Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Herbal Substances with Antiviral Effects: Features and Prospects for the Treatment of Viral Diseases with Emphasis on Pro-Inflammatory Cytokines

Author(s): Geir Bjørklund*, Roman Lysiuk, Yuliya Semenova, Larysa Lenchyk, Natalia Dub, Monica Daniela Doşa and Tony Hangan*

Volume 31, Issue 4, 2024

Published on: 27 March, 2023

Page: [393 - 409] Pages: 17

DOI: 10.2174/0929867330666230125121758

Price: $65

Open Access Journals Promotions 2
Abstract

Viral diseases have a significant impact on human health, and three novel coronaviruses (CoV) have emerged during the 21st century. In this review, we have emphasized the potential of herbal substances with antiviral effects. Our investigation focused on the features and prospects of viral disease treatment, with a particular emphasis on proinflammatory cytokines. We conducted comprehensive searches of various databases, including Science Direct, CABI Direct, Web of Science, PubMed, and Scopus. Cytokine storm mechanisms play a crucial role in inducing a pro-inflammatory response by triggering the expression of cytokines and chemokines. This response leads to the recruitment of leukocytes and promotes antiviral effects, forming the first line of defense against viruses. Numerous studies have investigated the use of herbal medicine candidates as immunomodulators or antivirals. However, cytokine-storm-targeted therapy is recommended for patients with acute respiratory distress syndrome caused by SARS-CoV to survive severe pulmonary failure. Our reviews have demonstrated that herbal formulations could serve as alternative medicines and significantly reduce complicated viral infections. Furthermore, they hold promising potential as specific antiviral agents in experimental animal models.

Keywords: COVID-19, SARS-CoV-2, herbal medicine, pro-inflammatory response, cytokines, antivirals.

[1]
Cao, X. COVID-19: immunopathology and its implications for therapy. Nat. Rev. Immunol., 2020, 20(5), 269-270.
[http://dx.doi.org/10.1038/s41577-020-0308-3] [PMID: 32273594]
[2]
Dhama, K.; Sharun, K.; Tiwari, R.; Dadar, M.; Malik, Y.S.; Singh, K.P.; Chaicumpa, W. COVID-19, an emerging coronavirus infection: advances and prospects in designing and developing vaccines, immunotherapeutics, and therapeutics. Hum. Vaccin. Immunother., 2020, 16(6), 1232-1238.
[http://dx.doi.org/10.1080/21645515.2020.1735227] [PMID: 32186952]
[3]
Malik, Y.S.; Sircar, S.; Bhat, S.; Sharun, K.; Dhama, K.; Dadar, M.; Tiwari, R.; Chaicumpa, W. Emerging novel coronavirus (2019-nCoV)-current scenario, evolutionary perspective based on genome analysis and recent developments. Vet. Q., 2020, 40(1), 68-76.
[http://dx.doi.org/10.1080/01652176.2020.1727993] [PMID: 32036774]
[4]
Chau, V.Q.; Oliveros, E.; Mahmood, K.; Singhvi, A.; Lala, A.; Moss, N.; Gidwani, U.; Mancini, D.M.; Pinney, S.P.; Parikh, A. The imperfect cytokine storm. JACC. Case Rep., 2020, 2(9), 1315-1320.
[http://dx.doi.org/10.1016/j.jaccas.2020.04.001] [PMID: 32292915]
[5]
Leung, W.K.; To, K.; Chan, P.K.S.; Chan, H.L.Y.; Wu, A.K.L.; Lee, N.; Yuen, K.Y.; Sung, J.J.Y. Enteric involvement of severe acute respiratory syndrome-associated coronavirus infection. Gastroenterology, 2003, 125(4), 1011-1017.
[http://dx.doi.org/10.1016/j.gastro.2003.08.001] [PMID: 14517783]
[6]
Su, H.; Yao, S.; Zhao, W.; Li, M.; Liu, J.; Shang, W.; Xie, H.; Ke, C.; Hu, H.; Gao, M.; Yu, K.; Liu, H.; Shen, J.; Tang, W.; Zhang, L.; Xiao, G.; Ni, L.; Wang, D.; Zuo, J.; Jiang, H.; Bai, F.; Wu, Y.; Ye, Y.; Xu, Y. Anti-SARS-CoV-2 activities in vitro of Shuanghuanglian preparations and bioactive ingredients. Acta Pharmacol. Sin., 2020, 41(9), 1167-1177.
[http://dx.doi.org/10.1038/s41401-020-0483-6] [PMID: 32737471]
[7]
He, W.; Han, H.; Wang, W.; Gao, B. Anti-influenza virus effect of aqueous extracts from dandelion. Virol. J., 2011, 8(1), 538.
[http://dx.doi.org/10.1186/1743-422X-8-538] [PMID: 22168277]
[8]
Tang, B.S.F.; Chan, K.; Cheng, V.C.C.; Woo, P.C.Y.; Lau, S.K.P.; Lam, C.C.K.; Chan, T.; Wu, A.K.L.; Hung, I.F.N.; Leung, S.; Yuen, K. Comparative host gene transcription by microarray analysis early after infection of the Huh7 cell line by severe acute respiratory syndrome coronavirus and human coronavirus 229E. J. Virol., 2005, 79(10), 6180-6193.
[http://dx.doi.org/10.1128/JVI.79.10.6180-6193.2005] [PMID: 15858003]
[9]
Fung, S.Y.; Yuen, K.S.; Ye, Z.W.; Chan, C.P.; Jin, D.Y. A tug-of-war between severe acute respiratory syndrome coronavirus 2 and host antiviral defence: lessons from other pathogenic viruses. Emerg. Microbes Infect., 2020, 9(1), 558-570.
[http://dx.doi.org/10.1080/22221751.2020.1736644] [PMID: 32172672]
[10]
Silveira, D.; Prieto-Garcia, J.M.; Boylan, F.; Estrada, O.; Fonseca-Bazzo, Y.M.; Jamal, C.M.; Magalhães, P.O.; Pereira, E.O.; Tomczyk, M.; Heinrich, M. COVID-19: Is there evidence for the use of herbal medicines as adjuvant symptomatic therapy? Front. Pharmacol., 2020, 11, 581840.
[http://dx.doi.org/10.3389/fphar.2020.581840] [PMID: 33071794]
[11]
Darif, D.; Hammi, I.; Kihel, A.; El Idrissi Saik, I.; Guessous, F.; Akarid, K. The pro-inflammatory cytokines in COVID-19 pathogenesis: What goes wrong? Microb. Pathog., 2021, 153, 104799.
[http://dx.doi.org/10.1016/j.micpath.2021.104799] [PMID: 33609650]
[12]
Moradian, N.; Gouravani, M.; Salehi, M.A.; Heidari, A.; Shafeghat, M.; Hamblin, M.R.; Rezaei, N. Cytokine release syndrome: inhibition of pro-inflammatory cytokines as a solution for reducing COVID-19 mortality. Eur. Cytokine Netw., 2020, 31(3), 81-93.
[http://dx.doi.org/10.1684/ecn.2020.0451] [PMID: 33361013]
[13]
Wang, F.; Nie, J.; Wang, H.; Zhao, Q.; Xiong, Y.; Deng, L.; Song, S.; Ma, Z.; Mo, P.; Zhang, Y. Characteristics of peripheral lymphocyte subset alteration in COVID-19 pneumonia. J. Infect. Dis., 2020, 221(11), 1762-1769.
[http://dx.doi.org/10.1093/infdis/jiaa150] [PMID: 32227123]
[14]
Mogensen, T.H.; Paludan, S.R. Molecular pathways in virus-induced cytokine production. Microbiol. Mol. Biol. Rev., 2001, 65(1), 131-150.
[http://dx.doi.org/10.1128/MMBR.65.1.131-150.2001] [PMID: 11238989]
[15]
Chen, Y.; Cao, J.; Zhang, X. The role of cytokine PF4 in the antiviral immune response of shrimp. PLoS One, 2016, 11(9), e0162954.
[http://dx.doi.org/10.1371/journal.pone.0162954] [PMID: 27631372]
[16]
Salazar-Mather, T.; Hokeness, K. Cytokine and chemokine networks: pathways to antiviral defense. Chemokines Viral Infect., 2006, 303, 29-46.
[17]
Mehta, P.; McAuley, D.F.; Brown, M.; Sanchez, E.; Tattersall, R.S.; Manson, J.J.; Collaboration, H. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet, 2020, 395(10229), 1033-1034.
[http://dx.doi.org/10.1016/S0140-6736(20)30628-0] [PMID: 32192578]
[18]
Tisoncik, J.R.; Korth, M.J.; Simmons, C.P.; Farrar, J.; Martin, T.R.; Katze, M.G. Into the eye of the cytokine storm. Microbiol. Mol. Biol. Rev., 2012, 76(1), 16-32.
[http://dx.doi.org/10.1128/MMBR.05015-11] [PMID: 22390970]
[19]
Zhang, Y.; Yu, L.; Tang, L.; Zhu, M.; Jin, Y.; Wang, Z.; Li, L. A promising anti-cytokine-storm targeted therapy for COVID-19: the artificial-liver blood-purification system. Engineering (Beijing), 2021, 7(1), 11-13.
[http://dx.doi.org/10.1016/j.eng.2020.03.006] [PMID: 32292628]
[20]
Shi, Y.; Wang, Y.; Shao, C.; Huang, J.; Gan, J.; Huang, X.; Bucci, E.; Piacentini, M.; Ippolito, G.; Melino, G. 2020. COVID-19 infection: The perspectives on immune responses. Cell Death Differ., 2020, 27, 1451–1454.
[21]
Bahun, M.; Jukić, M.; Oblak, D.; Kranjc, L.; Bajc, G.; Butala, M.; Bozovičar, K.; Bratkovič, T.; Podlipnik, Č.; Poklar Ulrih, N. Inhibition of the SARS-CoV-2 3CLpro main protease by plant polyphenols. Food Chem., 2022, 373(Pt B), 131594.
[http://dx.doi.org/10.1016/j.foodchem.2021.131594] [PMID: 34838409]
[22]
Tang, X.D.; Ji, T.T.; Dong, J.R.; Feng, H.; Chen, F.Q.; Chen, X.; Zhao, H.Y.; Chen, D.K.; Ma, W.T. Pathogenesis and treatment of cytokine storm induced by infectious diseases. Int. J. Mol. Sci., 2021, 22(23), 13009.
[http://dx.doi.org/10.3390/ijms222313009] [PMID: 34884813]
[23]
Liu, Q.; Zhou, Y.; Yang, Z. The cytokine storm of severe influenza and development of immunomodulatory therapy. Cell. Mol. Immunol., 2016, 13(1), 3-10.
[http://dx.doi.org/10.1038/cmi.2015.74] [PMID: 26189369]
[24]
Schwager, J.; Richard, N.; Fowler, A.; Seifert, N.; Raederstorff, D. Carnosol and related substances modulate chemokine and cytokine production in macrophages and chondrocytes. Molecules, 2016, 21(4), 465.
[http://dx.doi.org/10.3390/molecules21040465] [PMID: 27070563]
[25]
Petric, D. Cytokine storm in COVID-19. Mol. Biol., 2020. Available from: https://www.researchgate.net/publication/340463773_Cytokine_storm_in_COVID-19
[26]
Tovey, M.G.; Meritet, J.F.; Guymarho, J.; Maury, C. Mucosal cytokine therapy: marked antiviral and antitumor activity. J. Interferon Cytokine Res., 1999, 19(8), 911-921.
[http://dx.doi.org/10.1089/107999099313451] [PMID: 10476938]
[27]
Pandolfi, S.; Chirumbolo, S.; Ricevuti, G.; Valdenassi, L.; Bjørklund, G.; Lysiuk, R.; Doşa, M.D.; Lenchyk, L.; Fazio, S. Home pharmacological therapy in early COVID-19 to prevent hospitalization and reduce mortality. Time for a suitable proposal. Basic Clin. Pharmacol. Toxicol., 2022, 130(2), 225-239.
[http://dx.doi.org/10.1111/bcpt.13650] [PMID: 34811895]
[28]
Runfeng, L.; Yunlong, H.; Jicheng, H.; Weiqi, P.; Qinhai, M.; Yongxia, S.; Chufang, L.; Jin, Z.; Zhenhua, J.; Haiming, J.; Kui, Z.; Shuxiang, H.; Jun, D.; Xiaobo, L.; Xiaotao, H.; Lin, W.; Nanshan, Z.; Zifeng, Y. Lianhuaqingwen exerts anti-viral and anti-inflammatory activity against novel coronavirus (SARS-CoV-2). Pharmacol. Res., 2020, 156, 104761.
[http://dx.doi.org/10.1016/j.phrs.2020.104761] [PMID: 32205232]
[29]
Aanouz, I.; Belhassan, A.; El-Khatabi, K.; Lakhlifi, T.; El-ldrissi, M.; Bouachrine, M. Moroccan medicinal plants as inhibitors against SARS-CoV-2 main protease: Computational investigations. J. Biomol. Struct. Dyn., 2021, 39(8), 2971-2979.
[http://dx.doi.org/10.1080/07391102.2020.1758790] [PMID: 32306860]
[30]
Wang, X.; Liu, Z. Prevention and treatment of viral respiratory infections by traditional Chinese herbs. Chin. Med. J. (Engl.), 2014, 127(7), 1344-1350.
[PMID: 24709192]
[31]
Chen, W.; Lim, C.E.D.; Kang, H.J.; Liu, J. Chinese herbal medicines for the treatment of type A H1N1 influenza: a systematic review of randomized controlled trials. PLoS One, 2011, 6(12), e28093.
[http://dx.doi.org/10.1371/journal.pone.0028093] [PMID: 22164232]
[32]
Li, Y.; Liu, X.; Guo, L.; Li, J.; Zhong, D.; Zhang, Y.; Clarke, M.; Jin, R. Traditional Chinese herbal medicine for treating novel coronavirus (COVID-19) pneumonia: protocol for a systematic review and meta-analysis. Syst. Rev., 2020, 9(1), 75.
[http://dx.doi.org/10.1186/s13643-020-01343-4] [PMID: 32268923]
[33]
Zhou, L.; Wang, J.; Xie, R.; Pakhale, S.; Krewski, D.; Cameron, D.W.; Wen, S.W. The effects of traditional Chinese medicine as an auxiliary treatment for COVID-19: a systematic review and meta-analysis. J. Altern. Complement. Med., 2021, 27(3), 225-237.
[http://dx.doi.org/10.1089/acm.2020.0310] [PMID: 33252246]
[34]
Liu, Q.; Lu, L.; Hua, M.; Xu, Y.; Xiong, H.; Hou, W.; Yang, Z. Jiawei-Yupingfeng-Tang, a Chinese herbal formula, inhibits respiratory viral infections in vitro and in vivo. J. Ethnopharmacol., 2013, 150(2), 521-528.
[http://dx.doi.org/10.1016/j.jep.2013.08.056] [PMID: 24051026]
[35]
Akram, M.; Tahir, I.M.; Shah, S.M.A.; Mahmood, Z.; Altaf, A.; Ahmad, K.; Munir, N.; Daniyal, M.; Nasir, S.; Mehboob, H. Antiviral potential of medicinal plants against HIV, HSV, influenza, hepatitis, and coxsackievirus: A systematic review. Phytother. Res., 2018, 32(5), 811-822.
[http://dx.doi.org/10.1002/ptr.6024] [PMID: 29356205]
[36]
Dong, Z.; Lu, X.; Tong, X.; Dong, Y.; Tang, L.; Liu, M. Forsythiae fructus: A review on its phytochemistry, quality control, pharmacology and pharmacokinetics. Molecules, 2017, 22(9), 1466.
[http://dx.doi.org/10.3390/molecules22091466] [PMID: 28869577]
[37]
Cheng, Y.; Liang, X.; Feng, L.; Liu, D.; Qin, M.; Liu, S.; Liu, G.; Dong, M. Effects of phillyrin and forsythoside A on rat cytochrome P450 activities in vivo and in vitro. Xenobiotica, 2017, 47(4), 297-303.
[http://dx.doi.org/10.1080/00498254.2016.1193262] [PMID: 27310729]
[38]
Liu, X.; Zhang, M.; He, L.; Li, Y. Chinese herbs combined with Western medicine for severe acute respiratory syndrome (SARS). Cochrane Database Syst. Rev., 2012, 10(10), CD004882.
[39]
Luo, H.; Tang, Q.; Shang, Y.; Liang, S.; Yang, M.; Robinson, N.; Liu, J. Can Chinese medicine be used for prevention of corona virus disease 2019 (COVID-19)? A review of historical classics, research evidence and current prevention programs. Chin. J. Integr. Med., 2020, 26(4), 243-250.
[http://dx.doi.org/10.1007/s11655-020-3192-6] [PMID: 32065348]
[40]
Tong, T.; Hu, H.; Zhou, J.; Deng, S.; Zhang, X.; Tang, W.; Fang, L.; Xiao, S.; Liang, J. Glycyrrhizic-acid-based carbon dots with high antiviral activity by multisite inhibition mechanisms. Small, 2020, 16(13), 1906206.
[http://dx.doi.org/10.1002/smll.201906206] [PMID: 32077621]
[41]
Kadioglu, O.; Saeed, M.; Greten, H.J.; Efferth, T. Identification of novel compounds against three targets of SARS CoV-2 coronavirus by combined virtual screening and supervised machine learning. Comput. Biol. Med., 2021, 133, 104359.
[http://dx.doi.org/10.1016/j.compbiomed.2021.104359] [PMID: 33845270]
[42]
Ryu, Y.B.; Jeong, H.J.; Kim, J.H.; Kim, Y.M.; Park, J.Y.; Kim, D.; Naguyen, T.T.H.; Park, S.J.; Chang, J.S.; Park, K.H.; Rho, M.C.; Lee, W.S. Biflavonoids from Torreya nucifera displaying SARS-CoV 3CLpro inhibition. Bioorg. Med. Chem., 2010, 18(22), 7940-7947.
[http://dx.doi.org/10.1016/j.bmc.2010.09.035] [PMID: 20934345]
[43]
Lau, K.M.; Lee, K.M.; Koon, C.M.; Cheung, C.S.F.; Lau, C.P.; Ho, H.M.; Lee, M.Y.H.; Au, S.W.N.; Cheng, C.H.K.; Lau, C.B.S.; Tsui, S.K.W.; Wan, D.C.C.; Waye, M.M.Y.; Wong, K.B.; Wong, C.K.; Lam, C.W.K.; Leung, P.C.; Fung, K.P. Immunomodulatory and anti-SARS activities of Houttuynia cordata. J. Ethnopharmacol., 2008, 118(1), 79-85.
[http://dx.doi.org/10.1016/j.jep.2008.03.018] [PMID: 18479853]
[44]
Li, T.; Liu, L.; Wu, H.; Chen, S.; Zhu, Q.; Gao, H.; Yu, X.; Wang, Y.; Su, W.; Yao, X.; Peng, T. Anti-herpes simplex virus type 1 activity of Houttuynoid A, a flavonoid from Houttuynia cordata Thunb. Antiviral Res., 2017, 144, 273-280.
[http://dx.doi.org/10.1016/j.antiviral.2017.06.010] [PMID: 28629987]
[45]
Chen, S.D.; Gao, H.; Zhu, Q.C.; Wang, Y.Q.; Li, T.; Mu, Z.Q.; Wu, H.L.; Peng, T.; Yao, X.S.; Houttuynoids, A-E. Houttuynoids A-E, anti-herpes simplex virus active flavonoids with novel skeletons from Houttuynia cordata. Org. Lett., 2012, 14(7), 1772-1775.
[http://dx.doi.org/10.1021/ol300017m] [PMID: 22414220]
[46]
Lin, C.W.; Tsai, F.J.; Tsai, C.H.; Lai, C.C.; Wan, L.; Ho, T.Y.; Hsieh, C.C.; Chao, P.D.L. Anti-SARS coronavirus 3C-like protease effects of Isatis indigotica root and plant-derived phenolic compounds. Antiviral Res., 2005, 68(1), 36-42.
[http://dx.doi.org/10.1016/j.antiviral.2005.07.002] [PMID: 16115693]
[47]
Yu, M.S.; Lee, J.; Lee, J.M.; Kim, Y.; Chin, Y.W.; Jee, J.G.; Keum, Y.S.; Jeong, Y.J. Identification of myricetin and scutellarein as novel chemical inhibitors of the SARS coronavirus helicase, nsP13. Bioorg. Med. Chem. Lett., 2012, 22(12), 4049-4054.
[http://dx.doi.org/10.1016/j.bmcl.2012.04.081] [PMID: 22578462]
[48]
Cheng, P.W.; Ng, L.T.; Chiang, L.C.; Lin, C.C. Antiviral effects of saikosaponins on human coronavirus 229E in vitro. Clin. Exp. Pharmacol. Physiol., 2006, 33(7), 612-616.
[http://dx.doi.org/10.1111/j.1440-1681.2006.04415.x] [PMID: 16789928]
[49]
Chiang, L.C.; Ng, L.T.; Cheng, P.W.; Chiang, W.; Lin, C.C. Antiviral activities of extracts and selected pure constituents of Ocimum basilicum. Clin. Exp. Pharmacol. Physiol., 2005, 32(10), 811-816.
[http://dx.doi.org/10.1111/j.1440-1681.2005.04270.x] [PMID: 16173941]
[50]
Chiang, L-C.; Ng, L.T.; Liu, L-T.; Shieh, D.E.; Lin, C-C. Cytotoxicity and anti-hepatitis B virus activities of saikosaponins from Bupleurum species. Planta Med., 2003, 69(8), 705-709.
[http://dx.doi.org/10.1055/s-2003-42797] [PMID: 14531019]
[51]
Cheng, P.W.; Chiang, L.C.; Yen, M.H.; Lin, C.C. Bupleurum kaoi inhibits Coxsackie B virus type 1 infection of CCFS-1 cells by induction of type I interferons expression. Food Chem. Toxicol., 2007, 45(1), 24-31.
[http://dx.doi.org/10.1016/j.fct.2006.06.007] [PMID: 17052829]
[52]
Chang, J.S.; Wang, K.C.; Liu, H.W.; Chen, M.C.; Chiang, L.C.; Lin, C.C. Sho-saiko-to (Xiao-Chai-Hu-Tang) and crude saikosaponins inhibit hepatitis B virus in a stable HBV-producing cell line. Am. J. Chin. Med., 2007, 35(2), 341-351.
[http://dx.doi.org/10.1142/S0192415X07004862] [PMID: 17436373]
[53]
Choi, H.J.; Lim, C.H.; Song, J.H.; Baek, S.H.; Kwon, D.H. Antiviral activity of raoulic acid from Raoulia australis against Picornaviruses. Phytomedicine, 2009, 16(1), 35-39.
[http://dx.doi.org/10.1016/j.phymed.2008.10.012] [PMID: 19097770]
[54]
Zandi, K.; Teoh, B.T.; Sam, S.S.; Wong, P.F.; Mustafa, M.R.; AbuBakar, S. Novel antiviral activity of baicalein against dengue virus. BMC Complement. Altern. Med., 2012, 12(1), 214.
[http://dx.doi.org/10.1186/1472-6882-12-214] [PMID: 23140177]
[55]
Li, S.; Chen, C.; Zhang, H.; Guo, H.; Wang, H.; Wang, L.; Zhang, X.; Hua, S.; Yu, J.; Xiao, P.; Li, R.S.; Tan, X. Identification of natural compounds with antiviral activities against SARS-associated coronavirus. Antiviral Res., 2005, 67(1), 18-23.
[http://dx.doi.org/10.1016/j.antiviral.2005.02.007] [PMID: 15885816]
[56]
Lin, L.T.; Chen, T.Y.; Lin, S.C.; Chung, C.Y.; Lin, T.C.; Wang, G.H.; Anderson, R.; Lin, C.C.; Richardson, C.D. Broad-spectrum antiviral activity of chebulagic acid and punicalagin against viruses that use glycosaminoglycans for entry. BMC Microbiol., 2013, 13(1), 187.
[http://dx.doi.org/10.1186/1471-2180-13-187] [PMID: 23924316]
[57]
Lin, L.T.; Chen, T.Y.; Chung, C.Y.; Noyce, R.S.; Grindley, T.B.; McCormick, C.; Lin, T.C.; Wang, G.H.; Lin, C.C.; Richardson, C.D. Hydrolyzable tannins (chebulagic acid and punicalagin) target viral glycoprotein-glycosaminoglycan interactions to inhibit herpes simplex virus 1 entry and cell-to-cell spread. J. Virol., 2011, 85(9), 4386-4398.
[http://dx.doi.org/10.1128/JVI.01492-10] [PMID: 21307190]
[58]
Koishi, A.C.; Zanello, P.R.; Bianco, É.M.; Bordignon, J.; Nunes Duarte dos Santos, C. Screening of Dengue virus antiviral activity of marine seaweeds by an in situ enzyme-linked immunosorbent assay. PLoS One, 2012, 7(12), e51089.
[http://dx.doi.org/10.1371/journal.pone.0051089] [PMID: 23227238]
[59]
Zandi, K.; Teoh, B.T.; Sam, S.S.; Wong, P.F.; Mustafa, M.R.; AbuBakar, S. Antiviral activity of four types of bioflavonoid against dengue virus type-2. Virol. J., 2011, 8(1), 560.
[http://dx.doi.org/10.1186/1743-422X-8-560] [PMID: 22201648]
[60]
Ho, H.Y.; Cheng, M.L.; Weng, S.F.; Leu, Y.L.; Chiu, D.T.Y. Antiviral effect of epigallocatechin gallate on enterovirus 71. J. Agric. Food Chem., 2009, 57(14), 6140-6147.
[http://dx.doi.org/10.1021/jf901128u] [PMID: 19537794]
[61]
Ciesek, S.; von Hahn, T.; Colpitts, C.C.; Schang, L.M.; Friesland, M.; Steinmann, J.; Manns, M.P.; Ott, M.; Wedemeyer, H.; Meuleman, P.; Pietschmann, T.; Steinmann, E. The green tea polyphenol, epigallocatechin-3-gallate, inhibits hepatitis C virus entry. Hepatology, 2011, 54(6), 1947-1955.
[http://dx.doi.org/10.1002/hep.24610] [PMID: 21837753]
[62]
Choi, H.J.; Song, J.H.; Park, K.S.; Baek, S.H. In vitro anti-enterovirus 71 activity of gallic acid from Woodfordia fruticosa flowers. Lett. Appl. Microbiol., 2010, 50(4), 438-440.
[http://dx.doi.org/10.1111/j.1472-765X.2010.02805.x] [PMID: 20149083]
[63]
Jiang, Z.Y.; Liu, W.F.; Zhang, X.M.; Luo, J.; Ma, Y.B.; Chen, J.J. Anti-HBV active constituents from Piper longum. Bioorg. Med. Chem. Lett., 2013, 23(7), 2123-2127.
[http://dx.doi.org/10.1016/j.bmcl.2013.01.118] [PMID: 23434420]
[64]
Mouler Rechtman, M.; Har-Noy, O.; Bar-Yishay, I.; Fishman, S.; Adamovich, Y.; Shaul, Y.; Halpern, Z.; Shlomai, A. Curcumin inhibits hepatitis B virus via down-regulation of the metabolic coactivator PGC-1α. FEBS Lett., 2010, 584(11), 2485-2490.
[http://dx.doi.org/10.1016/j.febslet.2010.04.067] [PMID: 20434445]
[65]
Kim, K.; Kim, K.H.; Kim, H.Y.; Cho, H.K.; Sakamoto, N.; Cheong, J. Curcumin inhibits hepatitis C virus replication via suppressing the Akt-SREBP-1 pathway. FEBS Lett., 2010, 584(4), 707-712.
[http://dx.doi.org/10.1016/j.febslet.2009.12.019] [PMID: 20026048]
[66]
Colpitts, C.C.; Schang, L.M. A small molecule inhibits virion attachment to heparan sulfate- or sialic acid-containing glycans. J. Virol., 2014, 88(14), 7806-7817.
[http://dx.doi.org/10.1128/JVI.00896-14] [PMID: 24789779]
[67]
Zeng, F.L.; Xiang, Y.F.; Liang, Z.R.; Wang, X.; Huang, D.; Zhu, S.N.; Li, M.M.; Yang, D.P.; Wang, D.M.; Wang, Y.F. Anti-hepatitis B virus effects of dehydrocheilanthifoline from Corydalis saxicola. Am. J. Chin. Med., 2013, 41(1), 119-130.
[http://dx.doi.org/10.1142/S0192415X13500092] [PMID: 23336511]
[68]
Chang, J.; Liu, H.; Wang, K.; Chen, M.; Chiang, L.; Hua, Y.; Lin, C. Ethanol extract of Polygonum cuspidatum inhibits hepatitis B virus in a stable HBV-producing cell line. Antiviral Res., 2005, 66(1), 29-34.
[http://dx.doi.org/10.1016/j.antiviral.2004.12.006] [PMID: 15781129]
[69]
Hao, B.J.; Wu, Y.H.; Wang, J.G.; Hu, S.Q.; Keil, D.J.; Hu, H.J.; Lou, J.D.; Zhao, Y. Hepatoprotective and antiviral properties of isochlorogenic acid A from Laggera alata against hepatitis B virus infection. J. Ethnopharmacol., 2012, 144(1), 190-194.
[http://dx.doi.org/10.1016/j.jep.2012.09.003] [PMID: 22982394]
[70]
Polyak, S.J.; Morishima, C.; Lohmann, V.; Pal, S.; Lee, D.Y.W.; Liu, Y.; Graf, T.N.; Oberlies, N.H. Identification of hepatoprotective flavonolignans from silymarin. Proc. Natl. Acad. Sci. USA, 2010, 107(13), 5995-5999.
[http://dx.doi.org/10.1073/pnas.0914009107] [PMID: 20231449]
[71]
Polyak, S.J.; Morishima, C.; Shuhart, M.C.; Wang, C.C.; Liu, Y.; Lee, D.Y.W. Inhibition of T-cell inflammatory cytokines, hepatocyte NF-kappaB signaling, and HCV infection by standardized Silymarin. Gastroenterology, 2007, 132(5), 1925-1936.
[http://dx.doi.org/10.1053/j.gastro.2007.02.038] [PMID: 17484885]
[72]
Meuleman, P.; Albecka, A.; Belouzard, S.; Vercauteren, K.; Verhoye, L.; Wychowski, C.; Leroux-Roels, G.; Palmer, K.E.; Dubuisson, J. Griffithsin has antiviral activity against hepatitis C virus. Antimicrob. Agents Chemother., 2011, 55(11), 5159-5167.
[http://dx.doi.org/10.1128/AAC.00633-11] [PMID: 21896910]
[73]
Haid, S.; Novodomská, A.; Gentzsch, J.; Grethe, C.; Geuenich, S.; Bankwitz, D.; Chhatwal, P.; Jannack, B.; Hennebelle, T.; Bailleul, F. A plant-derived flavonoid inhibits entry of all HCV genotypes into human hepatocytes. Gastroenterology, 2012, 143(1), 213-222. e215.
[http://dx.doi.org/10.1053/j.gastro.2012.03.036]
[74]
Tamura, S.; Yang, G.M.; Yasueda, N.; Matsuura, Y.; Komoda, Y.; Murakami, N.; Tellimagrandin, I. HCV invasion inhibitor from Rosae rugosae Flos. Bioorg. Med. Chem. Lett., 2010, 20(5), 1598-1600.
[http://dx.doi.org/10.1016/j.bmcl.2010.01.084] [PMID: 20144544]
[75]
Gescher, K.; Kühn, J.; Hafezi, W.; Louis, A.; Derksen, A.; Deters, A.; Lorentzen, E.; Hensel, A. Inhibition of viral adsorption and penetration by an aqueous extract from Rhododendron ferrugineum L. as antiviral principle against herpes simplex virus type-1. Fitoterapia, 2011, 82(3), 408-413.
[http://dx.doi.org/10.1016/j.fitote.2010.11.022] [PMID: 21129454]
[76]
Danaher, R.J.; Wang, C.; Dai, J.; Mumper, R.J.; Miller, C.S. Antiviral effects of blackberry extract against herpes simplex virus type 1. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 2011, 112(3), e31-e35.
[http://dx.doi.org/10.1016/j.tripleo.2011.04.007] [PMID: 21827957]
[77]
Cheng, H.Y.; Yang, C.M.; Lin, T.C.; Shieh, D.E.; Lin, C.C. ent-Epiafzelechin-(4α→8)-epiafzelechin extracted from Cassia javanica inhibits herpes simplex virus type 2 replication. J. Med. Microbiol., 2006, 55(2), 201-206.
[http://dx.doi.org/10.1099/jmm.0.46110-0] [PMID: 16434713]
[78]
Cheng, H.-Y.; Yang, C.-M.; Lin, T.-C.; Lin, L.-T.; Chiang, L.-C.; Lin, C.-C. Excoecarianin, isolated from Phyllanthus urinaria Linnea, inhibits herpes simplex virus type 2 infection through inactivation of viral particles. Evid. Based Complement. Alternat. Med., 2011, 2011
[79]
Yang, C.M.; Cheng, H.Y.; Lin, T.C.; Chiang, L.C.; Lin, C.C. The in vitro activity of geraniin and 1,3,4,6-tetra-O-galloyl-β-d-glucose isolated from Phyllanthus urinaria against herpes simplex virus type 1 and type 2 infection. J. Ethnopharmacol., 2007, 110(3), 555-558.
[http://dx.doi.org/10.1016/j.jep.2006.09.039] [PMID: 17113739]
[80]
Yang, C.M.; Cheng, H.Y.; Lin, T.C.; Chiang, L.C.; Lin, C.C. Hippomanin a from acetone extract of Phyllanthus urinaria inhibited HSV-2 but not HSV-1 infection in vitro. Phytother. Res., 2007, 21(12), 1182-1186.
[http://dx.doi.org/10.1002/ptr.2232] [PMID: 17661333]
[81]
Bertol, J.W.; Rigotto, C.; de Pádua, R.M.; Kreis, W.; Barardi, C.R.M.; Braga, F.C.; Simões, C.M.O. Antiherpes activity of glucoevatromonoside, a cardenolide isolated from a Brazilian cultivar of Digitalis lanata. Antiviral Res., 2011, 92(1), 73-80.
[http://dx.doi.org/10.1016/j.antiviral.2011.06.015] [PMID: 21763352]
[82]
Cheng, H.Y.; Huang, H.H.; Yang, C.M.; Lin, L.T.; Lin, C.C. The in vitro anti-herpes simplex virus type-1 and type-2 activity of Long Dan Xie Gan Tan, a prescription of traditional Chinese medicine. Chemotherapy, 2008, 54(2), 77-83.
[http://dx.doi.org/10.1159/000119705] [PMID: 18332627]
[83]
Cheng, H.Y.; Lin, L.T.; Huang, H.H.; Yang, C.M.; Lin, C.C.; Hao Tang, Y.C. Yin Chen Hao Tang, a Chinese prescription, inhibits both herpes simplex virus type-1 and type-2 infections in vitro. Antiviral Res., 2008, 77(1), 14-19.
[http://dx.doi.org/10.1016/j.antiviral.2007.08.012] [PMID: 17931713]
[84]
Lubbe, A.; Seibert, I.; Klimkait, T.; van der Kooy, F. Ethnopharmacology in overdrive: The remarkable anti-HIV activity of Artemisia annua. J. Ethnopharmacol., 2012, 141(3), 854-859.
[http://dx.doi.org/10.1016/j.jep.2012.03.024] [PMID: 22465592]
[85]
Petrera, E.; Coto, C.E. Therapeutic effect of meliacine, an antiviral derived from Melia azedarach L., in mice genital herpetic infection. Phytother. Res., 2009, 23(12), 1771-1777.
[http://dx.doi.org/10.1002/ptr.2850] [PMID: 19441066]
[86]
Gescher, K.; Kühn, J.; Lorentzen, E.; Hafezi, W.; Derksen, A.; Deters, A.; Hensel, A. Proanthocyanidin-enriched extract from Myrothamnus flabellifolia. exerts antiviral activity against herpes simplex virus type 1 by inhibition of viral adsorption and penetration. J. Ethnopharmacol., 2011, 134(2), 468-474.
[http://dx.doi.org/10.1016/j.jep.2010.12.038] [PMID: 21211557]
[87]
Kudo, E.; Taura, M.; Matsuda, K.; Shimamoto, M.; Kariya, R.; Goto, H.; Hattori, S.; Kimura, S.; Okada, S. Inhibition of HIV-1 replication by a tricyclic coumarin GUT-70 in acutely and chronically infected cells. Bioorg. Med. Chem. Lett., 2013, 23(3), 606-609.
[http://dx.doi.org/10.1016/j.bmcl.2012.12.034] [PMID: 23290051]
[88]
Dao, T.T.; Nguyen, P.H.; Lee, H.S.; Kim, E.; Park, J.; Lim, S.I.; Oh, W.K. Chalcones as novel influenza A (H1N1) neuraminidase inhibitors from Glycyrrhiza inflata. Bioorg. Med. Chem. Lett., 2011, 21(1), 294-298.
[http://dx.doi.org/10.1016/j.bmcl.2010.11.016] [PMID: 21123068]
[89]
Krawitz, C.; Mraheil, M.A.; Stein, M.; Imirzalioglu, C.; Domann, E.; Pleschka, S.; Hain, T. Inhibitory activity of a standardized elderberry liquid extract against clinically-relevant human respiratory bacterial pathogens and influenza A and B viruses. BMC Complement. Altern. Med., 2011, 11(1), 16.
[http://dx.doi.org/10.1186/1472-6882-11-16] [PMID: 21352539]
[90]
Theisen, L.L.; Muller, C.P. EPs® 7630 (Umckaloabo®), an extract from Pelargonium sidoides roots, exerts anti-influenza virus activity in vitro and in vivo. Antiviral Res., 2012, 94(2), 147-156.
[http://dx.doi.org/10.1016/j.antiviral.2012.03.006] [PMID: 22475498]
[91]
Jeong, H.J.; Kim, Y.M.; Kim, J.H.; Kim, J.Y.; Park, J.Y.; Park, S.J.; Ryu, Y.B.; Lee, W.S. Homoisoflavonoids from Caesalpinia sappan displaying viral neuraminidases inhibition. Biol. Pharm. Bull., 2012, 35(5), 786-790.
[http://dx.doi.org/10.1248/bpb.35.786] [PMID: 22687418]
[92]
Ma, S.G.; Gao, R.M.; Li, Y.H.; Jiang, J.D.; Gong, N.B.; Li, L.; Lü, Y.; Tang, W.Z.; Liu, Y.B.; Qu, J.; Lü, H.N.; Li, Y.; Yu, S.S. Antiviral spirooliganones A and B with unprecedented skeletons from the roots of Illicium oligandrum. Org. Lett., 2013, 15(17), 4450-4453.
[http://dx.doi.org/10.1021/ol401992s] [PMID: 23937631]
[93]
Dao, T.T.; Dang, T.T.; Nguyen, P.H.; Kim, E.; Thuong, P.T.; Oh, W.K. Xanthones from Polygala karensium inhibit neuraminidases from influenza A viruses. Bioorg. Med. Chem. Lett., 2012, 22(11), 3688-3692.
[http://dx.doi.org/10.1016/j.bmcl.2012.04.028] [PMID: 22552195]
[94]
Huang, S.P.; Shieh, G.J.; Lee, L.; Teng, H.J.; Kao, S.T.; Lin, J.G. Inhibition effect of shengma-gegen-tang on measles virus in Vero cells and human peripheral blood mononuclear cells. Am. J. Chin. Med., 1997, 25(1), 89-96.
[http://dx.doi.org/10.1142/S0192415X97000123] [PMID: 9167001]
[95]
Wang, K.C.; Chang, J.S.; Chiang, L.C.; Lin, C.C. Sheng-Ma-Ge-Gen-Tang (Shoma-kakkon-to) inhibited cytopathic effect of human respiratory syncytial virus in cell lines of human respiratory tract. J. Ethnopharmacol., 2011, 135(2), 538-544.
[http://dx.doi.org/10.1016/j.jep.2011.03.058] [PMID: 21463671]
[96]
Lin, Y.M.; Flavin, M.T.; Schure, R.; Chen, F.C.; Sidwell, R.; Barnard, D.I.; Huffmann, J.H.; Kern, E.R. Antiviral activities of biflavonoids. Planta Med., 1999, 65(2), 120-125.
[http://dx.doi.org/10.1055/s-1999-13971] [PMID: 10193201]
[97]
Hayashi, T.; Hayashi, K.; Maeda, M.; Kojima, I. Calcium spirulan, an inhibitor of enveloped virus replication, from a blue-green alga Spirulina platensis. J. Nat. Prod., 1996, 59(1), 83-87.
[http://dx.doi.org/10.1021/np960017o] [PMID: 8984158]
[98]
Olila, D.; Olwa-Odyek; Opuda-Asibo, J. Screening extracts of Zanthoxylum chalybeum and Warburgia ugandensis for activity against measles virus (Swartz and Edmonston strains) in vitro. Afr. Health Sci., 2002, 2(1), 2-10.
[PMID: 12789108]
[99]
Parker, M.E.; Chabot, S.; Ward, B.J.; Johns, T. Traditional dietary additives of the Maasai are antiviral against the measles virus. J. Ethnopharmacol., 2007, 114(2), 146-152.
[http://dx.doi.org/10.1016/j.jep.2007.06.011] [PMID: 17870263]
[100]
Wang, K.C.; Chang, J.S.; Chiang, L.C.; Lin, C.C. Cimicifuga foetida L. inhibited human respiratory syncytial virus in HEp-2 and A549 cell lines. Am. J. Chin. Med., 2012, 40(1), 151-162.
[http://dx.doi.org/10.1142/S0192415X12500127] [PMID: 22298455]
[101]
Wang, Y.; Chen, M.; Zhang, J.; Zhang, X.L.; Huang, X.J.; Wu, X.; Zhang, Q.W.; Li, Y.L.; Ye, W.C. Flavone C-glycosides from the leaves of Lophatherum gracile and their in vitro antiviral activity. Planta Med., 2012, 78(1), 46-51.
[http://dx.doi.org/10.1055/s-0031-1280128] [PMID: 21870321]
[102]
Zang, N.; Xie, X.; Deng, Y.; Wu, S.; Wang, L.; Peng, C.; Li, S.; Ni, K.; Luo, Y.; Liu, E. Resveratrol-mediated gamma interferon reduction prevents airway inflammation and airway hyperresponsiveness in respiratory syncytial virus-infected immunocompromised mice. J. Virol., 2011, 85(24), 13061-13068.
[http://dx.doi.org/10.1128/JVI.05869-11] [PMID: 21937650]
[103]
Oesch, F.; Oesch-Bartlomowicz, B.; Efferth, T. Toxicity as prime selection criterion among SARS-active herbal medications. Phytomedicine, 2021, 85, 153476.
[http://dx.doi.org/10.1016/j.phymed.2021.153476] [PMID: 33593628]
[104]
Yu, R.; Chen, L.; Lan, R.; Shen, R.; Li, P. Computational screening of antagonists against the SARS-CoV-2 (COVID-19) coronavirus by molecular docking. Int. J. Antimicrob. Agents, 2020, 56(2), 106012.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.106012] [PMID: 32389723]
[105]
Thabti, I.; Albert, Q.; Philippot, S.; Dupire, F.; Westerhuis, B.; Fontanay, S.; Risler, A.; Kassab, T.; Elfalleh, W.; Aferchichi, A.; Varbanov, M. Advances on antiviral activity of Morus spp. plant extracts: human coronavirus and virus-related respiratory tract infections in the spotlight. Molecules, 2020, 25(8), 1876.
[http://dx.doi.org/10.3390/molecules25081876] [PMID: 32325742]
[106]
Ming, K.; Chen, Y.; Yao, F.; Shi, J.; Yang, J.; Du, H.; Wang, X.; Wang, Y.; Liu, J. Phosphorylated Codonopsis pilosula polysaccharide could inhibit the virulence of duck hepatitis A virus compared with Codonopsis pilosula polysaccharide. Int. J. Biol. Macromol., 2017, 94(Pt A), 28-35.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.10.002] [PMID: 27713010]
[107]
Wang, Y.; Jung, Y.J.; Kim, K.H.; Kwon, Y.; Kim, Y.J.; Zhang, Z.; Kang, H.S.; Wang, B.Z.; Quan, F.S.; Kang, S.M. Antiviral activity of fermented ginseng extracts against a broad range of influenza viruses. Viruses, 2018, 10(9), 471.
[http://dx.doi.org/10.3390/v10090471] [PMID: 30200514]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy