Research Article

自闭症谱系障碍成人中 5-HT 和 BDNF 的循环水平:对自闭症谱系障碍受试者及其一级亲属和对照样本的调查

卷 31, 期 6, 2024

发表于: 08 March, 2023

页: [776 - 790] 页: 15

弟呕挨: 10.2174/0929867330666230131115031

价格: $65

conference banner
摘要

背景:几项研究调查了自闭症谱系障碍(ASD)儿童血清素(5- HT)和脑源性神经营养因子(BDNF)的循环水平。更多有限的文献集中在ASD成人或亚阈下自闭症谱系表现的人群,如ASD先证者的亲属。本研究旨在探讨成人自闭症谱系条件下5-HT和BDNF的水平。还评估了生化变量水平与ASD症状之间的相关性。 方法:招募ASD成人、他们的一级亲属(广泛自闭症表型,BAP组)和对照组,并使用心理测量量表进行评估。采集了所有参与者的血液样本。采用ELISA试剂盒检测5-HT和BDNF水平。 结果:与BAP组和对照组相比,ASD成人的血小板贫化血浆(PPP) 5-HT水平显著降低。各组间PPP BDNF水平和血小板内5-HT水平无显著差异。据报道,5-羟色胺水平与某些自闭症症状特异性相关。 结论:这项研究强调,与其他组相比,ASD成人中PPP 5-HT水平降低,而BDNF水平没有显著差异,这支持了成人ASD的生化相关因素可能不同于儿童的假设。

关键词: BDNF,血清素,自闭症,广泛的自闭症表型,生化相关,先证者。

« Previous
[1]
American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed; American Psychiatric Association: Washington, DC, 2013.
[2]
Dell’Osso, L.; Lorenzi, P.; Carpita, B. Autistic traits and illness trajectories. Clin. Pract. Epidemiol. Ment. Health, 2019, 15(1), 94-98.
[http://dx.doi.org/10.2174/1745017901915010094] [PMID: 31819756]
[3]
Dell’Osso, L.; Lorenzi, P.; Carpita, B. The neurodevelopmental continuum towards a neurodevelopmental gradient hypothesis. J. Psychopathol., 2019, 25(4), 179-182.
[4]
Losh, M.; Childress, D.; Lam, K.; Piven, J. Defining key features of the broad autism phenotype: A comparison across parents of multiple- and single-incidence autism families. Am. J. Med. Genet. B. Neuropsychiatr. Genet., 2008, 147B(4), 424-433.
[http://dx.doi.org/10.1002/ajmg.b.30612] [PMID: 17948871]
[5]
Baron-Cohen, S.; Wheelwright, S.; Skinner, R.; Martin, J.; Clubley, E. The autism-spectrum quotient (AQ): Evidence from Asperger syndrome/high-functioning autism, males and females, scientists and mathematicians. J. Autism Dev. Disord., 2001, 31(1), 5-17.
[http://dx.doi.org/10.1023/A:1005653411471] [PMID: 11439754]
[6]
Carpita, B.; Carmassi, C.; Calderoni, S.; Muti, D.; Muscarella, A.; Massimetti, G.; Cremone, I.M.; Gesi, C.; Conti, E.; Muratori, F.; Dell’Osso, L. The broad autism phenotype in real-life: Clinical and functional correlates of autism spectrum symptoms and rumination among parents of patients with autism spectrum disorder. CNS Spectr., 2020, 25(6), 765-773.
[http://dx.doi.org/10.1017/S1092852919001615] [PMID: 31747980]
[7]
Bailey, A.; Palferman, S.; Heavey, L.; Le Couteur, A. Autism: The phenotype in relatives. J. Autism Dev. Disord., 1998, 28(5), 369-392.
[http://dx.doi.org/10.1023/A:1026048320785] [PMID: 9813774]
[8]
Dell’Osso, L.; Carpita, B.; Bertelloni, C.A.; Diadema, E.; Barberi, F.M.; Gesi, C.; Carmassi, C. Subthreshold autism spectrum in bipolar disorder: Prevalence and clinical correlates. Psychiatry Res., 2019, 281, 112605.
[http://dx.doi.org/10.1016/j.psychres.2019.112605] [PMID: 31629303]
[9]
Dell’Osso, L.; Cremone, I.M.; Carpita, B.; Dell’Oste, V.; Muti, D.; Massimetti, G.; Barlati, S.; Vita, A.; Fagiolini, A.; Carmassi, C.; Gesi, C. Rumination, posttraumatic stress disorder, and mood symptoms in borderline personality disorder. Neuropsychiatr. Dis. Treat., 2019, 15, 1231-1238.
[http://dx.doi.org/10.2147/NDT.S198616] [PMID: 31190829]
[10]
Carpita, B.; Muti, D.; Muscarella, A.; Dell’Oste, V.; Diadema, E.; Massimetti, G.; Signorelli, M.S.; Fusar Poli, L.; Gesi, C.; Aguglia, E.; Politi, P.; Carmassi, C.; Dell’Osso, L. Sex differences in the relationship between PTSD spectrum symptoms and autistic traits in a sample of university students. Clin. Pract. Epidemiol. Ment. Health, 2019, 15(1), 110-119.
[http://dx.doi.org/10.2174/1745017901915010110] [PMID: 31819759]
[11]
Billeci, L.; Calderoni, S.; Conti, E.; Gesi, C.; Carmassi, C.; Dell’Osso, L.; Cioni, G.; Muratori, F.; Guzzetta, A. The Broad Autism (Endo)Phenotype: Neurostructural and neurofunctional correlates in parents of individuals with autism spectrum disorders. Front. Neurosci., 2016, 10, 346.
[http://dx.doi.org/10.3389/fnins.2016.00346] [PMID: 27499732]
[12]
Brondino, N.; Fusar-Poli, L.; Rocchetti, M.; Bertoglio, F.; Bloise, N.; Visai, L.; Politi, P. BDNF levels are associated with autistic traits in the general population. Psychoneuroendocrinology, 2018, 89, 131-133.
[http://dx.doi.org/10.1016/j.psyneuen.2018.01.008] [PMID: 29414026]
[13]
Carpita, B.; Marazziti, D.; Palego, L.; Giannaccini, G.; Betti, L.; Dell’Osso, L. Microbiota, immune system and autism spectrum disorders: An integrative model towards novel treatment options. Curr. Med. Chem., 2020, 27(31), 5119-5136.
[http://dx.doi.org/10.2174/0929867326666190328151539] [PMID: 31448708]
[14]
Harrington, R.A.; Lee, L.C.; Crum, R.M.; Zimmerman, A.W.; Hertz-Picciotto, I. Serotonin hypothesis of autism: Implications for selective serotonin reuptake inhibitor use during pregnancy. Autism Res., 2013, 6(3), 149-168.
[http://dx.doi.org/10.1002/aur.1288] [PMID: 23495208]
[15]
Gabriele, S.; Sacco, R.; Persico, A.M. Blood serotonin levels in autism spectrum disorder: A systematic review and meta-analysis. Eur. Neuropsychopharmacol., 2014, 24(6), 919-929.
[http://dx.doi.org/10.1016/j.euroneuro.2014.02.004] [PMID: 24613076]
[16]
Mulder, E.J.; Anderson, G.M.; Kema, I.P.; de Bildt, A.; van Lang, N.D.J.; den Boer, J.A.; Minderaa, R.B. Platelet serotonin levels in pervasive developmental disorders and mental retardation: Diagnostic group differences, within-group distribution, and behavioral correlates. J. Am. Acad. Child Adolesc. Psychiatry, 2004, 43(4), 491-499.
[http://dx.doi.org/10.1097/00004583-200404000-00016] [PMID: 15187810]
[17]
Muller, C.L.; Anacker, A.M.J.; Veenstra-VanderWeele, J. The serotonin system in autism spectrum disorder: From biomarker to animal models. Neuroscience, 2016, 321, 24-41.
[http://dx.doi.org/10.1016/j.neuroscience.2015.11.010] [PMID: 26577932]
[18]
Kolevzon, A.; Newcorn, J.H.; Kryzak, L.; Chaplin, W.; Watner, D.; Hollander, E.; Smith, C.J.; Cook, E.H., Jr; Silverman, J.M. Relationship between whole blood serotonin and repetitive behaviors in autism. Psychiatry Res., 2010, 175(3), 274-276.
[http://dx.doi.org/10.1016/j.psychres.2009.02.008] [PMID: 20044143]
[19]
Sacco, R.; Curatolo, P.; Manzi, B.; Militerni, R.; Bravaccio, C.; Frolli, A.; Lenti, C.; Saccani, M.; Elia, M.; Reichelt, K.L.; Pascucci, T.; Puglisi-Allegra, S.; Persico, A.M. Principal pathogenetic components and biological endophenotypes in autism spectrum disorders. Autism Res., 2010, 3(5), 237-252.
[http://dx.doi.org/10.1002/aur.151] [PMID: 20878720]
[20]
Hollander, E.; Soorya, L.; Chaplin, W.; Anagnostou, E.; Taylor, B.P.; Ferretti, C.J.; Wasserman, S.; Swanson, E.; Settipani, C. A double-blind placebo-controlled trial of fluoxetine for repetitive behaviors and global severity in adult autism spectrum disorders. Am. J. Psychiatry, 2012, 169(3), 292-299.
[http://dx.doi.org/10.1176/appi.ajp.2011.10050764] [PMID: 22193531]
[21]
Meyza, K.Z.; Defensor, E.B.; Jensen, A.L.; Corley, M.J.; Pearson, B.L.; Pobbe, R.L.H.; Bolivar, V.J.; Blanchard, D.C.; Blanchard, R.J. The BTBR T+tf/J mouse model for autism spectrum disorders–in search of biomarkers. Behav. Brain Res., 2013, 251, 25-34.
[http://dx.doi.org/10.1016/j.bbr.2012.07.021] [PMID: 22958973]
[22]
Gould, G.G.; Burke, T.F.; Osorio, M.D.; Smolik, C.M.; Zhang, W.Q.; Onaivi, E.S.; Gu, T.T.; DeSilva, M.N.; Hensler, J.G. Enhanced novelty-induced corticosterone spike and upregulated serotonin 5-HT1A and cannabinoid CB1 receptors in adolescent BTBR mice. Psychoneuroendocrinology, 2014, 39, 158-169.
[http://dx.doi.org/10.1016/j.psyneuen.2013.09.003] [PMID: 24126181]
[23]
Murphy, D.L.; Lesch, K.P. Targeting the murine serotonin transporter: insights into human neurobiology. Nat. Rev. Neurosci., 2008, 9(2), 85-96.
[http://dx.doi.org/10.1038/nrn2284] [PMID: 18209729]
[24]
Lam, K.S.L.; Aman, M.G.; Arnold, L.E. Neurochemical correlates of autistic disorder: A review of the literature. Res. Dev. Disabil., 2006, 27(3), 254-289.
[http://dx.doi.org/10.1016/j.ridd.2005.03.003] [PMID: 16002261]
[25]
Goldberg, J.; Anderson, G.M.; Zwaigenbaum, L.; Hall, G.B.C.; Nahmias, C.; Thompson, A.; Szatmari, P. Cortical serotonin type-2 receptor density in parents of children with autism spectrum disorders. J. Autism Dev. Disord., 2009, 39(1), 97-104.
[http://dx.doi.org/10.1007/s10803-008-0604-4] [PMID: 18592367]
[26]
Eissa, N.; Al-Houqani, M.; Sadeq, A.; Ojha, S.K.; Sasse, A.; Sadek, B. Current enlightenment about etiology and pharmacological treatment of autism spectrum disorder. Front. Neurosci., 2018, 12, 304.
[http://dx.doi.org/10.3389/fnins.2018.00304] [PMID: 29867317]
[27]
Hranilovic, D.; Bujas-Petkovic, Z.; Vragovic, R.; Vuk, T.; Hock, K.; Jernej, B. Hyperserotonemia in adults with autistic disorder. J. Autism Dev. Disord., 2007, 37(10), 1934-1940.
[http://dx.doi.org/10.1007/s10803-006-0324-6] [PMID: 17165147]
[28]
Padmakumar, M.; Van Raes, E.; Van Geet, C.; Freson, K. Blood platelet research in autism spectrum disorders: In search of biomarkers. Res. Pract. Thromb. Haemost., 2019, 3(4), 566-577.
[http://dx.doi.org/10.1002/rth2.12239] [PMID: 31624776]
[29]
Hranilović, D.; Bujas-Petković, Z.; Tomičić, M.; Bordukalo-Nikšić, T.; Blažević, S.; Čičin-Šain, L. Hyperserotonemia in autism: activity of 5HT-associated platelet proteins. J. Neural Transm. (Vienna), 2009, 116(4), 493-501.
[http://dx.doi.org/10.1007/s00702-009-0192-2] [PMID: 19221690]
[30]
Minderaa, R.B.; Anderson, G.M.; Volkmar, F.R.; Harcherick, D.; Akkerhuis, G.W.; Cohen, D.J. Whole blood serotonin and tryptophan in autism: Temporal stability and the effects of medication. J. Autism Dev. Disord., 1989, 19(1), 129-136.
[http://dx.doi.org/10.1007/BF02212724] [PMID: 2708296]
[31]
Piven, J.; Tsai, G.; Nehme, E.; Coyle, J.T.; Chase, G.A.; Folstein, S.E. Platelet serotonin, a possible marker for familial autism. J. Autism Dev. Disord., 1991, 21(1), 51-59.
[http://dx.doi.org/10.1007/BF02206997] [PMID: 2037549]
[32]
McBride, P.A.; Anderson, G.M.; Hertzig, M.; Snow, M.; Thompson, S.M.; Khait, V.D.; Shapiro, T.; Cohen, D.J. Effects of diagnosis, race, and puberty on platelet serotonin levels in autism and mental retardation. J. Am. Acad. Child Adolesc. Psychiatry, 1998, 37(7), 767-776.
[http://dx.doi.org/10.1097/00004583-199807000-00017] [PMID: 9666633]
[33]
Pagan, C.; Delorme, R.; Callebert, J.; Goubran-Botros, H.; Amsellem, F.; Drouot, X.; Boudebesse, C.; Le Dudal, K.; Ngo-Nguyen, N.; Laouamri, H.; Gillberg, C.; Leboyer, M.; Bourgeron, T.; Launay, J-M. The serotonin-N-acetylserotonin–melatonin pathway as a biomarker for autism spectrum disorders. Transl. Psychiatry, 2014, 4(11), e479.
[http://dx.doi.org/10.1038/tp.2014.120] [PMID: 25386956]
[34]
Croonenberghs, J.; Delmeire, L.; Verkerk, R.; Lin, A.H.; Meskal, A.; Neels, H.; Van der Planken, M.; Scharpe, S.; Deboutte, D.; Pison, G.; Maes, M. Peripheral markers of serotonergic and noradrenergic function in post-pubertal, caucasian males with autistic disorder. Neuropsychopharmacology, 2000, 22(3), 275-283.
[http://dx.doi.org/10.1016/S0893-133X(99)00131-1] [PMID: 10693155]
[35]
Vered, Y.; Golubchik, P.; Mozes, T.; Strous, R.; Nechmad, A.; Mester, R.; Weizman, A.; Spivak, B. The platelet-poor plasma 5-HT response to carbohydrate rich meal administration in adult autistic patients compared with normal controls. Hum. Psychopharmacol., 2003, 18(5), 395-399.
[http://dx.doi.org/10.1002/hup.489] [PMID: 12858328]
[36]
Spivak, B.; Golubchik, P.; Mozes, T.; Vered, Y.; Nechmad, A.; Weizman, A.; Strous, R.D. Low platelet-poor plasma levels of serotonin in adult autistic patients. Neuropsychobiology, 2004, 50(2), 157-160.
[http://dx.doi.org/10.1159/000079108] [PMID: 15292671]
[37]
Shuffrey, L.C.; Guter, S.J.; Delaney, S.; Jacob, S.; Anderson, G.M.; Sutcliffe, J.S.; Cook, E.H.; Veenstra-VanderWeele, J. Is there sexual dimorphism of hyperserotonemia in autism spectrum disorder? Autism Res., 2017, 10(8), 1417-1423.
[http://dx.doi.org/10.1002/aur.1791] [PMID: 28401654]
[38]
Cook, E.H., Jr; Leventhal, B.L.; Heller, W.; Metz, J.; Wainwright, M.; Freedman, D.X. Autistic children and their first-degree relatives: relationships between serotonin and norepinephrine levels and intelligence. J. Neuropsychiatry Clin. Neurosci., 1990, 2(3), 268-274.
[http://dx.doi.org/10.1176/jnp.2.3.268] [PMID: 2136085]
[39]
Leventhal, B.L.; Cook, E.H., Jr; Morford, M.; Ravitz, A.; Freedman, D.X. Relationships of whole blood serotonin and plasma norepinephrine within families. J. Autism Dev. Disord., 1990, 20(4), 499-511.
[http://dx.doi.org/10.1007/BF02216055] [PMID: 2279970]
[40]
Leboyer, M.; Philippe, A.; Bouvard, M.; Guilloud-Bataille, M.; Bondoux, D.; Tabuteau, F.; Feingold, J.; Mouren-Simeoni, M.C.; Launay, J.M. Whole blood serotonin and plasma beta-endorphin in autistic probands and their first-degree relatives. Biol. Psychiatry, 1999, 45(2), 158-163.
[http://dx.doi.org/10.1016/S0006-3223(97)00532-5] [PMID: 9951562]
[41]
Bijl, N.; Thys, C.; Wittevrongel, C.; De la Marche, W.; Devriendt, K.; Peeters, H.; Van Geet, C.; Freson, K. Platelet studies in autism spectrum disorder patients and first-degree relatives. Mol. Autism, 2015, 6(1), 57.
[http://dx.doi.org/10.1186/s13229-015-0051-y] [PMID: 26500752]
[42]
Kuperman, S.; Beeghly, J.H.L.; Burns, T.L.; Tsai, L. Serotonin relationships of autistic probands and their first-degree relatives. J. Am. Acad. Child Psychiatry, 1985, 24(2), 186-190.
[http://dx.doi.org/10.1016/S0002-7138(09)60446-5] [PMID: 3989161]
[43]
Connors, S.L.; Matteson, K.J.; Sega, G.A.; Lozzio, C.B.; Carroll, R.C.; Zimmerman, A.W. Plasma serotonin in autism. Pediatr. Neurol., 2006, 35(3), 182-186.
[http://dx.doi.org/10.1016/j.pediatrneurol.2006.02.010] [PMID: 16939857]
[44]
Martinowich, K.; Lu, B. Interaction between BDNF and serotonin: role in mood disorders. Neuropsychopharmacology, 2008, 33(1), 73-83.
[http://dx.doi.org/10.1038/sj.npp.1301571] [PMID: 17882234]
[45]
Balaratnasingam, S.; Janca, A. Brain derived neurotrophic factor: A novel neurotrophin involved in psychiatric and neurological disorders. Pharmacol. Ther., 2012, 134(1), 116-124.
[http://dx.doi.org/10.1016/j.pharmthera.2012.01.006] [PMID: 22281237]
[46]
Francis, K.; Dougali, A.; Sideri, K.; Kroupis, C.; Vasdekis, V.; Dima, K.; Douzenis, A. Brain-derived neurotrophic factor (BDNF) in children with ASD and their parents: a 3-year follow-up. Acta Psychiatr. Scand., 2018, 137(5), 433-441.
[http://dx.doi.org/10.1111/acps.12872] [PMID: 29532458]
[47]
Molendijk, M.L.; Spinhoven, P.; Polak, M.; Bus, B A A.; Penninx, B.W.J.H.; Elzinga, B.M. Serum BDNF concentrations as peripheral manifestations of depression: evidence from a systematic review and meta-analyses on 179 associations (N=9484). Mol. Psychiatry, 2014, 19(7), 791-800.
[http://dx.doi.org/10.1038/mp.2013.105] [PMID: 23958957]
[48]
Ahmed, A.O.; Mantini, A.M.; Fridberg, D.J.; Buckley, P.F. Brain-derived neurotrophic factor (BDNF) and neurocognitive deficits in people with schizophrenia: A meta-analysis. Psychiatry Res., 2015, 226(1), 1-13.
[http://dx.doi.org/10.1016/j.psychres.2014.12.069] [PMID: 25681004]
[49]
Fernandes, B.S.; Molendijk, M.L.; Köhler, C.A.; Soares, J.C.; Leite, C.M.G.S.; Machado-Vieira, R.; Ribeiro, T.L.; Silva, J.C.; Sales, P.M.G.; Quevedo, J.; Oertel-Knöchel, V.; Vieta, E.; González-Pinto, A.; Berk, M.; Carvalho, A.F. Peripheral brain-derived neurotrophic factor (BDNF) as a biomarker in bipolar disorder: a meta-analysis of 52 studies. BMC Med., 2015, 13(1), 289.
[http://dx.doi.org/10.1186/s12916-015-0529-7] [PMID: 26621529]
[50]
Qin, X.Y.; Feng, J.C.; Cao, C.; Wu, H.T.; Loh, Y.P.; Cheng, Y. Association of peripheral blood levels of brain-derived neurotrophic factor with autism spectrum disorder in children. JAMA Pediatr., 2016, 170(11), 1079-1086.
[http://dx.doi.org/10.1001/jamapediatrics.2016.1626] [PMID: 27654278]
[51]
Ormstad, H.; Bryn, V.; Verkerk, R.; Skjeldal, O.H.; Halvorsen, B.; Saugstad, O.D.; Isaksen, J.; Maes, M. Serumtryptophan, tryptophan catabolites and brain-derived neurotrophic factor in subgroups of youngsters with autism spectrum disorders. CNS Neurol. Disord. Drug Targets, 2018, 17(8), 626-639.
[http://dx.doi.org/10.2174/1871527317666180720163221] [PMID: 30033880]
[52]
Armeanu, R.; Mokkonen, M.; Crespi, B. Meta-analysis of BDNF levels in autism. Cell. Mol. Neurobiol., 2017, 37(5), 949-954.
[http://dx.doi.org/10.1007/s10571-016-0415-7] [PMID: 27501933]
[53]
Zheng, Z.; Zhang, L.; Zhu, T.; Huang, J.; Qu, Y.; Mu, D. Peripheral brain-derived neurotrophic factor in autism spectrum disorder: a systematic review and meta-analysis. Sci. Rep., 2016, 6(1), 31241.
[http://dx.doi.org/10.1038/srep31241] [PMID: 27506602]
[54]
Saghazadeh, A.; Rezaei, N. Brain-derived neurotrophic factor levels in autism: A systematic review and meta-analysis. J. Autism Dev. Disord., 2017, 47(4), 1018-1029.
[http://dx.doi.org/10.1007/s10803-016-3024-x] [PMID: 28138831]
[55]
Zhang, Q.; Jiang, L.; kong, L.Y.; Lu, Y.J. Serum Brain-derived neurotrophic factor levels in Chinese children with autism spectrum disorders: A pilot study. Int. J. Dev. Neurosci., 2014, 37(1), 65-68.
[http://dx.doi.org/10.1016/j.ijdevneu.2014.06.013] [PMID: 24984148]
[56]
Meng, W.D.; Sun, S.J.; Yang, J.; Chu, R.X.; Tu, W.; Liu, Q. Elevated serum brain-derived neurotrophic factor (BDNF) but not BDNF gene Val66Met polymorphism is associated with autism spectrum disorders. Mol. Neurobiol., 2017, 54(2), 1167-1172.
[http://dx.doi.org/10.1007/s12035-016-9721-9] [PMID: 26820673]
[57]
Yeom, C.W.; Park, Y.J.; Choi, S.W.; Bhang, S.Y. Association of peripheral BDNF level with cognition, attention and behavior in preschool children. Child Adolesc. Psychiatry Ment. Health, 2016, 10(1), 10.
[http://dx.doi.org/10.1186/s13034-016-0097-4] [PMID: 27200107]
[58]
First, M.B.; Williams, J.B.; Karg, R.S.; Spitzer, R.L. SCID-5-CV: Structured Clinical Interview for DSM-5 Disorders, Clinician Version; American Psychiatric Association: Arlington, VA, 2015.
[59]
Dell’Osso, L.; Gesi, C.; Massimetti, E.; Cremone, I.M.; Barbuti, M.; Maccariello, G.; Moroni, I.; Barlati, S.; Castellini, G.; Luciano, M.; Bossini, L.; Rocchetti, M.; Signorelli, M.; Aguglia, E.; Fagiolini, A.; Politi, P.; Ricca, V.; Vita, A.; Carmassi, C.; Maj, M. Adult Autism Subthreshold Spectrum (AdAS Spectrum): Validation of a questionnaire investigating subthreshold autism spectrum. Compr. Psychiatry, 2017, 73, 61-83.
[http://dx.doi.org/10.1016/j.comppsych.2016.11.001] [PMID: 27918948]
[60]
Eriksson, J.M.; Andersen, L.M.J.; Bejerot, S. RAADS-14 Screen: validity of a screening tool for autism spectrum disorder in an adult psychiatric population. Mol. Autism, 2013, 4(1), 49.
[http://dx.doi.org/10.1186/2040-2392-4-49] [PMID: 24321513]
[61]
Nolen-Hoeksema, S.; Morrow, J. A prospective study of depression and posttraumatic stress symptoms after a natural disaster: The 1989 Loma Prieta earthquake. J. Pers. Soc. Psychol., 1991, 61(1), 115-121.
[http://dx.doi.org/10.1037/0022-3514.61.1.115] [PMID: 1890582]
[62]
Palmieri, R.; Gapsarre, A.; Lanciano, T. A dispositional measure of depressive rumination: The Nolen-Hoeksema and Morrow RRS. Psychofenia: Research and Psychological Analysis, 2007, 17, 15-33.
[63]
Mundt, J.C.; Marks, I.M.; Shear, M.K.; Greist, J.M. The work and social adjustment scale: A simple measure of impairment in functioning. Br. J. Psychiatry, 2002, 180(5), 461-464.
[http://dx.doi.org/10.1192/bjp.180.5.461] [PMID: 11983645]
[64]
Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72(1-2), 248-254.
[http://dx.doi.org/10.1016/0003-2697(76)90527-3] [PMID: 942051]
[65]
Carpita, B.; Nardi, B.; Palego, L.; Cremone, I.M.; Massimetti, G.; Carmassi, C.; Betti, L.; Giannaccini, G.; Dell’Osso, L. Kynurenine pathway and autism spectrum phenotypes: an investigation among adults with autism spectrum disorder and their first-degree relatives. CNS Spectr., 2022, 1-12.
[http://dx.doi.org/10.1017/S1092852922000840] [PMID: 35634735]
[66]
Anderson, G.M.; Hertzig, M.E.; McBride, P.A. Brief report: Platelet-poor plasma serotonin in autism. J. Autism Dev. Disord., 2012, 42(7), 1510-1514.
[http://dx.doi.org/10.1007/s10803-011-1371-1] [PMID: 21979109]
[67]
Walsh, J.J.; Llorach, P.; Cardozo Pinto, D.F.; Wenderski, W.; Christoffel, D.J.; Salgado, J.S.; Heifets, B.D.; Crabtree, G.R.; Malenka, R.C. Systemic enhancement of serotonin signaling reverses social deficits in multiple mouse models for ASD. Neuropsychopharmacology, 2021, 46(11), 2000-2010.
[http://dx.doi.org/10.1038/s41386-021-01091-6] [PMID: 34239048]
[68]
Pittendreigh, C.; Solomons, K.; Maurer-Spurej, E. The influence of selective serotonin reuptake inhibitors on human platelet serotonin. Thromb. Haemost., 2004, 91(1), 119-128.
[http://dx.doi.org/10.1160/TH03-05-0330] [PMID: 14691577]
[69]
Starlinger, P.; Pereyra, D.; Hackl, H.; Ortmayr, G.; Braunwarth, E.; Santol, J.; Najarnia, S.; Driedger, M.R.; Gregory, L.; Alva-Ruiz, R.; Glasgow, A.; Assinger, A.; Nagorney, D.M.; Habermann, E.B.; Staetttner, S.; Cleary, S.P.; Smoot, R.L.; Gruenberger, T. Consequences of perioperative serotonin reuptake inhibitor treatment during hepatic surgery. Hepatology, 2021, 73(5), 1956-1966.
[http://dx.doi.org/10.1002/hep.31601] [PMID: 33078426]
[70]
Misiak, B.; Frydecka, D.; Łaczmański, Ł.; Ślęzak, R.; Kiejna, A. Effects of second-generation antipsychotics on selected markers of one-carbon metabolism and metabolic syndrome components in first-episode schizophrenia patients. Eur. J. Clin. Pharmacol., 2014, 70(12), 1433-1441.
[http://dx.doi.org/10.1007/s00228-014-1762-2] [PMID: 25291992]
[71]
Savino, R.; Carotenuto, M.; Polito, A.N.; Di Noia, S.; Albenzio, M.; Scarinci, A.; Ambrosi, A.; Sessa, F.; Tartaglia, N.; Messina, G. Analyzing the potential biological determinants of autism spectrum disorder: From neuroinflammation to the kynurenine pathway. Brain Sci., 2020, 10(9), 631.
[http://dx.doi.org/10.3390/brainsci10090631] [PMID: 32932826]
[72]
Zhuang, X.; Xu, H.; Fang, Z.; Xu, C.; Xue, C.; Hong, X. Platelet serotonin and serotonin transporter as peripheral surrogates in depression and anxiety patients. Eur. J. Pharmacol., 2018, 834, 213-220.
[http://dx.doi.org/10.1016/j.ejphar.2018.07.033] [PMID: 30031795]
[73]
DeLong, G.R.; Teague, L.A.; Kamran, M.M.S. Effects of fluoxetine treatment in young children with idiopathic autism. Dev. Med. Child Neurol., 1998, 40(8), 551-562.
[http://dx.doi.org/10.1111/j.1469-8749.1998.tb15414.x] [PMID: 9746008]
[74]
Rappaport, L.M.; Russell, J.J.; Hedeker, D.; Pinard, G.; Bleau, P.; Moskowitz, D.S. Affect, interpersonal behaviour and interpersonal perception during open-label, uncontrolled paroxetine treatment of people with social anxiety disorder: a pilot study. J. Psychiatry Neurosci., 2018, 43(6), 407-415.
[http://dx.doi.org/10.1503/jpn.170141] [PMID: 30375835]
[75]
Kiser, D.; SteemerS, B.; Branchi, I.; Homberg, J.R. The reciprocal interaction between serotonin and social behaviour. Neurosci. Biobehav. Rev., 2012, 36(2), 786-798.
[http://dx.doi.org/10.1016/j.neubiorev.2011.12.009] [PMID: 22206901]
[76]
Beis, D.; Holzwarth, K.; Flinders, M.; Bader, M.; Wöhr, M.; Alenina, N. Brain serotonin deficiency leads to social communication deficits in mice. Biol. Lett., 2015, 11(3), 20150057.
[http://dx.doi.org/10.1098/rsbl.2015.0057] [PMID: 25808003]
[77]
Andersson, M.; Tangen, Ä.; Farde, L.; Bölte, S.; Halldin, C.; Borg, J.; Lundberg, J. Serotonin transporter availability in adults with autism—a positron emission tomography study. Mol. Psychiatry, 2021, 26(5), 1647-1658.
[http://dx.doi.org/10.1038/s41380-020-00868-3] [PMID: 32848204]
[78]
Evers, E.; van der Veen, F.; Fekkes, D.; Jolles, J. Serotonin and cognitive flexibility: neuroimaging studies into the effect of acute tryptophan depletion in healthy volunteers. Curr. Med. Chem., 2007, 14(28), 2989-2995.
[http://dx.doi.org/10.2174/092986707782794032] [PMID: 18220735]
[79]
Clarke, H.F.; Dalley, J.W.; Crofts, H.S.; Robbins, T.W.; Roberts, A.C. Cognitive inflexibility after prefrontal serotonin depletion. Science, 2004, 304(5672), 878-880.
[http://dx.doi.org/10.1126/science.1094987] [PMID: 15131308]
[80]
Clarke, H.F.; Walker, S.C.; Crofts, H.S.; Dalley, J.W.; Robbins, T.W.; Roberts, A.C. Prefrontal serotonin depletion affects reversal learning but not attentional set shifting. J. Neurosci., 2005, 25(2), 532-538.
[http://dx.doi.org/10.1523/JNEUROSCI.3690-04.2005] [PMID: 15647499]
[81]
Weinberg-Wolf, H.; Fagan, N.A.; Anderson, G.M.; Tringides, M.; Dal Monte, O.; Chang, S.W.C. The effects of 5-hydroxytryptophan on attention and central serotonin neurochemistry in the rhesus macaque. Neuropsychopharmacology, 2018, 43(7), 1589-1598.
[http://dx.doi.org/10.1038/s41386-017-0003-7] [PMID: 29463909]
[82]
Waterhouse, B.D.; Moises, H.C.; Woodward, D.J. Interaction of serotonin with somatosensory cortical neuronal responses to afferent synaptic inputs and putative neurotransmitters. Brain Res. Bull., 1986, 17(4), 507-518.
[http://dx.doi.org/10.1016/0361-9230(86)90218-2] [PMID: 2877719]
[83]
Siemann, J.K.; Muller, C.L.; Forsberg, C.G.; Blakely, R.D.; Veenstra-VanderWeele, J.; Wallace, M.T. An autism-associated serotonin transporter variant disrupts multisensory processing. Transl. Psychiatry, 2017, 7(3), e1067.
[http://dx.doi.org/10.1038/tp.2017.17] [PMID: 28323282]
[84]
McDougle, C.J.; Kresch, L.E.; Posey, D.J. Repetitive thoughts and behavior in pervasive developmental disorders: Treatment with serotonin reuptake inhibitors. J. Autism Dev. Disord., 2000, 30(5), 427-435.
[http://dx.doi.org/10.1023/A:1005551523657] [PMID: 11098879]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy