antioxidants. Food Chem., 2009, 117(3), 381-386.
[http://dx.doi.org/10.1016/j.foodchem.2009.03.108]
[13]
Ullah, S.; Son, S.; Yun, H.; Kim, D.; Chun, P.; Moon, H. Tyrosinase inhibitors: A patent review (2011-2015). Expert Opin. Ther. Pat., 2016, 26(3), 347-362.
[http://dx.doi.org/10.1517/13543776.2016.1146253] [PMID: 26815044]
[14]
Peng, Z.; Wang, G.; Zeng, Q.H.; Li, Y.; Liu, H.; Wang, J.J.; Zhao, Y. A systematic review of synthetic tyrosinase inhibitors and their structure-activity relationship. Crit. Rev. Food Sci. Nutr., 2022, 62(15), 4053-4094.
[http://dx.doi.org/10.1080/10408398.2021.1871724] [PMID: 33459057]
[15]
Tokudome, Y.; Hoshi, T.; Mori, S.; Hijikuro, I. Synthesis of resorcinol derivatives and their effects on melanin production. Cosmetics, 2020, 7(3), 55.
[http://dx.doi.org/10.3390/cosmetics7030055]
[16]
Khatib, S.; Nerya, O.; Musa, R.; Tamir, S.; Peter, T.; Vaya, J. Enhanced substituted resorcinol hydrophobicity augments tyrosinase inhibition potency. J. Med. Chem., 2007, 50(11), 2676-2681.
[http://dx.doi.org/10.1021/jm061361d] [PMID: 17447749]
[17]
Shimizu, K.; Kondo, R.; Sakai, K.; Takeda, N.; Nagahata, T.; Oniki, T. Novel vitamin E derivative with 4-substituted resorcinol moiety has both antioxidant and tyrosinase inhibitory properties. Lipids, 2001, 36(12), 1321-1326.
[http://dx.doi.org/10.1007/s11745-001-0847-9] [PMID: 11834083]
[18]
Ha, K.S.; Jo, S.H.; Kang, B.H.; Apostolidis, E.; Lee, M.S.; Jang, H.D.; Kwon, Y.I. In vitro and in vivo antihyperglycemic effect of 2 amadori rearrangement compounds, arginyl-fructose and arginyl-fructosyl-glucose. J. Food Sci., 2011, 76(8), H188-H193.
[http://dx.doi.org/10.1111/j.1750-3841.2011.02361.x] [PMID: 22417590]
[19]
Zhao, J.; Zhao, J. Plant troponoids: Chemistry, biological activity, and biosynthesis. Curr. Med. Chem., 2007, 14(24), 2597-2621.
[http://dx.doi.org/10.2174/092986707782023253] [PMID: 17979713]
[20]
Pereira, D.M.; Valentão, P.; Andrade, P.B. Marine natural pigments: Chemistry, distribution and analysis. Dyes Pigments, 2014, 111, 124-134.
[http://dx.doi.org/10.1016/j.dyepig.2014.06.011]
[21]
Phutim-Mangkhalthon, A.; Teerakapong, A.; Tippayawat, P.; Morales, N.P.; Morkmued, S.; Puasiri, S.; Priprem, A.; Damrongrungruang, T. Anti-inflammatory effect of photodynamic therapy using guaiazulene and red lasers on peripheral blood mononuclear cells. Photodiagn. Photodyn. Ther., 2020, 31, 101747.
[http://dx.doi.org/10.1016/j.pdpdt.2020.101747] [PMID: 32200021]
[22]
Zolghadri, S.; Bahrami, A.; Hassan Khan, M.T.; Munoz-Munoz, J.; Garcia-Molina, F.; Garcia-Canovas, F.; Saboury, A.A. A comprehensive review on tyrosinase inhibitors. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 279-309.
[http://dx.doi.org/10.1080/14756366.2018.1545767] [PMID: 30734608]
[23]
Yaari, Z.; Cheung, J.M.; Baker, H.A.; Frederiksen, R.S.; Jena, P.V.; Horoszko, C.P.; Jiao, F.; Scheuring, S.; Luo, M.; Heller, D.A. Nanoreporter of an enzymatic suicide inactivation pathway. Nano Lett., 2020, 20(11), 7819-7827.
[http://dx.doi.org/10.1021/acs.nanolett.0c01858] [PMID: 33119310]
[24]
Obaid, R.J.; Mughal, E.U.; Naeem, N.; Sadiq, A.; Alsantali, R.I.; Jassas, R.S.; Moussa, Z.; Ahmed, S.A. Natural and synthetic flavonoid derivatives as new potential tyrosinase inhibitors: A systematic review. RSC Advances, 2021, 11(36), 22159-22198.
[http://dx.doi.org/10.1039/D1RA03196A] [PMID: 35480807]
[25]
Tseng, T.S.; Tsai, K.C.; Chen, W.C.; Wang, Y.T.; Lee, Y.C.; Lu, C.K.; Don, M.J.; Chang, C.Y.; Lee, C.H.; Lin, H.H.; Hsu, H.J.; Hsiao, N.W. Discovery of potent cysteine-containing dipeptide inhibitors against tyrosinase: A comprehensive investigation of 20 × 20 dipeptides in inhibiting dopachrome formation. J. Agric. Food Chem., 2015, 63(27), 6181-6188.
[http://dx.doi.org/10.1021/acs.jafc.5b01026] [PMID: 26083974]
[26]
García-Molina, F.; Muñoz, J.L.; Varón, R.; Rodríguez-López, J.N.; García-Cánovas, F.; Tudela, J. A review on spectrophotometric methods for measuring the monophenolase and diphenolase activities of tyrosinase. J. Agric. Food Chem., 2007, 55(24), 9739-9749.
[http://dx.doi.org/10.1021/jf0712301] [PMID: 17958393]
[27]
Bassiri, E. Molecular biology of life laboratory, Available from: https://www.sas.upenn.edu/labmanuals/biol123/Table _of_Contents_files/8b-EnzymeKinetics-Spec.pdf [accessed Aug 12, 2022].
[28]
Raynie, D. The vital role of blanks in sample preparation. LC GC N. Am., 2018, 36(8), 494-497.
[29]
Mukherjee, P. Quality control and evaluation of herbal drugs. Evaluating Natural Products and Traditional Medicine, (1st Ed.); Elsevier: Amsterdam, 2019, pp. 515-537.
[http://dx.doi.org/10.1016/B978-0-12-813374-3.00013-2]
[30]
Caldwell, G.W.; Yan, Z.; Lang, W.; Masucci, J.A. The IC(50) concept revisited. Curr. Top. Med. Chem., 2012, 12(11), 1282-1290.
[http://dx.doi.org/10.2174/156802612800672844] [PMID: 22571790]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy