Generic placeholder image

Current Enzyme Inhibition

Editor-in-Chief

ISSN (Print): 1573-4080
ISSN (Online): 1875-6662

Research Article

Investigation of the Potential Antidiabetic Effect of Zygophyllum Sp. by Studying the Interaction of its Chemical Compounds with Alpha-Amylase and DPP-4 Enzymes using a Molecular Docking Approach

Author(s): Bouziane Arbi, Salim Bouchentouf* and Mohamed EL-Shazly

Volume 19, Issue 2, 2023

Published on: 20 March, 2023

Page: [100 - 108] Pages: 9

DOI: 10.2174/1573408019666230202092954

Open Access Journals Promotions 2
Abstract

Background: Diabetes type II is one of the most serious metabolic diseases in the world attracting the attention of many researchers who predict that diabetes will be one of the top major causes of disability or death in the coming few decades. To tackle this disease several classes of synthetic molecules were developed to target certain enzymes that are involved in sugar metabolism. Herbal extracts targeting diabetes have witnessed renascence in the last few decades with the introduction of highly effective herbal remedies that effectively regulate sugar levels in the blood.

Methods: In this work, we studied the interaction of molecules from the Zygophyllum sp. with the main enzymes involved in sugar metabolism (alpha-amylase and DPP-4) using Molecular Operating Environment (MOE) as a molecular docking technique. The choice of Zygophyllum sp. was based on an ethnopharmacological local survey.

Results: The obtained results showed that myristic acid gave the best score equal to -7.5471 Kcal/mol for alpha-amylase and -9.0457 Kcal/mol for DPP-4. Palmitic acid also gave a good score equal to - 7.4528 Kcal/mol with DPP-4.

Conclusion: The calculated scores of molecules from Zygophyllum sp. were better than those calculated with the known inhibitors. The results demonstrated that many molecules showed good affinity to two important enzymes involved in type II diabetes, suggesting that these molecules may possess potential hypoglycemic and antidiabetic effects. These results added further scientific evidence supporting the folk use of Zygophyllum sp. in targeting diabetes and suggested its potential as a valuable source of antidiabetic drug leads.

Keywords: Diabetes Type II, Zygophyllum plant, molecular docking, alpha-amylase, dipeptidyl peptidase IV, molecular operating environment.

Next »
Graphical Abstract
[1]
Diabetes epidemiology, genetics, pathogenesis, diagnosis, prevention, and treatment | SpringerLink. Available from: https://link.springer.com/referencework/10.1007/978-3-319-45015-5?noAccess=true#page=196
[2]
Ginter E, Simko V. Type 2 diabetes mellitus, pandemic in 21st century. Adv Exp Med Biol 2013; 771: 42-50.
[http://dx.doi.org/10.1007/978-1-4614-5441-0_6] [PMID: 23393670]
[3]
Botero D, Wolfsdorf JI. Diabetes mellitus in children and adolescents. Arch Med Res 2005; 36: 281-90.
[http://dx.doi.org/10.1016/j.arcmed.2004.12.002]
[4]
Whiting DR, Guariguata L, Weil C, Shaw J. IDF diabetes atlas: Global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract 2011; 94(3): 311-21.
[http://dx.doi.org/10.1016/j.diabres.2011.10.029] [PMID: 22079683]
[5]
Saeedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the international diabetes federation diabetes atlas, 9th edition. Diabetes Res Clin Pract 2019; 157: 107843.
[http://dx.doi.org/10.1016/j.diabres.2019.107843]
[6]
Potential enzyme as therapeutic target for diabetes, ScienceDaily. Available from: https://www.sciencedaily.com/releases/2018/01/180126095333.htm [accessed April 5, 2022].
[7]
Watanabe H, Inaba Y, Kimura K, et al. Sirt2 facilitates hepatic glucose uptake by deacetylating glucokinase regulatory protein. Nat Commun 2018; 9(1): 30.
[http://dx.doi.org/10.1038/s41467-017-02537-6] [PMID: 29296001]
[8]
Forman DT, Wiringa K. Enzyme changes in diabetes mellitus. Ann Clin Lab Sci 1973; 3(5): 374-85.
[PMID: 4361542]
[9]
Doupis J, Veves A. DPP4 Inhibitors: A new approach in diabetes treatment. Adv Ther 2008; 25(7): 627-43.
[http://dx.doi.org/10.1007/s12325-008-0076-1] [PMID: 18641927]
[10]
Röhrborn D, Wronkowitz N, Eckel J. DPP4 in diabetes. Front Immunol 2015; 6: 386.
[http://dx.doi.org/10.3389/fimmu.2015.00386] [PMID: 26284071]
[11]
Scheen AJ. DPP-4 inhibitors in the management of type 2 diabetes: A critical review of head-to-head trials. Diabetes Metab 2012; 38(2): 89-101.
[http://dx.doi.org/10.1016/j.diabet.2011.11.001] [PMID: 22197148]
[12]
Agarwal P, Ritika G. Alpha-amylase inhibition can treat diabetes mellitus. J Med Health Sci 2016; 5: 1-8.
[13]
Bashary R, Vyas M, Nayak SK, et al. An insight of alpha-amylase inhibitors as a valuable tool in the management of type 2 diabetes mellitus. Curr Diabetes Rev 2020; 16(2): 117-36.
[http://dx.doi.org/10.2174/1573399815666190618093315] [PMID: 31237215]
[14]
Omar B, Ahrén B. Pleiotropic mechanisms for the glucose-lowering action of DPP-4 inhibitors. Diabetes 2014; 63(7): 2196-202.
[http://dx.doi.org/10.2337/db14-0052] [PMID: 24962916]
[15]
Thornberry NA, Gallwitz B. Mechanism of action of inhibitors of dipeptidyl-peptidase-4 (DPP-4). Best Pract Res Clin Endocrinol Metab 2009; 23(4): 479-86.
[http://dx.doi.org/10.1016/j.beem.2009.03.004] [PMID: 19748065]
[16]
Zakowski JJ, Bruns DE. Biochemistry of human alpha amylase isoenzymes. Crit Rev Clin Lab Sci 1985; 21: 283-322.
[http://dx.doi.org/10.3109/10408368509165786]
[17]
Kaur N, Kumar V, Nayak SK, Wadhwa P, Kaur P, Sahu SK. Alpha‐amylase as molecular target for treatment of diabetes mellitus: A comprehensive review. Chem Biol Drug Des 2021; 98(4): 539-60.
[http://dx.doi.org/10.1111/cbdd.13909] [PMID: 34173346]
[18]
Governa P, Baini G, Borgonetti V, et al. Phytotherapy in the management of diabetes: A review. Molecules 2018; 23(1): 105.
[http://dx.doi.org/10.3390/molecules23010105] [PMID: 29300317]
[19]
The role of phytotherapy in the management of diabetes mellitus. Available from: http://www.eurekaselect.com
[20]
Shapiro K, Gong WC. Natural products used for diabetes. J Am Pharm Assoc 1996; 42(2002): 217-26.
[http://dx.doi.org/10.1331/108658002763508515] [PMID: 11926665]
[21]
Kumar S, Mittal A, Babu D, Mittal A. Herbal medicines for diabetes management and its secondary complications. Curr Diabetes Rev 2021; 17(4): 437-56.
[http://dx.doi.org/10.2174/18756417MTExfMTQ1z] [PMID: 33143632]
[22]
Guo-Ming P, Fang-Xu L, Yong Y. Herbal medicine in the treatment of patients with type 2 diabetes mellitus. Chin Med J 2019; 132(1): 78-85.
[http://dx.doi.org/10.1097/CM9.0000000000000006] [PMID: 30628962]
[23]
Watal G, Dhar P, Srivastava SK, Sharma B. Herbal medicine as an alternative medicine for treating diabetes: The global burden. Evid Based Complement Alternat Med 2014; 2014: 1-2.
[http://dx.doi.org/10.1155/2014/596071] [PMID: 25202334]
[24]
Abouzekry SS, Badawy MT, Ezzelarab NM, Abdellatif A. Phytotherapy for diabetes mellitus; a review of middle eastern and north african folk medicinal plants. J Herbmed Pharmacol 2020; 10(1): 1-13.
[http://dx.doi.org/10.34172/jhp.2021.01]
[25]
Ferreira L, dos Santos R, Oliva G, Andricopulo A. Molecular docking and structure-based drug design strategies. Molecules 2015; 20(7): 13384-421.
[http://dx.doi.org/10.3390/molecules200713384] [PMID: 26205061]
[26]
Chaudhary KK, Mishra N. A Review on Molecular Docking: Novel Tool for Drug Discovery. JSM Chem 2016; 4(3): 1029.
[27]
Rachid A, Rabah D, Farid L, Zohra SF, Houcine B, Nacéra B. Ethnopharmacological survey of medicinal plants used in the traditional treatment of diabetes mellitus in the North Western and South Western Algeria. J Med Plants Res 2012; 6(10)
[http://dx.doi.org/10.5897/JMPR11.1796]
[28]
Hammiche V, Maiza K. Traditional medicine in Central Sahara: Pharmacopoeia of Tassili N’ajjer. J Ethnopharmacol 2006; 105(3): 358-67.
[http://dx.doi.org/10.1016/j.jep.2005.11.028] [PMID: 16414225]
[29]
Akhgar MR, Rajaei P, Poshteshirani F. Composition of the essential oil of Zygophyllum eurypterum from Iran. Chem Nat Compd 2015; 51(3): 577-8.
[http://dx.doi.org/10.1007/s10600-015-1351-3]
[30]
Kchaou M, Salah HB, Mnafgui K, et al. Chemical composition and biological activities of Zygophyllum album (L.). Essential Oil from Tunisia. J Agric Sci Technol 2016; 18: 1499-510.
[31]
Mnafgui K, Kchaou M, Ben Salah H, et al. Essential oil of Zygophyllum album inhibits key-digestive enzymes related to diabetes and hypertension and attenuates symptoms of diarrhea in alloxan-induced diabetic rats. Pharm Biol 2016; 54(8): 1326-33.
[http://dx.doi.org/10.3109/13880209.2015.1075049] [PMID: 26439719]
[32]
Mostafavi H, Vahiddost M, Solimanzadeh R. Chemical composition of essential oil of Zygophyllum fabago L. from North-West Iran. Int J Herb Med 2015; 2(6): 34-7.
[33]
Tigrinekordjani N, Meklati B, Chemat F. Analysis by gas chromatography–mass spectrometry of the essential oil of Zygophyllum album L., an aromatic and medicinal plant growing in Algeria. Int J Aromatherapy 2006; 16(3-4): 187-91.
[http://dx.doi.org/10.1016/j.ijat.2006.09.008]
[34]
PubChem. Available from: https://pubchem.ncbi.nlm.nih.gov/ [accessed March 30, 2020].
[35]
Bolton EE, Wang Y, Thiessen PA, Bryant SH. PubChem: Integrated platform of small molecules and biological activities. In: Annual Reports in Computational Chemistry. Elsevier, Amsterdam 2008; pp. 217-41.
[36]
ChemSpider | Search and share chemistry. Available from: http://www.chemspider.com/ [accessed April 3, 2022].
[37]
Williams AJ. Chemspider: A platform for crowdsourced collaboration to curate data derived from public compound databases Collaborative computational technologies for biomedical research. John Wiley & Sons, Ltd 2011; pp. 363-86.https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118026038.ch22
[http://dx.doi.org/10.1002/9781118026038.ch22]
[38]
Pence HE, Williams A. ChemSpider: An online chemical information resource. J Chem Educ 2010; 87(11): 1123-4.
[http://dx.doi.org/10.1021/ed100697w]
[39]
McNamara JP, Hillier IH. Semi-empirical molecular orbital methods including dispersion corrections for the accurate prediction of the full range of intermolecular interactions in biomolecules. Phys Chem Chem Phys 2007; 9(19): 2362-70.
[http://dx.doi.org/10.1039/b701890h] [PMID: 17492099]
[40]
Halgren TA, Nachbar RB. Merck molecular force field. IV. conformational energies and geometries for MMFF94. J Comput Chem 1996; 17(5-6): 587-615.
[http://dx.doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<587:AID-JCC4>3.0.CO;2-Q]
[41]
Maurus R, Begum A, Williams LK, et al. Alternative catalytic anions differentially modulate human α-amylase activity and specificity. Biochemistry 2008; 47(11): 3332-44.
[http://dx.doi.org/10.1021/bi701652t] [PMID: 18284212]
[42]
Dooseop K, Liping W, Maria B, et al. (2R)-4-Oxo-4-[3-(Trifluoromethyl)-5,6-dihydro[1,2,4]triazolo[4,3-a]pyrazin-7(8H)-yl]-1-(2,4,5-trifluorophenyl)butan-2-amine:  A potent, orally active dipeptidyl peptidase iv inhibitor for the treatment of type 2 diabetes. J Med Chem 2005; 48: 141-51.
[http://dx.doi.org/10.1021/jm0493156]
[43]
R.P.D. Bank, RCSB PDB: Homepage. Available from: https://www.rcsb.org/ [accessed April 3, 2022].
[44]
Soga S, Shirai H, Kobori M, Hirayama N. Use of amino acid composition to predict ligand-binding sites. J Chem Inf Model 2007; 47(2): 400-6.
[http://dx.doi.org/10.1021/ci6002202] [PMID: 17243757]
[45]
Verdonk ML, Taylor RD, Chessari G, Murray CW. Illustration of current challenges in molecular docking. Structure Based Drug Dis 2007; pp. 201-21.
[http://dx.doi.org/10.1007/1-4020-4407-0_8]
[46]
Brooijmans N. Docking methods, ligand design, and validating data sets in the structural genomics era. In: Jenny G, Philip E, editors Structural Bioinformatics. John Wiley and Sons, New York 2009; p. 635-63.
[47]
Li J, Fu A, Zhang L. An overview of scoring functions used for protein–ligand interactions in molecular docking. Interdiscip Sci 2019; 11(2): 320-8.
[http://dx.doi.org/10.1007/s12539-019-00327-w] [PMID: 30877639]
[48]
Pagadala NS, Syed K, Tuszynski J. Software for molecular docking: A review. Biophys Rev 2017; 9(2): 91-102.
[http://dx.doi.org/10.1007/s12551-016-0247-1] [PMID: 28510083]
[49]
Jain AN. Scoring functions for protein-ligand docking. Curr Protein Pept Sci 2006; 7(5): 407-20.
[http://dx.doi.org/10.2174/138920306778559395] [PMID: 17073693]
[50]
Guedes IA, Pereira FSS, Dardenne LE. Empirical scoring functions for structure-based virtual screening: applications, critical aspects, and challenges. Front Pharmacol 2018; 9: 1089.
[http://dx.doi.org/10.3389/fphar.2018.01089] [PMID: 30319422]
[51]
Pason LP, Sotriffer CA. Empirical scoring functions for affinity prediction of protein-ligand complexes. Mol Inform 2016; 35(11-12): 541-8.
[http://dx.doi.org/10.1002/minf.201600048] [PMID: 27870243]
[52]
Wang Z, Wang X, Kang Y, et al. Binding affinity and dissociation pathway predictions for a series of USP7 inhibitors with pyrimidinone scaffold by multiple computational methods. Phys Chem Chem Phys 2020; 22(10): 5487-99.
[http://dx.doi.org/10.1039/D0CP00370K] [PMID: 32101223]
[53]
Liu J, Wang R. Classification of current scoring functions. J Chem Inf Model. ACS Publications 2015; 55(3): 475-82.
[http://dx.doi.org/10.1021/ci500731a]
[54]
Takato T, Iwata K, Murakami C, Wada Y, Sakane F. Chronic administration of myristic acid improves hyperglycaemia in the Nagoya–Shibata–Yasuda mouse model of congenital type 2 diabetes. Diabetologia 2017; 60(10): 2076-83.
[http://dx.doi.org/10.1007/s00125-017-4366-4] [PMID: 28707095]
[55]
Daina A, Michielin O, Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 2017; 7(1): 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[56]
Benet LZ, Hosey CM, Ursu O, Oprea TI. BDDCS, the Rule of 5 and drugability. Adv Drug Deliv Rev 2016; 101: 89-98.
[http://dx.doi.org/10.1016/j.addr.2016.05.007] [PMID: 27182629]
[57]
Lipinski CA. Lead- and drug-like compounds: The Rule-of-five revolution. Drug Discov Today Technol 2004; 1(4): 337-41.
[http://dx.doi.org/10.1016/j.ddtec.2004.11.007] [PMID: 24981612]
[58]
Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings 1PII of original article: S0169-409X(96)00423-1. Adv Drug Deliv Rev 2001; 46(1-3): 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[59]
Xu L, Wang W, Zhang X, et al. Palmitic acid causes insulin resistance in granulosa cells via activation of JNK. J Mol Endocrinol 2019; 62(4): 197-206.
[http://dx.doi.org/10.1530/JME-18-0214] [PMID: 30913535]

© 2024 Bentham Science Publishers | Privacy Policy