Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Research Article

Circulating Levels of 5-HT and BDNF in Adults with Autism Spectrum Conditions: An Investigation in a Sample of Subjects with Autism Spectrum Disorder, their First-degree Relatives and Controls

Author(s): Barbara Carpita*, Rossella Stagnari, Lionella Palego, Dario Baroni, Gabriele Massimetti, Benedetta Nardi, Ivan Mirko Cremone, Laura Betti, Gino Giannaccini and Liliana Dell'Osso

Volume 31, Issue 6, 2024

Published on: 08 March, 2023

Page: [776 - 790] Pages: 15

DOI: 10.2174/0929867330666230131115031

Price: $65

conference banner
Abstract

Background: Several studies investigated circulating levels of serotonin (5- HT) and brain-derived neurotrophic factor (BDNF) in children with Autism spectrum disorder (ASD). More limited literature focused on ASD adults or on populations with subthreshold autism spectrum manifestations, such as relatives of ASD probands. This study aimed to investigate 5-HT and BDNF levels in adults with autism spectrum conditions. Correlations between levels of biochemical variables and ASD symptoms were also evaluated.

Methods: a sample of ASD adults, their first-degree relatives (Broad autism phenotype, BAP group), and controls were recruited and assessed with psychometric scales. Blood samples were collected from all participants. 5-HT and BDNF levels were measured by means of ELISA kits.

Results: ASD adults showed significantly lower platelet-poor plasma (PPP) 5-HT levels than BAP and control groups. No significant difference was found among groups for PPP BDNF levels and intra-platelet 5-HT levels. 5-HT levels were reported to be specifically correlated with some autism symptoms.

Conclusion: This work highlighted the presence in ASD adults of reduced PPP 5-HT levels than in other groups, without significant differences with respect to BDNF levels, supporting the hypothesis that biochemical correlates of ASD in adults may be different from those typically reported in children.

Keywords: BDNF, serotonin, autism, broad autism phenotype, biochemical correlates, probands.

« Previous
[1]
American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed; American Psychiatric Association: Washington, DC, 2013.
[2]
Dell’Osso, L.; Lorenzi, P.; Carpita, B. Autistic traits and illness trajectories. Clin. Pract. Epidemiol. Ment. Health, 2019, 15(1), 94-98.
[http://dx.doi.org/10.2174/1745017901915010094] [PMID: 31819756]
[3]
Dell’Osso, L.; Lorenzi, P.; Carpita, B. The neurodevelopmental continuum towards a neurodevelopmental gradient hypothesis. J. Psychopathol., 2019, 25(4), 179-182.
[4]
Losh, M.; Childress, D.; Lam, K.; Piven, J. Defining key features of the broad autism phenotype: A comparison across parents of multiple- and single-incidence autism families. Am. J. Med. Genet. B. Neuropsychiatr. Genet., 2008, 147B(4), 424-433.
[http://dx.doi.org/10.1002/ajmg.b.30612] [PMID: 17948871]
[5]
Baron-Cohen, S.; Wheelwright, S.; Skinner, R.; Martin, J.; Clubley, E. The autism-spectrum quotient (AQ): Evidence from Asperger syndrome/high-functioning autism, males and females, scientists and mathematicians. J. Autism Dev. Disord., 2001, 31(1), 5-17.
[http://dx.doi.org/10.1023/A:1005653411471] [PMID: 11439754]
[6]
Carpita, B.; Carmassi, C.; Calderoni, S.; Muti, D.; Muscarella, A.; Massimetti, G.; Cremone, I.M.; Gesi, C.; Conti, E.; Muratori, F.; Dell’Osso, L. The broad autism phenotype in real-life: Clinical and functional correlates of autism spectrum symptoms and rumination among parents of patients with autism spectrum disorder. CNS Spectr., 2020, 25(6), 765-773.
[http://dx.doi.org/10.1017/S1092852919001615] [PMID: 31747980]
[7]
Bailey, A.; Palferman, S.; Heavey, L.; Le Couteur, A. Autism: The phenotype in relatives. J. Autism Dev. Disord., 1998, 28(5), 369-392.
[http://dx.doi.org/10.1023/A:1026048320785] [PMID: 9813774]
[8]
Dell’Osso, L.; Carpita, B.; Bertelloni, C.A.; Diadema, E.; Barberi, F.M.; Gesi, C.; Carmassi, C. Subthreshold autism spectrum in bipolar disorder: Prevalence and clinical correlates. Psychiatry Res., 2019, 281, 112605.
[http://dx.doi.org/10.1016/j.psychres.2019.112605] [PMID: 31629303]
[9]
Dell’Osso, L.; Cremone, I.M.; Carpita, B.; Dell’Oste, V.; Muti, D.; Massimetti, G.; Barlati, S.; Vita, A.; Fagiolini, A.; Carmassi, C.; Gesi, C. Rumination, posttraumatic stress disorder, and mood symptoms in borderline personality disorder. Neuropsychiatr. Dis. Treat., 2019, 15, 1231-1238.
[http://dx.doi.org/10.2147/NDT.S198616] [PMID: 31190829]
[10]
Carpita, B.; Muti, D.; Muscarella, A.; Dell’Oste, V.; Diadema, E.; Massimetti, G.; Signorelli, M.S.; Fusar Poli, L.; Gesi, C.; Aguglia, E.; Politi, P.; Carmassi, C.; Dell’Osso, L. Sex differences in the relationship between PTSD spectrum symptoms and autistic traits in a sample of university students. Clin. Pract. Epidemiol. Ment. Health, 2019, 15(1), 110-119.
[http://dx.doi.org/10.2174/1745017901915010110] [PMID: 31819759]
[11]
Billeci, L.; Calderoni, S.; Conti, E.; Gesi, C.; Carmassi, C.; Dell’Osso, L.; Cioni, G.; Muratori, F.; Guzzetta, A. The Broad Autism (Endo)Phenotype: Neurostructural and neurofunctional correlates in parents of individuals with autism spectrum disorders. Front. Neurosci., 2016, 10, 346.
[http://dx.doi.org/10.3389/fnins.2016.00346] [PMID: 27499732]
[12]
Brondino, N.; Fusar-Poli, L.; Rocchetti, M.; Bertoglio, F.; Bloise, N.; Visai, L.; Politi, P. BDNF levels are associated with autistic traits in the general population. Psychoneuroendocrinology, 2018, 89, 131-133.
[http://dx.doi.org/10.1016/j.psyneuen.2018.01.008] [PMID: 29414026]
[13]
Carpita, B.; Marazziti, D.; Palego, L.; Giannaccini, G.; Betti, L.; Dell’Osso, L. Microbiota, immune system and autism spectrum disorders: An integrative model towards novel treatment options. Curr. Med. Chem., 2020, 27(31), 5119-5136.
[http://dx.doi.org/10.2174/0929867326666190328151539] [PMID: 31448708]
[14]
Harrington, R.A.; Lee, L.C.; Crum, R.M.; Zimmerman, A.W.; Hertz-Picciotto, I. Serotonin hypothesis of autism: Implications for selective serotonin reuptake inhibitor use during pregnancy. Autism Res., 2013, 6(3), 149-168.
[http://dx.doi.org/10.1002/aur.1288] [PMID: 23495208]
[15]
Gabriele, S.; Sacco, R.; Persico, A.M. Blood serotonin levels in autism spectrum disorder: A systematic review and meta-analysis. Eur. Neuropsychopharmacol., 2014, 24(6), 919-929.
[http://dx.doi.org/10.1016/j.euroneuro.2014.02.004] [PMID: 24613076]
[16]
Mulder, E.J.; Anderson, G.M.; Kema, I.P.; de Bildt, A.; van Lang, N.D.J.; den Boer, J.A.; Minderaa, R.B. Platelet serotonin levels in pervasive developmental disorders and mental retardation: Diagnostic group differences, within-group distribution, and behavioral correlates. J. Am. Acad. Child Adolesc. Psychiatry, 2004, 43(4), 491-499.
[http://dx.doi.org/10.1097/00004583-200404000-00016] [PMID: 15187810]
[17]
Muller, C.L.; Anacker, A.M.J.; Veenstra-VanderWeele, J. The serotonin system in autism spectrum disorder: From biomarker to animal models. Neuroscience, 2016, 321, 24-41.
[http://dx.doi.org/10.1016/j.neuroscience.2015.11.010] [PMID: 26577932]
[18]
Kolevzon, A.; Newcorn, J.H.; Kryzak, L.; Chaplin, W.; Watner, D.; Hollander, E.; Smith, C.J.; Cook, E.H., Jr; Silverman, J.M. Relationship between whole blood serotonin and repetitive behaviors in autism. Psychiatry Res., 2010, 175(3), 274-276.
[http://dx.doi.org/10.1016/j.psychres.2009.02.008] [PMID: 20044143]
[19]
Sacco, R.; Curatolo, P.; Manzi, B.; Militerni, R.; Bravaccio, C.; Frolli, A.; Lenti, C.; Saccani, M.; Elia, M.; Reichelt, K.L.; Pascucci, T.; Puglisi-Allegra, S.; Persico, A.M. Principal pathogenetic components and biological endophenotypes in autism spectrum disorders. Autism Res., 2010, 3(5), 237-252.
[http://dx.doi.org/10.1002/aur.151] [PMID: 20878720]
[20]
Hollander, E.; Soorya, L.; Chaplin, W.; Anagnostou, E.; Taylor, B.P.; Ferretti, C.J.; Wasserman, S.; Swanson, E.; Settipani, C. A double-blind placebo-controlled trial of fluoxetine for repetitive behaviors and global severity in adult autism spectrum disorders. Am. J. Psychiatry, 2012, 169(3), 292-299.
[http://dx.doi.org/10.1176/appi.ajp.2011.10050764] [PMID: 22193531]
[21]
Meyza, K.Z.; Defensor, E.B.; Jensen, A.L.; Corley, M.J.; Pearson, B.L.; Pobbe, R.L.H.; Bolivar, V.J.; Blanchard, D.C.; Blanchard, R.J. The BTBR T+tf/J mouse model for autism spectrum disorders–in search of biomarkers. Behav. Brain Res., 2013, 251, 25-34.
[http://dx.doi.org/10.1016/j.bbr.2012.07.021] [PMID: 22958973]
[22]
Gould, G.G.; Burke, T.F.; Osorio, M.D.; Smolik, C.M.; Zhang, W.Q.; Onaivi, E.S.; Gu, T.T.; DeSilva, M.N.; Hensler, J.G. Enhanced novelty-induced corticosterone spike and upregulated serotonin 5-HT1A and cannabinoid CB1 receptors in adolescent BTBR mice. Psychoneuroendocrinology, 2014, 39, 158-169.
[http://dx.doi.org/10.1016/j.psyneuen.2013.09.003] [PMID: 24126181]
[23]
Murphy, D.L.; Lesch, K.P. Targeting the murine serotonin transporter: insights into human neurobiology. Nat. Rev. Neurosci., 2008, 9(2), 85-96.
[http://dx.doi.org/10.1038/nrn2284] [PMID: 18209729]
[24]
Lam, K.S.L.; Aman, M.G.; Arnold, L.E. Neurochemical correlates of autistic disorder: A review of the literature. Res. Dev. Disabil., 2006, 27(3), 254-289.
[http://dx.doi.org/10.1016/j.ridd.2005.03.003] [PMID: 16002261]
[25]
Goldberg, J.; Anderson, G.M.; Zwaigenbaum, L.; Hall, G.B.C.; Nahmias, C.; Thompson, A.; Szatmari, P. Cortical serotonin type-2 receptor density in parents of children with autism spectrum disorders. J. Autism Dev. Disord., 2009, 39(1), 97-104.
[http://dx.doi.org/10.1007/s10803-008-0604-4] [PMID: 18592367]
[26]
Eissa, N.; Al-Houqani, M.; Sadeq, A.; Ojha, S.K.; Sasse, A.; Sadek, B. Current enlightenment about etiology and pharmacological treatment of autism spectrum disorder. Front. Neurosci., 2018, 12, 304.
[http://dx.doi.org/10.3389/fnins.2018.00304] [PMID: 29867317]
[27]
Hranilovic, D.; Bujas-Petkovic, Z.; Vragovic, R.; Vuk, T.; Hock, K.; Jernej, B. Hyperserotonemia in adults with autistic disorder. J. Autism Dev. Disord., 2007, 37(10), 1934-1940.
[http://dx.doi.org/10.1007/s10803-006-0324-6] [PMID: 17165147]
[28]
Padmakumar, M.; Van Raes, E.; Van Geet, C.; Freson, K. Blood platelet research in autism spectrum disorders: In search of biomarkers. Res. Pract. Thromb. Haemost., 2019, 3(4), 566-577.
[http://dx.doi.org/10.1002/rth2.12239] [PMID: 31624776]
[29]
Hranilović, D.; Bujas-Petković, Z.; Tomičić, M.; Bordukalo-Nikšić, T.; Blažević, S.; Čičin-Šain, L. Hyperserotonemia in autism: activity of 5HT-associated platelet proteins. J. Neural Transm. (Vienna), 2009, 116(4), 493-501.
[http://dx.doi.org/10.1007/s00702-009-0192-2] [PMID: 19221690]
[30]
Minderaa, R.B.; Anderson, G.M.; Volkmar, F.R.; Harcherick, D.; Akkerhuis, G.W.; Cohen, D.J. Whole blood serotonin and tryptophan in autism: Temporal stability and the effects of medication. J. Autism Dev. Disord., 1989, 19(1), 129-136.
[http://dx.doi.org/10.1007/BF02212724] [PMID: 2708296]
[31]
Piven, J.; Tsai, G.; Nehme, E.; Coyle, J.T.; Chase, G.A.; Folstein, S.E. Platelet serotonin, a possible marker for familial autism. J. Autism Dev. Disord., 1991, 21(1), 51-59.
[http://dx.doi.org/10.1007/BF02206997] [PMID: 2037549]
[32]
McBride, P.A.; Anderson, G.M.; Hertzig, M.; Snow, M.; Thompson, S.M.; Khait, V.D.; Shapiro, T.; Cohen, D.J. Effects of diagnosis, race, and puberty on platelet serotonin levels in autism and mental retardation. J. Am. Acad. Child Adolesc. Psychiatry, 1998, 37(7), 767-776.
[http://dx.doi.org/10.1097/00004583-199807000-00017] [PMID: 9666633]
[33]
Pagan, C.; Delorme, R.; Callebert, J.; Goubran-Botros, H.; Amsellem, F.; Drouot, X.; Boudebesse, C.; Le Dudal, K.; Ngo-Nguyen, N.; Laouamri, H.; Gillberg, C.; Leboyer, M.; Bourgeron, T.; Launay, J-M. The serotonin-N-acetylserotonin–melatonin pathway as a biomarker for autism spectrum disorders. Transl. Psychiatry, 2014, 4(11), e479.
[http://dx.doi.org/10.1038/tp.2014.120] [PMID: 25386956]
[34]
Croonenberghs, J.; Delmeire, L.; Verkerk, R.; Lin, A.H.; Meskal, A.; Neels, H.; Van der Planken, M.; Scharpe, S.; Deboutte, D.; Pison, G.; Maes, M. Peripheral markers of serotonergic and noradrenergic function in post-pubertal, caucasian males with autistic disorder. Neuropsychopharmacology, 2000, 22(3), 275-283.
[http://dx.doi.org/10.1016/S0893-133X(99)00131-1] [PMID: 10693155]
[35]
Vered, Y.; Golubchik, P.; Mozes, T.; Strous, R.; Nechmad, A.; Mester, R.; Weizman, A.; Spivak, B. The platelet-poor plasma 5-HT response to carbohydrate rich meal administration in adult autistic patients compared with normal controls. Hum. Psychopharmacol., 2003, 18(5), 395-399.
[http://dx.doi.org/10.1002/hup.489] [PMID: 12858328]
[36]
Spivak, B.; Golubchik, P.; Mozes, T.; Vered, Y.; Nechmad, A.; Weizman, A.; Strous, R.D. Low platelet-poor plasma levels of serotonin in adult autistic patients. Neuropsychobiology, 2004, 50(2), 157-160.
[http://dx.doi.org/10.1159/000079108] [PMID: 15292671]
[37]
Shuffrey, L.C.; Guter, S.J.; Delaney, S.; Jacob, S.; Anderson, G.M.; Sutcliffe, J.S.; Cook, E.H.; Veenstra-VanderWeele, J. Is there sexual dimorphism of hyperserotonemia in autism spectrum disorder? Autism Res., 2017, 10(8), 1417-1423.
[http://dx.doi.org/10.1002/aur.1791] [PMID: 28401654]
[38]
Cook, E.H., Jr; Leventhal, B.L.; Heller, W.; Metz, J.; Wainwright, M.; Freedman, D.X. Autistic children and their first-degree relatives: relationships between serotonin and norepinephrine levels and intelligence. J. Neuropsychiatry Clin. Neurosci., 1990, 2(3), 268-274.
[http://dx.doi.org/10.1176/jnp.2.3.268] [PMID: 2136085]
[39]
Leventhal, B.L.; Cook, E.H., Jr; Morford, M.; Ravitz, A.; Freedman, D.X. Relationships of whole blood serotonin and plasma norepinephrine within families. J. Autism Dev. Disord., 1990, 20(4), 499-511.
[http://dx.doi.org/10.1007/BF02216055] [PMID: 2279970]
[40]
Leboyer, M.; Philippe, A.; Bouvard, M.; Guilloud-Bataille, M.; Bondoux, D.; Tabuteau, F.; Feingold, J.; Mouren-Simeoni, M.C.; Launay, J.M. Whole blood serotonin and plasma beta-endorphin in autistic probands and their first-degree relatives. Biol. Psychiatry, 1999, 45(2), 158-163.
[http://dx.doi.org/10.1016/S0006-3223(97)00532-5] [PMID: 9951562]
[41]
Bijl, N.; Thys, C.; Wittevrongel, C.; De la Marche, W.; Devriendt, K.; Peeters, H.; Van Geet, C.; Freson, K. Platelet studies in autism spectrum disorder patients and first-degree relatives. Mol. Autism, 2015, 6(1), 57.
[http://dx.doi.org/10.1186/s13229-015-0051-y] [PMID: 26500752]
[42]
Kuperman, S.; Beeghly, J.H.L.; Burns, T.L.; Tsai, L. Serotonin relationships of autistic probands and their first-degree relatives. J. Am. Acad. Child Psychiatry, 1985, 24(2), 186-190.
[http://dx.doi.org/10.1016/S0002-7138(09)60446-5] [PMID: 3989161]
[43]
Connors, S.L.; Matteson, K.J.; Sega, G.A.; Lozzio, C.B.; Carroll, R.C.; Zimmerman, A.W. Plasma serotonin in autism. Pediatr. Neurol., 2006, 35(3), 182-186.
[http://dx.doi.org/10.1016/j.pediatrneurol.2006.02.010] [PMID: 16939857]
[44]
Martinowich, K.; Lu, B. Interaction between BDNF and serotonin: role in mood disorders. Neuropsychopharmacology, 2008, 33(1), 73-83.
[http://dx.doi.org/10.1038/sj.npp.1301571] [PMID: 17882234]
[45]
Balaratnasingam, S.; Janca, A. Brain derived neurotrophic factor: A novel neurotrophin involved in psychiatric and neurological disorders. Pharmacol. Ther., 2012, 134(1), 116-124.
[http://dx.doi.org/10.1016/j.pharmthera.2012.01.006] [PMID: 22281237]
[46]
Francis, K.; Dougali, A.; Sideri, K.; Kroupis, C.; Vasdekis, V.; Dima, K.; Douzenis, A. Brain-derived neurotrophic factor (BDNF) in children with ASD and their parents: a 3-year follow-up. Acta Psychiatr. Scand., 2018, 137(5), 433-441.
[http://dx.doi.org/10.1111/acps.12872] [PMID: 29532458]
[47]
Molendijk, M.L.; Spinhoven, P.; Polak, M.; Bus, B A A.; Penninx, B.W.J.H.; Elzinga, B.M. Serum BDNF concentrations as peripheral manifestations of depression: evidence from a systematic review and meta-analyses on 179 associations (N=9484). Mol. Psychiatry, 2014, 19(7), 791-800.
[http://dx.doi.org/10.1038/mp.2013.105] [PMID: 23958957]
[48]
Ahmed, A.O.; Mantini, A.M.; Fridberg, D.J.; Buckley, P.F. Brain-derived neurotrophic factor (BDNF) and neurocognitive deficits in people with schizophrenia: A meta-analysis. Psychiatry Res., 2015, 226(1), 1-13.
[http://dx.doi.org/10.1016/j.psychres.2014.12.069] [PMID: 25681004]
[49]
Fernandes, B.S.; Molendijk, M.L.; Köhler, C.A.; Soares, J.C.; Leite, C.M.G.S.; Machado-Vieira, R.; Ribeiro, T.L.; Silva, J.C.; Sales, P.M.G.; Quevedo, J.; Oertel-Knöchel, V.; Vieta, E.; González-Pinto, A.; Berk, M.; Carvalho, A.F. Peripheral brain-derived neurotrophic factor (BDNF) as a biomarker in bipolar disorder: a meta-analysis of 52 studies. BMC Med., 2015, 13(1), 289.
[http://dx.doi.org/10.1186/s12916-015-0529-7] [PMID: 26621529]
[50]
Qin, X.Y.; Feng, J.C.; Cao, C.; Wu, H.T.; Loh, Y.P.; Cheng, Y. Association of peripheral blood levels of brain-derived neurotrophic factor with autism spectrum disorder in children. JAMA Pediatr., 2016, 170(11), 1079-1086.
[http://dx.doi.org/10.1001/jamapediatrics.2016.1626] [PMID: 27654278]
[51]
Ormstad, H.; Bryn, V.; Verkerk, R.; Skjeldal, O.H.; Halvorsen, B.; Saugstad, O.D.; Isaksen, J.; Maes, M. Serumtryptophan, tryptophan catabolites and brain-derived neurotrophic factor in subgroups of youngsters with autism spectrum disorders. CNS Neurol. Disord. Drug Targets, 2018, 17(8), 626-639.
[http://dx.doi.org/10.2174/1871527317666180720163221] [PMID: 30033880]
[52]
Armeanu, R.; Mokkonen, M.; Crespi, B. Meta-analysis of BDNF levels in autism. Cell. Mol. Neurobiol., 2017, 37(5), 949-954.
[http://dx.doi.org/10.1007/s10571-016-0415-7] [PMID: 27501933]
[53]
Zheng, Z.; Zhang, L.; Zhu, T.; Huang, J.; Qu, Y.; Mu, D. Peripheral brain-derived neurotrophic factor in autism spectrum disorder: a systematic review and meta-analysis. Sci. Rep., 2016, 6(1), 31241.
[http://dx.doi.org/10.1038/srep31241] [PMID: 27506602]
[54]
Saghazadeh, A.; Rezaei, N. Brain-derived neurotrophic factor levels in autism: A systematic review and meta-analysis. J. Autism Dev. Disord., 2017, 47(4), 1018-1029.
[http://dx.doi.org/10.1007/s10803-016-3024-x] [PMID: 28138831]
[55]
Zhang, Q.; Jiang, L.; kong, L.Y.; Lu, Y.J. Serum Brain-derived neurotrophic factor levels in Chinese children with autism spectrum disorders: A pilot study. Int. J. Dev. Neurosci., 2014, 37(1), 65-68.
[http://dx.doi.org/10.1016/j.ijdevneu.2014.06.013] [PMID: 24984148]
[56]
Meng, W.D.; Sun, S.J.; Yang, J.; Chu, R.X.; Tu, W.; Liu, Q. Elevated serum brain-derived neurotrophic factor (BDNF) but not BDNF gene Val66Met polymorphism is associated with autism spectrum disorders. Mol. Neurobiol., 2017, 54(2), 1167-1172.
[http://dx.doi.org/10.1007/s12035-016-9721-9] [PMID: 26820673]
[57]
Yeom, C.W.; Park, Y.J.; Choi, S.W.; Bhang, S.Y. Association of peripheral BDNF level with cognition, attention and behavior in preschool children. Child Adolesc. Psychiatry Ment. Health, 2016, 10(1), 10.
[http://dx.doi.org/10.1186/s13034-016-0097-4] [PMID: 27200107]
[58]
First, M.B.; Williams, J.B.; Karg, R.S.; Spitzer, R.L. SCID-5-CV: Structured Clinical Interview for DSM-5 Disorders, Clinician Version; American Psychiatric Association: Arlington, VA, 2015.
[59]
Dell’Osso, L.; Gesi, C.; Massimetti, E.; Cremone, I.M.; Barbuti, M.; Maccariello, G.; Moroni, I.; Barlati, S.; Castellini, G.; Luciano, M.; Bossini, L.; Rocchetti, M.; Signorelli, M.; Aguglia, E.; Fagiolini, A.; Politi, P.; Ricca, V.; Vita, A.; Carmassi, C.; Maj, M. Adult Autism Subthreshold Spectrum (AdAS Spectrum): Validation of a questionnaire investigating subthreshold autism spectrum. Compr. Psychiatry, 2017, 73, 61-83.
[http://dx.doi.org/10.1016/j.comppsych.2016.11.001] [PMID: 27918948]
[60]
Eriksson, J.M.; Andersen, L.M.J.; Bejerot, S. RAADS-14 Screen: validity of a screening tool for autism spectrum disorder in an adult psychiatric population. Mol. Autism, 2013, 4(1), 49.
[http://dx.doi.org/10.1186/2040-2392-4-49] [PMID: 24321513]
[61]
Nolen-Hoeksema, S.; Morrow, J. A prospective study of depression and posttraumatic stress symptoms after a natural disaster: The 1989 Loma Prieta earthquake. J. Pers. Soc. Psychol., 1991, 61(1), 115-121.
[http://dx.doi.org/10.1037/0022-3514.61.1.115] [PMID: 1890582]
[62]
Palmieri, R.; Gapsarre, A.; Lanciano, T. A dispositional measure of depressive rumination: The Nolen-Hoeksema and Morrow RRS. Psychofenia: Research and Psychological Analysis, 2007, 17, 15-33.
[63]
Mundt, J.C.; Marks, I.M.; Shear, M.K.; Greist, J.M. The work and social adjustment scale: A simple measure of impairment in functioning. Br. J. Psychiatry, 2002, 180(5), 461-464.
[http://dx.doi.org/10.1192/bjp.180.5.461] [PMID: 11983645]
[64]
Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72(1-2), 248-254.
[http://dx.doi.org/10.1016/0003-2697(76)90527-3] [PMID: 942051]
[65]
Carpita, B.; Nardi, B.; Palego, L.; Cremone, I.M.; Massimetti, G.; Carmassi, C.; Betti, L.; Giannaccini, G.; Dell’Osso, L. Kynurenine pathway and autism spectrum phenotypes: an investigation among adults with autism spectrum disorder and their first-degree relatives. CNS Spectr., 2022, 1-12.
[http://dx.doi.org/10.1017/S1092852922000840] [PMID: 35634735]
[66]
Anderson, G.M.; Hertzig, M.E.; McBride, P.A. Brief report: Platelet-poor plasma serotonin in autism. J. Autism Dev. Disord., 2012, 42(7), 1510-1514.
[http://dx.doi.org/10.1007/s10803-011-1371-1] [PMID: 21979109]
[67]
Walsh, J.J.; Llorach, P.; Cardozo Pinto, D.F.; Wenderski, W.; Christoffel, D.J.; Salgado, J.S.; Heifets, B.D.; Crabtree, G.R.; Malenka, R.C. Systemic enhancement of serotonin signaling reverses social deficits in multiple mouse models for ASD. Neuropsychopharmacology, 2021, 46(11), 2000-2010.
[http://dx.doi.org/10.1038/s41386-021-01091-6] [PMID: 34239048]
[68]
Pittendreigh, C.; Solomons, K.; Maurer-Spurej, E. The influence of selective serotonin reuptake inhibitors on human platelet serotonin. Thromb. Haemost., 2004, 91(1), 119-128.
[http://dx.doi.org/10.1160/TH03-05-0330] [PMID: 14691577]
[69]
Starlinger, P.; Pereyra, D.; Hackl, H.; Ortmayr, G.; Braunwarth, E.; Santol, J.; Najarnia, S.; Driedger, M.R.; Gregory, L.; Alva-Ruiz, R.; Glasgow, A.; Assinger, A.; Nagorney, D.M.; Habermann, E.B.; Staetttner, S.; Cleary, S.P.; Smoot, R.L.; Gruenberger, T. Consequences of perioperative serotonin reuptake inhibitor treatment during hepatic surgery. Hepatology, 2021, 73(5), 1956-1966.
[http://dx.doi.org/10.1002/hep.31601] [PMID: 33078426]
[70]
Misiak, B.; Frydecka, D.; Łaczmański, Ł.; Ślęzak, R.; Kiejna, A. Effects of second-generation antipsychotics on selected markers of one-carbon metabolism and metabolic syndrome components in first-episode schizophrenia patients. Eur. J. Clin. Pharmacol., 2014, 70(12), 1433-1441.
[http://dx.doi.org/10.1007/s00228-014-1762-2] [PMID: 25291992]
[71]
Savino, R.; Carotenuto, M.; Polito, A.N.; Di Noia, S.; Albenzio, M.; Scarinci, A.; Ambrosi, A.; Sessa, F.; Tartaglia, N.; Messina, G. Analyzing the potential biological determinants of autism spectrum disorder: From neuroinflammation to the kynurenine pathway. Brain Sci., 2020, 10(9), 631.
[http://dx.doi.org/10.3390/brainsci10090631] [PMID: 32932826]
[72]
Zhuang, X.; Xu, H.; Fang, Z.; Xu, C.; Xue, C.; Hong, X. Platelet serotonin and serotonin transporter as peripheral surrogates in depression and anxiety patients. Eur. J. Pharmacol., 2018, 834, 213-220.
[http://dx.doi.org/10.1016/j.ejphar.2018.07.033] [PMID: 30031795]
[73]
DeLong, G.R.; Teague, L.A.; Kamran, M.M.S. Effects of fluoxetine treatment in young children with idiopathic autism. Dev. Med. Child Neurol., 1998, 40(8), 551-562.
[http://dx.doi.org/10.1111/j.1469-8749.1998.tb15414.x] [PMID: 9746008]
[74]
Rappaport, L.M.; Russell, J.J.; Hedeker, D.; Pinard, G.; Bleau, P.; Moskowitz, D.S. Affect, interpersonal behaviour and interpersonal perception during open-label, uncontrolled paroxetine treatment of people with social anxiety disorder: a pilot study. J. Psychiatry Neurosci., 2018, 43(6), 407-415.
[http://dx.doi.org/10.1503/jpn.170141] [PMID: 30375835]
[75]
Kiser, D.; SteemerS, B.; Branchi, I.; Homberg, J.R. The reciprocal interaction between serotonin and social behaviour. Neurosci. Biobehav. Rev., 2012, 36(2), 786-798.
[http://dx.doi.org/10.1016/j.neubiorev.2011.12.009] [PMID: 22206901]
[76]
Beis, D.; Holzwarth, K.; Flinders, M.; Bader, M.; Wöhr, M.; Alenina, N. Brain serotonin deficiency leads to social communication deficits in mice. Biol. Lett., 2015, 11(3), 20150057.
[http://dx.doi.org/10.1098/rsbl.2015.0057] [PMID: 25808003]
[77]
Andersson, M.; Tangen, Ä.; Farde, L.; Bölte, S.; Halldin, C.; Borg, J.; Lundberg, J. Serotonin transporter availability in adults with autism—a positron emission tomography study. Mol. Psychiatry, 2021, 26(5), 1647-1658.
[http://dx.doi.org/10.1038/s41380-020-00868-3] [PMID: 32848204]
[78]
Evers, E.; van der Veen, F.; Fekkes, D.; Jolles, J. Serotonin and cognitive flexibility: neuroimaging studies into the effect of acute tryptophan depletion in healthy volunteers. Curr. Med. Chem., 2007, 14(28), 2989-2995.
[http://dx.doi.org/10.2174/092986707782794032] [PMID: 18220735]
[79]
Clarke, H.F.; Dalley, J.W.; Crofts, H.S.; Robbins, T.W.; Roberts, A.C. Cognitive inflexibility after prefrontal serotonin depletion. Science, 2004, 304(5672), 878-880.
[http://dx.doi.org/10.1126/science.1094987] [PMID: 15131308]
[80]
Clarke, H.F.; Walker, S.C.; Crofts, H.S.; Dalley, J.W.; Robbins, T.W.; Roberts, A.C. Prefrontal serotonin depletion affects reversal learning but not attentional set shifting. J. Neurosci., 2005, 25(2), 532-538.
[http://dx.doi.org/10.1523/JNEUROSCI.3690-04.2005] [PMID: 15647499]
[81]
Weinberg-Wolf, H.; Fagan, N.A.; Anderson, G.M.; Tringides, M.; Dal Monte, O.; Chang, S.W.C. The effects of 5-hydroxytryptophan on attention and central serotonin neurochemistry in the rhesus macaque. Neuropsychopharmacology, 2018, 43(7), 1589-1598.
[http://dx.doi.org/10.1038/s41386-017-0003-7] [PMID: 29463909]
[82]
Waterhouse, B.D.; Moises, H.C.; Woodward, D.J. Interaction of serotonin with somatosensory cortical neuronal responses to afferent synaptic inputs and putative neurotransmitters. Brain Res. Bull., 1986, 17(4), 507-518.
[http://dx.doi.org/10.1016/0361-9230(86)90218-2] [PMID: 2877719]
[83]
Siemann, J.K.; Muller, C.L.; Forsberg, C.G.; Blakely, R.D.; Veenstra-VanderWeele, J.; Wallace, M.T. An autism-associated serotonin transporter variant disrupts multisensory processing. Transl. Psychiatry, 2017, 7(3), e1067.
[http://dx.doi.org/10.1038/tp.2017.17] [PMID: 28323282]
[84]
McDougle, C.J.; Kresch, L.E.; Posey, D.J. Repetitive thoughts and behavior in pervasive developmental disorders: Treatment with serotonin reuptake inhibitors. J. Autism Dev. Disord., 2000, 30(5), 427-435.
[http://dx.doi.org/10.1023/A:1005551523657] [PMID: 11098879]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy