Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Systematic Review Article

A Systematic Review on Traumatic Brain Injury Pathophysiology and Role of Herbal Medicines in its Management

Author(s): Kaushal Arora, Vishal Vats, Nalin Kaushik, Deepanshu Sindhawani, Vaishali Saini, Divy Mohan Arora, Yogesh Kumar, Etash Vashisht, Govind Singh and Prabhakar Kumar Verma*

Volume 21, Issue 12, 2023

Published on: 31 July, 2023

Page: [2487 - 2504] Pages: 18

DOI: 10.2174/1570159X21666230126151208

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Traumatic brain injury (TBI) is a worldwide problem. Almost about sixtynine million people sustain TBI each year all over the world. Repetitive TBI linked with increased risk of neurodegenerative disorder such as Parkinson, Alzheimer, traumatic encephalopathy. TBI is characterized by primary and secondary injury and exerts a severe impact on cognitive, behavioral, psychological and other health problem. There were various proposed mechanism to understand complex pathophysiology of TBI but still there is a need to explore more about TBI pathophysiology. There are drugs present for the treatment of TBI in the market but there is still need of more drugs to develop for better and effective treatment of TBI, because no single drug is available which reduces the further progression of this injury.

Objective: The main aim and objective of structuring this manuscript is to design, develop and gather detailed data regarding about the pathophysiology of TBI and role of medicinal plants in its treatment.

Method: This study is a systematic review conducted between January 1995 to June 2021 in which a consultation of scientific articles from indexed periodicals was carried out in Science Direct, United States National Library of Medicine (Pubmed), Google Scholar, Elsvier, Springer and Bentham.

Results: A total of 54 studies were analyzed, on the basis of literature survey in the research area of TBI.

Conclusion: Recent studies have shown the potential of medicinal plants and their chemical constituents against TBI therefore, this review targets the detailed information about the pathophysiology of TBI and role of medicinal plants in its treatment.

Keywords: Traumatic brain injury, medicinal herbal plants, neurodegenerative disorder, pathophysiology, inflammation, oxidative stress, glucose metabolism.

Graphical Abstract
[1]
Dewan, M.C.; Rattani, A.; Gupta, S.; Baticulon, R.E.; Hung, Y.C.; Punchak, M.; Agrawal, A.; Adeleye, A.O.; Shrime, M.G.; Rubiano, A.M.; Rosenfeld, J.V.; Park, K.B. Estimating the global incidence of traumatic brain injury. J. Neurosurg., 2018, 130(4), 1-18.
[PMID: 29701556]
[2]
Freire, M.A. Pathophysiology of neurodegeneration following traumatic brain injury. West Indian Med. J., 2012, 61(7), 751-755.
[PMID: 23620976]
[3]
Haarbauer-Krupa, J.; Pugh, M.J.; Prager, E.M.; Harmon, N.; Wolfe, J.; Yaffe, K. Epidemiology of chronic effects of traumatic brain injury. J. Neurotrauma, 2021, 38(23), 3235-3247.
[http://dx.doi.org/10.1089/neu.2021.0062] [PMID: 33947273]
[4]
Plantman, S.; Ng, K.C.; Lu, J.; Davidsson, J.; Risling, M. Characterization of a novel rat model of penetrating traumatic brain injury. J. Neurotrauma, 2012, 29(6), 1219-1232.
[http://dx.doi.org/10.1089/neu.2011.2182] [PMID: 22181060]
[5]
Kawa, L.; Kamnaksh, A.; Long, J.B.; Arborelius, U.P.; Hökfelt, T.; Agoston, D.V.; Risling, M. A Comparative study of two blast-induced traumatic brain injury models: changes in monoamine and galanin systems following single and repeated exposure. Front. Neurol., 2018, 9, 479.
[http://dx.doi.org/10.3389/fneur.2018.00479] [PMID: 29973912]
[6]
Risling, M.; Smith, D.; Stein, T.D.; Thelin, E.P.; Zanier, E.R.; Ankarcrona, M.; Nilsson, P. Modelling human pathology of traumatic brain injury in animal models. J. Intern. Med., 2019, 285(6), 594-607.
[http://dx.doi.org/10.1111/joim.12909] [PMID: 30963638]
[7]
Sessa, F.; Maglietta, F.; Bertozzi, G.; Salerno, M.; Di Mizio, G.; Messina, G.; Montana, A.; Ricci, P.; Pomara, C. Human brain injury and miRNAs: an experimental study. Int. J. Mol. Sci., 2019, 20(7), 1546.
[http://dx.doi.org/10.3390/ijms20071546] [PMID: 30934805]
[8]
Atif, H.; Hicks, S.D. A review of microRNA biomarkers in traumatic brain injury. J. Exp. Neurosci., 2019, 13.
[http://dx.doi.org/10.1177/1179069519832286] [PMID: 30886525]
[9]
Finnie, J.W. Forensic pathology of traumatic brain injury. Vet. Pathol., 2016, 53(5), 962-978.
[http://dx.doi.org/10.1177/0300985815612155] [PMID: 26578643]
[10]
Bertozzi, G.; Maglietta, F.; Sessa, F.; Scoto, E.; Cipolloni, L.; Di Mizio, G.; Salerno, M.; Pomara, C. Traumatic brain injury: a forensic approach: a literature review. Curr. Neuropharmacol., 2020, 18(6), 538-550.
[http://dx.doi.org/10.2174/1570159X17666191101123145] [PMID: 31686630]
[11]
Guimarães, J.S.; Freire, M.A.; Lima, R.R.; Souza-Rodrigues, R.D.; Costa, A.M.; dos Santos, C.D.; Picanço-Diniz, C.W.; Gomes-Leal, W. Mechanisms of secondary degeneration in the central nervous system during acute neural disorders and white matter damage. Rev. Neurol., 2009, 48(6), 304-310.
[PMID: 19291655]
[12]
O’leary, R.A.; Nichol, A.D. Pathophysiology of severe traumatic brain injury. J. Neurosurg. Sci., 2018, 62(5), 542-548.
[http://dx.doi.org/10.23736/S0390-5616.18.04501-0] [PMID: 29790727]
[13]
Robinson, C.P. Moderate and severe traumatic brain injury. Continuum (Minneap. Minn.), 2021, 27(5), 1278-1300.
[http://dx.doi.org/10.1212/CON.0000000000001036] [PMID: 34618760]
[14]
Shlosberg, D.; Benifla, M.; Kaufer, D.; Friedman, A. Blood–brain barrier breakdown as a therapeutic target in traumatic brain injury. Nat. Rev. Neurol., 2010, 6(7), 393-403.
[http://dx.doi.org/10.1038/nrneurol.2010.74] [PMID: 20551947]
[15]
Ray, S.K.; Dixon, C.E.; Banik, N.L. Molecular mechanisms in the pathogenesis of traumatic brain injury. Histol. Histopathol., 2002, 17(4), 1137-1152.
[PMID: 12371142]
[16]
Baethmann, A.; Eriskat, J.; Stoffel, M.; Chapuis, D.; Wirth, A.; Plesnila, N. Special aspects of severe head injury: recent developments. Curr. Opin. Anaesthesiol., 1998, 11(2), 193-200.
[http://dx.doi.org/10.1097/00001503-199804000-00013] [PMID: 17013219]
[17]
Marshall, L.F. Head injury: recent past, present, and future. Neurosurgery, 2000, 47(3), 546-561.
[PMID: 10981741]
[18]
Nortje, J.; Menon, D.K. Traumatic brain injury: physiology, mechanisms, and outcome. Curr. Opin. Neurol., 2004, 17(6), 711-718.
[http://dx.doi.org/10.1097/00019052-200412000-00011] [PMID: 15542980]
[19]
Prins, M.; Greco, T.; Alexander, D.; Giza, C.C. The pathophysiology of traumatic brain injury at a glance. Dis. Model. Mech., 2013, 6(6), dmm.011585..
[http://dx.doi.org/10.1242/dmm.011585] [PMID: 24046353]
[20]
Krishnamoorthy, V.; Vavilala, M.S. Traumatic brain injury and chronic implications beyond the brain. JAMA Netw. Open, 2022, 5(4), e229486.
[http://dx.doi.org/10.1001/jamanetworkopen.2022.9486] [PMID: 35482314]
[21]
Werner, C.; Engelhard, K. Pathophysiology of traumatic brain injury. Br. J. Anaesth., 2007, 99(1), 4-9.
[http://dx.doi.org/10.1093/bja/aem131] [PMID: 17573392]
[22]
Smith-Seemiller, L.; Lovell, M.R.; Smith, S.; Markosian, N.; Townsend, R.N. Impact of skull fracture on neuropsychological functioning following closed head injury. Brain Inj., 1997, 11(3), 191-196.
[http://dx.doi.org/10.1080/026990597123638] [PMID: 9058000]
[23]
Mustafa, A.G.; Alshboul, O.A. Pathophysiology of traumatic brain injury. Neurosciences (Riyadh), 2013, 18(3), 222-234.
[PMID: 23887212]
[24]
Steyerberg, E.W.; Mushkudiani, N.; Perel, P.; Butcher, I.; Lu, J.; McHugh, G.S.; Murray, G.D.; Marmarou, A.; Roberts, I.; Habbema, J.D.F.; Maas, A.I.R. Predicting outcome after traumatic brain injury: development and international validation of prognostic scores based on admission characteristics. PLoS Med., 2008, 5(8), e165.
[http://dx.doi.org/10.1371/journal.pmed.0050165] [PMID: 18684008]
[25]
Langlois, J.A.; Rutland-Brown, W.; Thomas, K.E. The incidence of traumatic brain injury among children in the United States: differences by race. J. Head Trauma Rehabil., 2005, 20(3), 229-238.
[http://dx.doi.org/10.1097/00001199-200505000-00006] [PMID: 15908823]
[26]
Niedzwecki, C.M.; Marwitz, J.H.; Ketchum, J.M.; Cifu, D.X.; Dillard, C.M.; Monasterio, E.A. Traumatic brain injury: a comparison of inpatient functional outcomes between children and adults. J. Head Trauma Rehabil., 2008, 23(4), 209-219.
[http://dx.doi.org/10.1097/01.HTR.0000327253.61751.29] [PMID: 18650765]
[27]
Haring, R.S.; Narang, K.; Canner, J.K.; Asemota, A.O.; George, B.P.; Selvarajah, S.; Haider, A.H.; Schneider, E.B. Traumatic brain injury in the elderly: morbidity and mortality trends and risk factors. J. Surg. Res., 2015, 195(1), 1-9.
[http://dx.doi.org/10.1016/j.jss.2015.01.017] [PMID: 25724764]
[28]
Hellewell, S.C.; Ziebell, J.M.; Lifshitz, J.; Morganti-Kossmann, M.C. Impact acceleration model of diffuse traumatic brain injury; Humana Press: New Jersey, USA, 2016, pp. 253-266.
[http://dx.doi.org/10.1007/978-1-4939-3816-2_15]
[29]
Yellinek, S.; Cohen, A.; Merkin, V.; Shelef, I.; Benifla, M. Clinical significance of skull base fracture in patients after traumatic brain injury. J. Clin. Neurosci., 2016, 25, 111-115.
[http://dx.doi.org/10.1016/j.jocn.2015.10.012] [PMID: 26724846]
[30]
Smith-Seemiller, L.; Fow, N.R.; Kant, R.; Franzen, M.D. Presence of post-concussion syndrome symptoms in patients with chronic pain vs mild traumatic brain injury. Brain Inj., 2003, 17(3), 199-206.
[http://dx.doi.org/10.1080/0269905021000030823] [PMID: 12623496]
[31]
Betz, A.L.; Crockard, A. Brain edema and the blood brain barrier. Neurosurgery. Sci. Basis Clin. Practice., 1992, 2, 353-372.
[32]
Marmarou, A.; Fatouros, P.P.; Barzó, P.; Portella, G.; Yoshihara, M.; Tsuji, O.; Yamamoto, T.; Laine, F.; Signoretti, S.; Ward, J.D.; Bullock, M.R.; Young, H.F. Contribution of edema and cerebral blood volume to traumatic brain swelling in head-injured patients. J. Neurosurg., 2000, 93(2), 183-193.
[http://dx.doi.org/10.3171/jns.2000.93.2.0183] [PMID: 10930002]
[33]
Marmarou, A.; Signoretti, S.; Fatouros, P.P.; Portella, G.; Aygok, G.A.; Bullock, M.R. Predominance of cellular edema in traumatic brain swelling in patients with severe head injuries. J. Neurosurg., 2006, 104(5), 720-730.
[http://dx.doi.org/10.3171/jns.2006.104.5.720] [PMID: 16703876]
[34]
Floyd, C.L.; Gorin, F.A.; Lyeth, B.G. Mechanical strain injury increases intracellular sodium and reverses Na+/Ca2+ exchange in cortical astrocytes. Glia, 2005, 51(1), 35-46.
[http://dx.doi.org/10.1002/glia.20183] [PMID: 15779085]
[35]
DeWitt, D.S.; Prough, D.S. Traumatic cerebral vascular injury: the effects of concussive brain injury on the cerebral vasculature. J. Neurotrauma, 2003, 20(9), 795-825.
[http://dx.doi.org/10.1089/089771503322385755] [PMID: 14577860]
[36]
Bayır, H.; Kagan, V.E.; Borisenko, G.G.; Tyurina, Y.Y.; Janesko, K.L.; Vagni, V.A.; Billiar, T.R.; Williams, D.L.; Kochanek, P.M. Enhanced oxidative stress in iNOS-deficient mice after traumatic brain injury: support for a neuroprotective role of iNOS. J. Cereb. Blood Flow Metab., 2005, 25(6), 673-684.
[http://dx.doi.org/10.1038/sj.jcbfm.9600068] [PMID: 15716856]
[37]
Chong, Z.Z.; Li, F.; Maiese, K. Oxidative stress in the brain: Novel cellular targets that govern survival during neurodegenerative disease. Prog. Neurobiol., 2005, 75(3), 207-246.
[http://dx.doi.org/10.1016/j.pneurobio.2005.02.004] [PMID: 15882775]
[38]
Shao, C.; Roberts, K.N.; Markesbery, W.R.; Scheff, S.W.; Lovell, M.A. Oxidative stress in head trauma in aging. J. Neurotrauma, 2004, 21(9), 1347.
[39]
Butterfield, D.A. Perspectives on oxidative stress in Alzheimer’s disease and predictions of future research emphases. J. Alzheimers Dis., 2018, 64(s1), S469-S479.
[http://dx.doi.org/10.3233/JAD-179912] [PMID: 29504538]
[40]
Jiang, T.; Sun, Q.; Chen, S. Oxidative stress: A major pathogenesis and potential therapeutic target of antioxidative agents in Parkinson’s disease and Alzheimer’s disease. Prog. Neurobiol., 2016, 147, 1-19.
[http://dx.doi.org/10.1016/j.pneurobio.2016.07.005] [PMID: 27769868]
[41]
Santos, J.R.; Gois, A.M.; Mendonça, D.M.; Freire, M.A. Nutritional status, oxidative stress and dementia: the role of selenium in Alzheimer’s disease. Front. Aging Neurosci., 2014, 6, 206.
[http://dx.doi.org/10.3389/fnagi.2014.00206] [PMID: 25221506]
[42]
Jaeger, M.; Schuhmann, M.U.; Soehle, M.; Meixensberger, J. Continuous assessment of cerebrovascular autoregulation after traumatic brain injury using brain tissue oxygen pressure reactivity. Crit. Care Med., 2006, 34(6), 1783-1788.
[http://dx.doi.org/10.1097/01.CCM.0000218413.51546.9E] [PMID: 16625135]
[43]
Johnston, A.J.; Steiner, L.A.; Coles, J.P.; Chatfield, D.A.; Fryer, T.D.; Smielewski, P.; Hutchinson, P.J.; O’Connell, M.T.; Al-Rawi, P.G.; Aigbirihio, F.I.; Clark, J.C.; Pickard, J.D.; Gupta, A.K.; Menon, D.K. Effect of cerebral perfusion pressure augmentation on regional oxygenation and metabolism after head injury. Crit. Care Med., 2005, 33(1), 189-195.
[http://dx.doi.org/10.1097/01.CCM.0000149837.09225.BD] [PMID: 15644668]
[44]
Rose, J.C.; Neill, T.A.; Hemphill, J.C., III Continuous monitoring of the microcirculation in neurocritical care: an update on brain tissue oxygenation. Curr. Opin. Crit. Care, 2006, 12(2), 97-102.
[http://dx.doi.org/10.1097/01.ccx.0000216574.26686.e9] [PMID: 16543783]
[45]
Lang, E.W.; Czosnyka, M.; Mehdorn, H.M. Tissue oxygen reactivity and cerebral autoregulation after severe traumatic brain injury. Crit. Care Med., 2003, 31(1), 267-271.
[http://dx.doi.org/10.1097/00003246-200301000-00042] [PMID: 12545027]
[46]
Stiefel, M.F.; Udoetuk, J.D.; Spiotta, A.M.; Gracias, V.H.; Goldberg, A.; Maloney-Wilensky, E.; Bloom, S.; Le Roux, P.D. Conventional neurocritical care and cerebral oxygenation after traumatic brain injury. J. Neurosurg., 2006, 105(4), 568-575.
[http://dx.doi.org/10.3171/jns.2006.105.4.568] [PMID: 17044560]
[47]
Oertel, M.; Boscardin, W.J.; Obrist, W.D.; Glenn, T.C.; McArthur, D.L.; Gravori, T.; Lee, J.H.; Martin, N.A. Posttraumatic vasospasm: the epidemiology, severity, and time course of an underestimated phenomenon: a prospective study performed in 299 patients. J. Neurosurg., 2005, 103(5), 812-824.
[http://dx.doi.org/10.3171/jns.2005.103.5.0812] [PMID: 16304984]
[48]
Lee, J.H.; Martin, N.A.; Alsina, G.; McArthur, D.L.; Zaucha, K.; Hovda, D.A.; Becker, D.P. Hemodynamically significant cerebral vasospasm and outcome after head injury: a prospective study. J. Neurosurg., 1997, 87(2), 221-233.
[http://dx.doi.org/10.3171/jns.1997.87.2.0221] [PMID: 9254085]
[49]
Sobey, C.G. Cerebrovascular dysfunction after subarachnoid haemorrhage: novel mechanisms and directions for therapy. Clin. Exp. Pharmacol. Physiol., 2001, 28(11), 926-929.
[http://dx.doi.org/10.1046/j.1440-1681.2001.03550.x] [PMID: 11703398]
[50]
Zuccarello, M.; Boccaletti, R.; Romano, A.; Rapoport, R.M. Endothelin B receptor antagonists attenuate subarachnoid hemorrhage-induced cerebral vasospasm. Stroke, 1998, 29(9), 1924-1929.
[http://dx.doi.org/10.1161/01.STR.29.9.1924] [PMID: 9731620]
[51]
Armstead, W.M. Differential activation of ERK, p38, and JNK MAPK by nociceptin/orphanin FQ in the potentiation of prostaglandin cerebrovasoconstriction after brain injury. Eur. J. Pharmacol., 2006, 529(1-3), 129-135.
[http://dx.doi.org/10.1016/j.ejphar.2005.08.059] [PMID: 16352304]
[52]
McLaughlin, M.R.; Marion, D.W. Cerebral blood flow and vasoresponsivity within and around cerebral contusions. J. Neurosurg., 1996, 85(5), 871-876.
[http://dx.doi.org/10.3171/jns.1996.85.5.0871] [PMID: 8893726]
[53]
Eldadah, B.A.; Faden, A. Caspase pathways, neuronal apoptosis, and CNS injury. J. Neurotrauma, 2000, 17(10), 811-829.
[http://dx.doi.org/10.1089/neu.2000.17.811] [PMID: 11063050]
[54]
Duschek, S.; Schandry, R. Reduced brain perfusion and cognitive performance due to constitutional hypotension. Clin. Auton. Res., 2007, 17(2), 69-76.
[http://dx.doi.org/10.1007/s10286-006-0379-7] [PMID: 17106628]
[55]
Robertson, C.L. Mitochondrial dysfunction contributes to cell death following traumatic brain injury in adult and immature animals. J. Bioenerg. Biomembr., 2004, 36(4), 363-368.
[http://dx.doi.org/10.1023/B:JOBB.0000041769.06954.e4] [PMID: 15377873]
[56]
Yi, J.H.; Hazell, A.S. Excitotoxic mechanisms and the role of astrocytic glutamate transporters in traumatic brain injury. Neurochem. Int., 2006, 48(5), 394-403.
[http://dx.doi.org/10.1016/j.neuint.2005.12.001] [PMID: 16473439]
[57]
Ankarcrona, M.; Dypbukt, J.M.; Bonfoco, E.; Zhivotovsky, B.; Orrenius, S.; Lipton, S.A.; Nicotera, P. Glutamate-induced neuronal death: A succession of necrosis or apoptosis depending on mitochondrial function. Neuron, 1995, 15(4), 961-973.
[http://dx.doi.org/10.1016/0896-6273(95)90186-8] [PMID: 7576644]
[58]
Nicholls, D.G.; Ward, M.W. Mitochondrial membrane potential and neuronal glutamate excitotoxicity: mortality and millivolts. Trends Neurosci., 2000, 23(4), 166-174.
[http://dx.doi.org/10.1016/S0166-2236(99)01534-9] [PMID: 10717676]
[59]
Xiong, Y.; Gu, Q.; Peterson, P.L.; Muizelaar, J.P.; Lee, C.P. Mitochondrial dysfunction and calcium perturbation induced by traumatic brain injury. J. Neurotrauma, 1997, 14(1), 23-34.
[http://dx.doi.org/10.1089/neu.1997.14.23] [PMID: 9048308]
[60]
Brustovetsky, N.; Brustovetsky, T.; Jemmerson, R.; Dubinsky, J.M. Calcium-induced Cytochrome c release from CNS mitochondria is associated with the permeability transition and rupture of the outer membrane. J. Neurochem., 2002, 80(2), 207-218.
[http://dx.doi.org/10.1046/j.0022-3042.2001.00671.x] [PMID: 11902111]
[61]
Singh, I.N.; Sullivan, P.G.; Deng, Y.; Mbye, L.H.; Hall, E.D. Time course of post-traumatic mitochondrial oxidative damage and dysfunction in a mouse model of focal traumatic brain injury: implications for neuroprotective therapy. J. Cereb. Blood Flow Metab., 2006, 26(11), 1407-1418.
[http://dx.doi.org/10.1038/sj.jcbfm.9600297] [PMID: 16538231]
[62]
Sullivan, P.G.; Rabchevsky, A.G.; Waldmeier, P.C.; Springer, J.E. Mitochondrial permeability transition in CNS trauma: Cause or effect of neuronal cell death? J. Neurosci. Res., 2005, 79(1-2), 231-239.
[http://dx.doi.org/10.1002/jnr.20292] [PMID: 15573402]
[63]
Silver, J.M.; Koumaras, B.; Chen, M.; Mirski, D.; Potkin, S.G.; Reyes, P.; Warden, D.; Harvey, P.D.; Arciniegas, D.; Katz, D.I.; Gunay, I. Effects of rivastigmine on cognitive function in patients with traumatic brain injury. Neurology, 2006, 67(5), 748-755.
[http://dx.doi.org/10.1212/01.wnl.0000234062.98062.e9] [PMID: 16966534]
[64]
Karve, I.P.; Taylor, J.M.; Crack, P.J. The contribution of astrocytes and microglia to traumatic brain injury. Br. J. Pharmacol., 2016, 173(4), 692-702.
[http://dx.doi.org/10.1111/bph.13125] [PMID: 25752446]
[65]
Thelin, E.P.; Tajsic, T.; Zeiler, F.A.; Menon, D.K.; Hutchinson, P.J.A.; Carpenter, K.L.H.; Morganti-Kossmann, M.C.; Helmy, A. Monitoring the neuroinflammatory response following acute brain injury. Front. Neurol., 2017, 8, 351.
[http://dx.doi.org/10.3389/fneur.2017.00351] [PMID: 28775710]
[66]
Morganti-Kossmann, M.C.; Semple, B.D.; Hellewell, S.C.; Bye, N.; Ziebell, J.M. The complexity of neuroinflammation consequent to traumatic brain injury: from research evidence to potential treatments. Acta Neuropathol., 2019, 137(5), 731-755.
[http://dx.doi.org/10.1007/s00401-018-1944-6] [PMID: 30535946]
[67]
Zhao, Y.; Mu, H.; Huang, Y.; Li, S.; Wang, Y.; Stetler, R.A.; Bennett, M.V.L.; Dixon, C.E.; Chen, J.; Shi, Y. Microglia-specific deletion of histone deacetylase 3 promotes inflammation resolution, white matter integrity, and functional recovery in a mouse model of traumatic brain injury. J. Neuroinflammation, 2022, 19(1), 201.
[http://dx.doi.org/10.1186/s12974-022-02563-2] [PMID: 35933343]
[68]
Hlatky, R.; Furuya, Y.; Valadka, A.B.; Gonzalez, J.; Chacko, A.; Mizutani, Y.; Contant, C.F.; Robertson, C.S. Dynamic autoregulatory response after severe head injury. J. Neurosurg., 2002, 97(5), 1054-1061.
[http://dx.doi.org/10.3171/jns.2002.97.5.1054] [PMID: 12450026]
[69]
Lucas, S.M.; Rothwell, N.J.; Gibson, R.M. The role of inflammation in CNS injury and disease. Br. J. Pharmacol., 2006, 147(S1)(Suppl. 1), S232-S240.
[http://dx.doi.org/10.1038/sj.bjp.0706400] [PMID: 16402109]
[70]
Zhang, Z.; Artelt, M.; Burnet, M.; Trautmann, K.; Schluesener, H.J. Early infiltration of CD8+ macrophages/microglia to lesions of rat traumatic brain injury. Neuroscience, 2006, 141(2), 637-644.
[http://dx.doi.org/10.1016/j.neuroscience.2006.04.027] [PMID: 16725271]
[71]
Fabricius, M.; Fuhr, S.; Bhatia, R.; Boutelle, M.; Hashemi, P.; Strong, A.J.; Lauritzen, M. Cortical spreading depression and peri-infarct depolarization in acutely injured human cerebral cortex. Brain, 2006, 129(3), 778-790.
[http://dx.doi.org/10.1093/brain/awh716] [PMID: 16364954]
[72]
Nathoo, N.; Narotam, P.K.; Agrawal, D.K.; Connolly, C.A.; van Dellen, J.R.; Barnett, G.H.; Chetty, R. Influence of apoptosis on neurological outcome following traumatic cerebral contusion. J. Neurosurg., 2004, 101(2), 233-240.
[http://dx.doi.org/10.3171/jns.2004.101.2.0233] [PMID: 15309913]
[73]
Liu, X.Z.; Xu, X.M.; Hu, R.; Du, C.; Zhang, S.X.; McDonald, J.W.; Dong, H.X.; Wu, Y.J.; Fan, G.S.; Jacquin, M.F.; Hsu, C.Y.; Choi, D.W. Neuronal and glial apoptosis after traumatic spinal cord injury. J. Neurosci., 1997, 17(14), 5395-5406.
[http://dx.doi.org/10.1523/JNEUROSCI.17-14-05395.1997] [PMID: 9204923]
[74]
Nielsen, T.H.; Bindslev, T.T.; Pedersen, S.M.; Toft, P.; Olsen, N.V.; Nordström, C.H. Cerebral energy metabolism during induced mitochondrial dysfunction. Acta Anaesthesiol. Scand., 2013, 57(2), 229-235.
[http://dx.doi.org/10.1111/j.1399-6576.2012.02783.x] [PMID: 23017022]
[75]
Uzan, M.; Erman, H.; Tanriverdi, T.; Sanus, G.Z.; Kafadar, A.; Uzun, H. Evaluation of apoptosis in cerebrospinal fluid of patients with severe head injury. Acta Neurochir. (Wien), 2006, 148(11), 1157-1164.
[http://dx.doi.org/10.1007/s00701-006-0887-1] [PMID: 16964558]
[76]
Cunningham, A.S.; Salvador, R.; Coles, J.P.; Chatfield, D.A.; Bradley, P.G.; Johnston, A.J.; Steiner, L.A.; Fryer, T.D.; Aigbirhio, F.I.; Smielewski, P.; Williams, G.B.; Carpenter, T.A.; Gillard, J.H.; Pickard, J.D.; Menon, D.K. Physiological thresholds for irreversible tissue damage in contusional regions following traumatic brain injury. Brain, 2005, 128(8), 1931-1942.
[http://dx.doi.org/10.1093/brain/awh536] [PMID: 15888537]
[77]
Tavazzi, B.; Signoretti, S.; Lazzarino, G.; Amorini, A.M.; Delfini, R.; Cimatti, M.; Marmarou, A.; Vagnozzi, R. Cerebral oxidative stress and depression of energy metabolism correlate with severity of diffuse brain injury in rats. Neurosurgery, 2005, 56(3), 582-589.
[http://dx.doi.org/10.1227/01.NEU.0000156715.04900.E6] [PMID: 15730584]
[78]
Clark, R.S.B.; Carcillo, J.A.; Kochanek, P.M.; Obrist, W.D.; Jackson, E.K.; Mi, Z.; Wisneiwski, S.R.; Bell, M.J.; Marion, D.W. Cerebrospinal fluid adenosine concentration and uncoupling of cerebral blood flow and oxidative metabolism after severe head injury in humans. Neurosurgery, 1997, 41(6), 1284-1292.
[http://dx.doi.org/10.1097/00006123-199712000-00010] [PMID: 9402580]
[79]
Bergsneider, M.; Hovda, D.A.; Shalmon, E.; Kelly, D.F.; Vespa, P.M.; Martin, N.A.; Phelps, M.E.; McArthur, D.L.; Caron, M.J.; Kraus, J.F.; Becker, D.P. Cerebral hyperglycolysis following severe traumatic brain injury in humans: a positron emission tomography study. J. Neurosurg., 1997, 86(2), 241-251.
[http://dx.doi.org/10.3171/jns.1997.86.2.0241] [PMID: 9010426]
[80]
Glenn, T.C.; Kelly, D.F.; Boscardin, W.J.; McArthur, D.L.; Vespa, P.; Oertel, M.; Hovda, D.A.; Bergsneider, M.; Hillered, L.; Martin, N.A. Energy dysfunction as a predictor of outcome after moderate or severe head injury: indices of oxygen, glucose, and lactate metabolism. J. Cereb. Blood Flow Metab., 2003, 23(10), 1239-1250.
[http://dx.doi.org/10.1097/01.WCB.0000089833.23606.7F] [PMID: 14526234]
[81]
Kochanek, P.M.; Adelson, P.D.; Rosario, B.L.; Hutchison, J.; Miller Ferguson, N.; Ferrazzano, P.; O’Brien, N.; Beca, J.; Sarnaik, A.; LaRovere, K.; Bennett, T.D.; Deep, A.; Gupta, D.; Willyerd, F.A.; Gao, S.; Wisniewski, S.R.; Bell, M.J.; Agarwal, S.; Mahoney, S.; Loftis, L.; Morris, K.; Piper, L.; Slater, A.; Walson, K.; Kilbaugh, T.; O’Meara, A.M.I.; Dean, N.; Carpenter, J.; Chima, R.; Kurowski, B.; Wildshut, E.; Ketharanathan, N.; Peters, M.; Tasker, R.; Balcells, J.; Robertson, C.; Cooper, S.; Murphy, S.; Whalen, M.; Kuluz, J.; Butt, W.; Thomas, N.; Buttram, S.; Erickson, S.; Samuel, J.M.; Agbeko, R.; Edwards, R.; Macintosh, I.; Kong, M.; Natale, J.; Siefkes, H.; Giza, C.; Thangarajah, H.; Shellington, D.; Figaji, A.; Newell, E.; Truemper, E.; Mahapatra, S.; Clark, R.; Au, A.; Beers, S.; Newth, C.; Shafi, N.; West, A.N.; Miles, D.; Schober, M.; Le, T.; Zimmerman, J.; Wainwright, M.; Vavilala, M.; Friess, S.; Pineda, J. Comparison of intracranial pressure measurements before and after hypertonic saline or mannitol treatment in children with severe traumatic brain injury. JAMA Netw. Open, 2022, 5(3), e220891.
[http://dx.doi.org/10.1001/jamanetworkopen.2022.0891] [PMID: 35267036]
[82]
Enevoldsen, E.M.; Jensen, F.T. Autoregulation and CO2 responses of cerebral blood flow in patients with acute severe head injury. J. Neurosurg., 1978, 48(5), 689-703.
[http://dx.doi.org/10.3171/jns.1978.48.5.0689] [PMID: 641549]
[83]
Hauerberg, J.; Xiaodong, M.; Willumsen, L.; Pedersen, D.B.; Juhler, M. The upper limit of cerebral blood flow autoregulation in acute intracranial hypertension. J. Neurosurg. Anesthesiol., 1998, 10(2), 106-112.
[http://dx.doi.org/10.1097/00008506-199804000-00007] [PMID: 9559769]
[84]
Golding, E.M.; Steenberg, M.L.; Contant, C.F., Jr; Krishnappa, I.; Robertson, C.S.; Bryan, R.M. Jr Cerebrovascular reactivity to CO 2 and hypotension after mild cortical impact injury. Am. J. Physiol. Heart Circ. Physiol., 1999, 277(4), H1457-H1466.
[http://dx.doi.org/10.1152/ajpheart.1999.277.4.H1457]
[85]
Lam, J.M.K.; Hsiang, J.N.K.; Poon, W.S. Monitoring of autoregulation using laser Doppler flowmetry in patients with head injury. J. Neurosurg., 1997, 86(3), 438-445.
[http://dx.doi.org/10.3171/jns.1997.86.3.0438] [PMID: 9046300]
[86]
Lee, J.H.; Kelly, D.F.; Oertel, M.; McArthur, D.L.; Glenn, T.C.; Vespa, P.; Boscardin, W.J.; Martin, N.A. Carbon dioxide reactivity, pressure autoregulation, and metabolic suppression reactivity after head injury: a transcranial Doppler study. J. Neurosurg., 2001, 95(2), 222-232.
[http://dx.doi.org/10.3171/jns.2001.95.2.0222] [PMID: 11780891]
[87]
Algattas, H.; Huang, J. Traumatic Brain Injury pathophysiology and treatments: early, intermediate, and late phases post-injury. Int. J. Mol. Sci., 2013, 15(1), 309-341.
[http://dx.doi.org/10.3390/ijms15010309] [PMID: 24381049]
[88]
Yoshino, A.; Hovda, D.A.; Kawamata, T.; Katayama, Y.; Becker, D.P. Dynamic changes in local cerebral glucose utilization following cerebral concussion in rats: evidence of a hyper- and subsequent hypometabolic state. Brain Res., 1991, 561(1), 106-119.
[http://dx.doi.org/10.1016/0006-8993(91)90755-K] [PMID: 1797338]
[89]
Madikians, A.; Giza, C.C. A clinician’s guide to the pathophysiology of traumatic brain injury. Indian J. Neurotrauma, 2006, 3(1), 9-17.
[http://dx.doi.org/10.1016/S0973-0508(06)80004-3]
[90]
Bergsneider, M.; Hovda, D.A.; Lee, S.M.; Kelly, D.F. McARTHUR, D.L.; Vespa, P.M.; Lee, J.H.; Huang, S.C.; Martin, N.A.; Phelps, M.; Becker, D.P. Dissociation of cerebral glucose metabolism and level of consciousness during the period of metabolic depression following human traumatic brain injury. J. Neurotrauma, 2000, 17(5), 389-401.
[http://dx.doi.org/10.1089/neu.2000.17.389] [PMID: 10833058]
[91]
Biros, M.H.; Dimlich, R.V.W. Brain lactate during partial global ischemia and reperfusion: Effect of pretreatment with dichloroacetate in a rat model. Am. J. Emerg. Med., 1987, 5(4), 271-277.
[http://dx.doi.org/10.1016/0735-6757(87)90349-4] [PMID: 3593491]
[92]
Nilsson, B.; Nordström, C.H. Rate of cerebral energy consumption in concussive head injury in the rat. J. Neurosurg., 1977, 47(2), 274-281.
[http://dx.doi.org/10.3171/jns.1977.47.2.0274] [PMID: 874550]
[93]
Doberstein, C.E.; Hovda, D.A.; Becker, D.P. Clinical considerations in the reduction of secondary brain injury. Ann. Emerg. Med., 1993, 22(6), 993-997.
[http://dx.doi.org/10.1016/S0196-0644(05)82740-4] [PMID: 8503538]
[94]
Jullienne, A.; Obenaus, A.; Ichkova, A.; Savona-Baron, C.; Pearce, W.J.; Badaut, J. Chronic cerebrovascular dysfunction after traumatic brain injury. J. Neurosci. Res., 2016, 94(7), 609-622.
[http://dx.doi.org/10.1002/jnr.23732] [PMID: 27117494]
[95]
Calabrese, V.; Cornelius, C.; Dinkova-Kostova, A.T.; Calabrese, E.J.; Mattson, M.P. Cellular stress responses, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders. Antioxid. Redox Signal., 2010, 13(11), 1763-1811.
[http://dx.doi.org/10.1089/ars.2009.3074] [PMID: 20446769]
[96]
da Costa, I.M.; de Moura, F.M.A.; de Paiva, C.J.R.L.; de Araújo, D.P.; Norrara, B.; Moreira Rosa, I.M.M.; de Azevedo, E.P.; do Rego, A.C.M.; Filho, I.A.; Guzen, F.P. Supplementation with Curcuma longa reverses neurotoxic and behavioral damage in models of Alzheimer’s disease: a systematic review. Curr. Neuropharmacol., 2019, 17(5), 406-421.
[http://dx.doi.org/10.2174/0929867325666180117112610] [PMID: 29338678]
[97]
Farkhondeh, T.; Samarghandian, S.; Roshanravan, B.; Peivasteh-roudsari, L. Impact of curcumin on traumatic brain injury and involved molecular signaling pathways. Recent Pat. Food Nutr. Agric., 2020, 11(2), 137-144.
[http://dx.doi.org/10.2174/2212798410666190617161523] [PMID: 31288732]
[98]
Javed, H.; Azimullah, S.; Meeran, M.F.; Ansari, S.; Ojha, S. Neuroprotective effects of thymol, a dietary monoterpene against dopaminergic neurodegeneration in rotenone-induced rat model of Parkinson’s disease. Int. J. Mol. Sci., 2019, 20(7), 1538.
[http://dx.doi.org/10.3390/ijms20071538] [PMID: 30934738]
[99]
Costa, I.M.; Lima, F.O.V.; Fernandes, L.C.B.; Norrara, B.; Neta, F.I.; Alves, R.D.; Cavalcanti, J.R.L.P.; Lucena, E.E.S.; Cavalcante, J.S.; Rego, A.C.M.; Filho, I.A.; Queiroz, D.B.; Freire, M.A.M.; Guzen, F.P.; Astragaloside, I.V. Supplementation promotes a neuroprotective effect in experimental models of neurological disorders: a systematic review. Curr. Neuropharmacol., 2019, 17(7), 648-665.
[http://dx.doi.org/10.2174/1570159X16666180911123341] [PMID: 30207235]
[100]
Chen, W.; Qi, J.; Feng, F.; Wang, M.; Bao, G.; Wang, T.; Xiang, M.; Xie, W. Neuroprotective effect of allicin against traumatic brain injury via Akt/endothelial nitric oxide synthase pathway-mediated anti-inflammatory and anti-oxidative activities. Neurochem. Int., 2014, 68, 28-37.
[http://dx.doi.org/10.1016/j.neuint.2014.01.015] [PMID: 24530793]
[101]
Keshavarzi, Z.; Shakeri, F.; Barreto, G.E.; Bibak, B.; Sathyapalan, T.; Sahebkar, A. Medicinal plants in traumatic brain injury: Neuroprotective mechanisms revisited. Biofactors, 2019, 45(4), 517-535.
[http://dx.doi.org/10.1002/biof.1516] [PMID: 31206893]
[102]
Li, Z.; Zeng, G.; Zheng, X.; Wang, W.; Ling, Y.; Tang, H.; Zhang, J. Neuroprotective effect of formononetin against TBI in rats via suppressing inflammatory reaction in cortical neurons. Biomed. Pharmacother., 2018, 106, 349-354.
[http://dx.doi.org/10.1016/j.biopha.2018.06.041] [PMID: 29966980]
[103]
Kumar, A.; Kennedy-Boone, D.; Weisz, H.A. Neuroprotective effects of aframomummelegueta extract after experimental traumatic brain injury. Nat. Prod. Chem. Res., 2015, 3(1), 1-6.
[http://dx.doi.org/10.4172/2329-6836.1000167]
[104]
Gugliandolo, E.; D’Amico, R.; Cordaro, M.; Fusco, R.; Siracusa, R.; Crupi, R.; Impellizzeri, D.; Cuzzocrea, S.; Di Paola, R. Neuroprotective effect of artesunate in experimental model of traumatic brain injury. Front. Neurol., 2018, 9, 590.
[http://dx.doi.org/10.3389/fneur.2018.00590] [PMID: 30108544]
[105]
Loane, D.J.; Stoica, B.A.; Byrnes, K.R.; Jeong, W.; Faden, A.I. Activation of mGluR5 and inhibition of NADPH oxidase improves functional recovery after traumatic brain injury. J. Neurotrauma, 2013, 30(5), 403-412.
[http://dx.doi.org/10.1089/neu.2012.2589] [PMID: 23199080]
[106]
Wang, Y.; Zhang, C.; Peng, W.; Xia, Z.; Gan, P.; Huang, W.; Shi, Y.; Fan, R. Hydroxysafflor yellow A exerts antioxidant effects in a rat model of traumatic brain injury. Mol. Med. Rep., 2016, 14(4), 3690-3696.
[http://dx.doi.org/10.3892/mmr.2016.5720] [PMID: 27599591]
[107]
Yulug, B.; Kilic, E.; Altunay, S.; Ersavas, C.; Orhan, C.; Dalay, A.; Tuzcu, M.; Sahin, N.; Juturu, V.; Sahin, K. Cinnamon polyphenol extract exerts neuroprotective activity in traumatic brain injury in male mice. CNS Neurol. Disord. Drug Targets, 2018, 17(6), 439-447.
[http://dx.doi.org/10.2174/1871527317666180501110918] [PMID: 29714150]
[108]
He, Y.; Qu, S.; Wang, J.; He, X.; Lin, W.; Zhen, H.; Zhang, X. Neuroprotective effects of osthole pretreatment against traumatic brain injury in rats. Brain Res., 2012, 1433, 127-136.
[http://dx.doi.org/10.1016/j.brainres.2011.11.027] [PMID: 22153917]
[109]
Wang, K.; Zhang, L.; Rao, W.; Su, N.; Hui, H.; Wang, L.; Peng, C.; Tu, Y.; Zhang, S.; Fei, Z. Neuroprotective effects of crocin against traumatic brain injury in mice: Involvement of notch signaling pathway. Neurosci. Lett., 2015, 591, 53-58.
[http://dx.doi.org/10.1016/j.neulet.2015.02.016] [PMID: 25681620]
[110]
Lusardi, T.A.; Lytle, N.K.; Szybala, C.; Boison, D. Caffeine prevents acute mortality after TBI in rats without increased morbidity. Exp. Neurol., 2012, 234(1), 161-168.
[http://dx.doi.org/10.1016/j.expneurol.2011.12.026] [PMID: 22226594]
[111]
Li, W.; Dai, S.; An, J.; Li, P.; Chen, X.; Xiong, R.; Liu, P.; Wang, H.; Zhao, Y.; Zhu, M.; Liu, X.; Zhu, P.; Chen, J.F.; Zhou, Y. Chronic but not acute treatment with caffeine attenuates traumatic brain injury in the mouse cortical impact model. Neuroscience, 2008, 151(4), 1198-1207.
[http://dx.doi.org/10.1016/j.neuroscience.2007.11.020] [PMID: 18207647]
[112]
Zhu, H.; Bian, C.; Yuan, J.; Chu, W.; Xiang, X.; Chen, F.; Wang, C.; Feng, H.; Lin, J. Curcumin attenuates acute inflammatory injury by inhibiting the TLR4/MyD88/NF-κB signaling pathway in experimental traumatic brain injury. J. Neuroinflammation, 2014, 11(1), 59.
[http://dx.doi.org/10.1186/1742-2094-11-59] [PMID: 24669820]
[113]
RA., Mans D.; Djotaroeno, M.; Friperson, P.; Pawirodihardjo, J. Phytochemical and pharmacological support for the traditional uses of Zingiberacea species in suriname - a review of the literature. Pharmacogn. J., 2019, 11(6s)(Suppl.), 1511-1525.
[http://dx.doi.org/10.5530/pj.2019.11.232]
[114]
Meng, X.; Li, N.; Zhang, Y.; Fan, D.; Yang, C.; Li, H.; Guo, D.; Pan, S. Beneficial effect of β-elemene alone and in combination with hyperbaric oxygen in traumatic brain injury by inflammatory pathway. Transl. Neurosci., 2018, 9(1), 33-37.
[http://dx.doi.org/10.1515/tnsci-2018-0007] [PMID: 29992051]
[115]
Gahm, C.; Holmin, S.; Rudehill, S.; Mathiesen, T. Neuronal degeneration and iNOS expression in experimental brain contusion following treatment with colchicine, dexamethasone, tirilazad mesylate and nimodipine. Acta Neurochir. (Wien), 2005, 147(10), 1071-1084.
[http://dx.doi.org/10.1007/s00701-005-0590-7] [PMID: 16044358]
[116]
Liu, Z.K.; Ng, C.F.; Shiu, H.T.; Wong, H.L.; Chin, W.C.; Zhang, J.F.; Lam, P.K.; Poon, W.S.; Lau, C.B.S.; Leung, P.C.; Ko, C.H. Neuroprotective effect of Da Chuanxiong Formula against cognitive and motor deficits in a rat controlled cortical impact model of traumatic brain injury. J. Ethnopharmacol., 2018, 217, 11-22.
[http://dx.doi.org/10.1016/j.jep.2018.02.004] [PMID: 29425850]
[117]
Zhang, J.; Dai, K. Anti-neuron apoptosis of Resina draconis water extracts on rats with traumatic brain injury. Biomed. Res., 2016, 27(4), 1240-1244.
[118]
Wang, W.; Li, H.; Yu, J.; Hong, M.; Zhou, J.; Zhu, L.; Wang, Y.; Luo, M.; Xia, Z.; Yang, Z.J.; Tang, T.; Ren, P.; Huang, X.; Wang, J. Protective effects of chinese herbal medicine rhizome drynariae in rats after traumatic brain injury and identification of active compound. Mol. Neurobiol., 2016, 53(7), 4809-4820.
[http://dx.doi.org/10.1007/s12035-015-9385-x] [PMID: 26334614]
[119]
Xia, Q.; Jiang, L.; Hu, Y.; He, X.; Lv, Q.; Wang, T. Breviscapine reduces neuronal injury caused by traumatic brain injury insult: partly associated with suppression of interleukin-6 expression. Neural Regen. Res., 2017, 12(1), 90-95.
[http://dx.doi.org/10.4103/1673-5374.198990] [PMID: 28250753]
[120]
Ng, C.F.; Ko, C.H.; Koon, C.M.; Chin, W.C.; Kwong, H.C.S.T.; Lo, A.W.I.; Wong, H.L.; Fung, K.P.; Lau, C.B.S.; Lam, P.K.; Poon, W.S.; Leung, P.C. The aqueous extract of rhizome of Gastrodia elata Blume attenuates locomotor defect and inflammation after traumatic brain injury in rats. J. Ethnopharmacol., 2016, 185, 87-95.
[http://dx.doi.org/10.1016/j.jep.2016.03.018] [PMID: 26979339]
[121]
Menkü, A.; Koç, R.K.; Tayfur, V.; Saraymen, R.; Narin, F.; Akdemir, H. Effects of mexiletine, ginkgo biloba extract (EGb 761), and their combination on experimental head injury. Neurosurg. Rev., 2003, 26(4), 288-291.
[http://dx.doi.org/10.1007/s10143-003-0277-6] [PMID: 12884054]
[122]
Yu, W.H.; Dong, X.Q.; Hu, Y.Y.; Huang, M.; Zhang, Z.Y. Ginkgolide B reduces neuronal cell apoptosis in the traumatic rat brain: possible involvement of toll-like receptor 4 and nuclear factor kappa B pathway. Phytother. Res., 2012, 26(12), 1838-1844.
[http://dx.doi.org/10.1002/ptr.4662] [PMID: 22422608]
[123]
Hoffman, S.W.; Stein, D.G. Extract of Ginkgo biloba (EGb 761) improves behavioral performance and reduces histopathology after cortical contusion in the rat. Restor. Neurol. Neurosci., 1997, 11(1,2), 1-12.
[http://dx.doi.org/10.3233/RNN-1997-111201] [PMID: 21551523]
[124]
Qin, H.; Qin, J.; Hu, J.; Huang, H.; Ma, L. Malvasylvestris attenuates cognitive deficits in a repetitive mild traumatic brain injury rat model by reducing neuronal degeneration and astrocytosis in the hippocampus. Med. Sci. Monit., 2017, 23, 6099-6106.
[http://dx.doi.org/10.12659/MSM.905429] [PMID: 29276216]
[125]
Verbois, S.; Scheff, S.W.; Pauly, J.R. Chronic nicotine treatment attenuates α7 nicotinic receptor deficits following traumatic brain injury. Neuropharmacology, 2003, 44(2), 224-233.
[http://dx.doi.org/10.1016/S0028-3908(02)00366-0] [PMID: 12623221]
[126]
Mohamed, A.J. Potential therapeutic effect of amlodipine and thymoquinone alone or in combination on traumatic brain injury in mice. CU PhD. Thesis, 2017.
[127]
Kumar, A.; Rinwa, P.; Dhar, H. Microglial inhibitory effect of ginseng ameliorates cognitive deficits and neuroinflammation following traumatic head injury in rats. Inflammopharmacology, 2014, 22(3), 155-167.
[http://dx.doi.org/10.1007/s10787-013-0187-3] [PMID: 24052247]
[128]
Robinson, S.E.; Ryland, J.E.; Martin, R.M.; Gyenes, C.A.; Davis, T.R. The effects of morphine and traumatic brain injury on central cholinergic neurons. Brain Res., 1989, 503(1), 32-37.
[http://dx.doi.org/10.1016/0006-8993(89)91699-5] [PMID: 2611656]
[129]
Statler, K.D.; Alexander, H.; Vagni, V.; Dixon, C.E.; Clark, R.S.B.; Jenkins, L.; Kochanek, P.M. Comparison of seven anesthetic agents on outcome after experimental traumatic brain injury in adult, male rats. J. Neurotrauma, 2006, 23(1), 97-108.
[http://dx.doi.org/10.1089/neu.2006.23.97] [PMID: 16430376]
[130]
Scheff, S.W.; Ansari, M.A.; Roberts, K.N. Neuroprotective effect of Pycnogenol® following traumatic brain injury. Exp. Neurol., 2013, 239, 183-191.
[http://dx.doi.org/10.1016/j.expneurol.2012.09.019] [PMID: 23059456]
[131]
Chen, S.F.; Hung, T.H.; Chen, C.C.; Lin, K.H.; Huang, Y.N.; Tsai, H.C.; Wang, J.Y. Lovastatin improves histological and functional outcomes and reduces inflammation after experimental traumatic brain injury. Life Sci., 2007, 81(4), 288-298.
[http://dx.doi.org/10.1016/j.lfs.2007.05.023] [PMID: 17612572]
[132]
Zeng, J.P.; Jia, L.T.; Jin, X.; Zheng, J.P.; Zhang, X.W.; Zhan, R.Y. Emodin attenuates brain edema after traumatic brain injury in rats. Int. J. Clin. Exp. Med., 2017, 10(11), 15213-15220.
[133]
Wang, Y.; Fan, X.; Tang, T.; Fan, R.; Zhang, C.; Huang, Z.; Peng, W.; Gan, P.; Xiong, X.; Huang, W.; Huang, X. Rhein and rhubarb similarly protect the blood-brain barrier after experimental traumatic brain injury via gp91phox subunit of NADPH oxidase/ROS/] ERK/MMP-9 signaling pathway. Sci. Rep., 2016, 6(1), 37098.
[http://dx.doi.org/10.1038/srep37098] [PMID: 27901023]
[134]
Xu, X.; Lv, H.; Xia, Z.; Fan, R.; Zhang, C.; Wang, Y.; Wang, D. Rhein exhibits antioxidative effects similar to Rhubarb in a rat model of traumatic brain injury. BMC Complement. Altern. Med., 2017, 17(1), 140.
[http://dx.doi.org/10.1186/s12906-017-1655-x] [PMID: 28264680]
[135]
Song, H.; Xu, L.; Zhang, R.; Cao, Z.; Zhang, H.; Yang, L.; Guo, Z.; Qu, Y.; Yu, J. Rosemary extract improves cognitive deficits in a rats model of repetitive mild traumatic brain injury associated with reduction of astrocytosis and neuronal degeneration in hippocampus. Neurosci. Lett., 2016, 622, 95-101.
[http://dx.doi.org/10.1016/j.neulet.2016.04.048] [PMID: 27113205]
[136]
Sawmiller, D.; Li, S.; Shahaduzzaman, M.; Smith, A.; Obregon, D.; Giunta, B.; Borlongan, C.; Sanberg, P.; Tan, J. Luteolin reduces Alzheimer’s disease pathologies induced by traumatic brain injury. Int. J. Mol. Sci., 2014, 15(1), 895-904.
[http://dx.doi.org/10.3390/ijms15010895] [PMID: 24413756]
[137]
Chen, T.; Liu, W.; Chao, X.; Zhang, L.; Qu, Y.; Huo, J.; Fei, Z. Salvianolic acid B attenuates brain damage and inflammation after traumatic brain injury in mice. Brain Res. Bull., 2011, 84(2), 163-168.
[http://dx.doi.org/10.1016/j.brainresbull.2010.11.015] [PMID: 21134421]
[138]
Abbasloo, E.; Dehghan, F.; Khaksari, M. The anti-inflammatory properties of SaturejakhuzistanicaJamzad essential oil attenuate the effects of traumatic brain injuries in rats. Sci. Rep., 2016, 6(1), 1-2.
[PMID: 28442746]
[139]
Chen, S-F.; Hsu, C-W.; Huang, W-H.; Wang, J-Y. Post-injury baicalein improves histological and functional outcomes and reduces inflammatory cytokines after experimental traumatic brain injury. Br. J. Pharmacol., 2008, 155(8), 1279-1296.
[http://dx.doi.org/10.1038/bjp.2008.345] [PMID: 18776918]
[140]
Chen, C.C.; Hung, T.H.; Wang, Y.H.; Lin, C.W.; Wang, P.Y.; Lee, C.Y.; Chen, S.F. Wogonin improves histological and functional outcomes, and reduces activation of TLR4/NF-κB signaling after experimental traumatic brain injury. PLoS One, 2012, 7(1), e30294.
[http://dx.doi.org/10.1371/journal.pone.0030294] [PMID: 22272328]
[141]
Lee, H.F.; Lee, T.S.; Kou, Y.R. Anti-inflammatory and neuroprotective effects of triptolide on traumatic brain injury in rats. Respir. Physiol. Neurobiol., 2012, 182(1), 1-8.
[http://dx.doi.org/10.1016/j.resp.2012.01.016] [PMID: 22366865]
[142]
Yuan, Y.; Zhu, F.; Pu, Y.; Wang, D.; Huang, A.; Hu, X.; Qin, S.; Sun, X.; Su, Z.; He, C. Neuroprotective effects of nitidine against traumatic CNS injury via inhibiting microglia activation. Brain Behav. Immun., 2015, 48, 287-300.
[http://dx.doi.org/10.1016/j.bbi.2015.04.008] [PMID: 25900440]
[143]
Kerman, M.; Kanter, M.; Coşkun, K.K.; Erboga, M.; Gurel, A. Neuroprotective effects of Caffeic acid phenethyl ester on experimental traumatic brain injury in rats. J. Mol. Histol., 2012, 43(1), 49-57.
[http://dx.doi.org/10.1007/s10735-011-9376-9] [PMID: 22124729]
[144]
Farbood, Y.; Sarkaki, A.; Dianat, M.; Khodadadi, A.; Haddad, M.K.; Mashhadizadeh, S. Ellagic acid prevents cognitive and hippocampal long-term potentiation deficits and brain inflammation in rat with traumatic brain injury. Life Sci., 2015, 124, 120-127.
[http://dx.doi.org/10.1016/j.lfs.2015.01.013] [PMID: 25637685]
[145]
Li, Z.; Dong, X.; Zhang, J.; Zeng, G.; Zhao, H.; Liu, Y.; Qiu, R.; Mo, L.; Ye, Y. Formononetin protects TBI rats against neurological lesions and the underlying mechanism. J. Neurol. Sci., 2014, 338(1-2), 112-117.
[http://dx.doi.org/10.1016/j.jns.2013.12.027] [PMID: 24411660]
[146]
Soltani, Z.; Khaksari, M.; Jafari, E.; Iranpour, M.; Shahrokhi, N. Is genistein neuroprotective in traumatic brain injury? Physiol. Behav., 2015, 152(Pt A), 26-31.
[http://dx.doi.org/10.1016/j.physbeh.2015.08.037] [PMID: 26367454]
[147]
Sarkaki, A.; Farbood, Y.; Gharib-Naseri, M.K.; Badavi, M.; Mansouri, M.T.; Haghparast, A.; Mirshekar, M.A. Gallic acid improved behavior, brain electrophysiology, and inflammation in a rat model of traumatic brain injury. Can. J. Physiol. Pharmacol., 2015, 93(8), 687-694.
[http://dx.doi.org/10.1139/cjpp-2014-0546] [PMID: 26222320]
[148]
Du, A.; Cai, R.; Shi, J.; Wu, Q. Protective effects of Icariin on traumatic brain injury. Curr. Neurovasc. Res., 2021, 18(5), 508-514.
[http://dx.doi.org/10.2174/1567202619666211223125628] [PMID: 34951380]
[149]
Kempuraj, D.; Thangavel, R.; Kempuraj, D.D.; Ahmed, M.E.; Selvakumar, G.P.; Raikwar, S.P.; Zaheer, S.A.; Iyer, S.S.; Govindarajan, R.; Chandrasekaran, P.N.; Zaheer, A. Neuroprotective effects of flavone luteolin in neuroinflammation and neurotrauma. Biofactors, 2021, 47(2), 190-197.
[http://dx.doi.org/10.1002/biof.1687] [PMID: 33098588]
[150]
Deng, C.; Yi, R.; Fei, M.; Li, T.; Han, Y.; Wang, H. Naringenin attenuates endoplasmic reticulum stress, reduces apoptosis, and improves functional recovery in experimental traumatic brain injury. Brain Res., 2021, 1769, 147591.
[http://dx.doi.org/10.1016/j.brainres.2021.147591] [PMID: 34324877]
[151]
Yang, T.; Kong, B.; Gu, J.W.; Kuang, Y.Q.; Cheng, L.; Yang, W.T.; Xia, X.; Shu, H.F. Anti-apoptotic and anti-oxidative roles of quercetin after traumatic brain injury. Cell. Mol. Neurobiol., 2014, 34(6), 797-804.
[http://dx.doi.org/10.1007/s10571-014-0070-9] [PMID: 24846663]
[152]
Du, G.; Zhao, Z.; Chen, Y.; Li, Z.; Tian, Y.; Liu, Z.; Liu, B.; Song, J. Quercetin protects rat cortical neurons against traumatic brain injury. Mol. Med. Rep., 2018, 17(6), 7859-7865.
[http://dx.doi.org/10.3892/mmr.2018.8801] [PMID: 29620218]
[153]
Ates, O.; Cayli, S.; Altinoz, E.; Gurses, I.; Yucel, N.; Sener, M.; Kocak, A.; Yologlu, S. Neuroprotection by resveratrol against traumatic brain injury in rats. Mol. Cell. Biochem., 2007, 294(1-2), 137-144.
[http://dx.doi.org/10.1007/s11010-006-9253-0] [PMID: 16924419]
[154]
Gatson, J.W.; Liu, M.M.; Abdelfattah, K.; Wigginton, J.G.; Smith, S.; Wolf, S.; Minei, J.P. Resveratrol decreases inflammation in the brain of mice with mild traumatic brain injury. J. Trauma Acute Care Surg., 2013, 74(2), 470-475.
[http://dx.doi.org/10.1097/TA.0b013e31827e1f51] [PMID: 23354240]
[155]
Singleton, R.H.; Yan, H.Q.; Fellows-Mayle, W.; Dixon, C.E. Resveratrol attenuates behavioral impairments and reduces cortical and hippocampal loss in a rat controlled cortical impact model of traumatic brain injury. J. Neurotrauma, 2010, 27(6), 1091-1099.
[http://dx.doi.org/10.1089/neu.2010.1291] [PMID: 20560755]
[156]
Feng, Y.; Cui, Y.; Gao, J.L.; Li, R.; Jiang, X.H.; Tian, Y.X.; Wang, K.J.; Li, M.H.; Zhang, H.A.; Cui, J.Z. Neuroprotective effects of resveratrol against traumatic brain injury in rats: Involvement of synaptic proteins and neuronal autophagy. Mol. Med. Rep., 2016, 13(6), 5248-5254.
[http://dx.doi.org/10.3892/mmr.2016.5201] [PMID: 27122047]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy