Review Article

聚合物纳米颗粒作为药物释放系统在治疗利什曼病中的体内和体外有效性

卷 31, 期 3, 2024

发表于: 20 March, 2023

页: [286 - 307] 页: 22

弟呕挨: 10.2174/0929867330666230120163543

价格: $65

摘要

利什曼病是一种由利什曼原虫属寄生虫引起的被忽视的疾病。目前的治疗方案已经过时,会产生多种副作用,导致患者依从性差,而且绝大多数治疗方案已经具有耐药性。因此,聚合物纳米颗粒成为通过被动或主动矢量化克服现有限制的可行替代方案之一。本综述旨在总结聚合物纳米粒子作为利什曼病替代疗法的最新研究。第一部分报告了当前药物的主要药代动力学和药效学挑战。第二部分详细介绍了带或不带功能化的纳米颗粒如何有效治疗利什曼病,并讨论了配方中聚合物的特性。通过这种方式,聚合物纳米颗粒可以改善杀利什曼药物的理化性质,提高溶解度和稳定性,并改善这些药物的释放,直接或间接到达单核细胞/巨噬细胞。 64.28%的药物集中于治疗内脏利什曼病,28.57%的药物集中于治疗皮肤利什曼病。文献中选择最多的聚合物是壳聚糖(35.71%)和PLGA(35.71%),其他聚合物占药物的14.30%,它们都能够控制药物释放并提高原始分子的体外和/或体内功效。然而,这些纳米制剂跨实验室研究存在一些障碍,有必要对制剂和血浆蛋白质组学研究中使用的聚合物的代谢物和降解途径进行更深入的研究。

关键词: 被忽视的疾病,利什曼原虫,释放系统,聚合物纳米颗粒,被动矢量化,功能化纳米颗粒,主动矢量化。

[1]
de Souza, A.; Marins, D.S.S.; Mathias, S.L.; Monteiro, L.M.; Yukuyama, M.N.; Scarim, C.B.; Löbenberg, R.; Bou-Chacra, N.A. Promising nanotherapy in treating leishmaniasis. Int. J. Pharm., 2018, 547(1-2), 421-431.
[http://dx.doi.org/10.1016/j.ijpharm.2018.06.018] [PMID: 29886097]
[2]
J, B.; M, B.M.; Chanda, K. An overview on the therapeutics of neglected infectious diseases — Leishmaniasis and chagas diseases. Front Chem., 2021, 9, 622286.
[http://dx.doi.org/10.3389/fchem.2021.622286]
[3]
Sasidharan, S.; Saudagar, P. Leishmaniasis: where are we and where are we heading? Parasitol. Res., 2021, 120(5), 1541-1554.
[http://dx.doi.org/10.1007/s00436-021-07139-2] [PMID: 33825036]
[4]
Ghorbani, M.; Farhoudi, R. Leishmaniasis in humans: drug or vaccine therapy? Drug Des. Devel. Ther., 2017, 12, 25-40.
[http://dx.doi.org/10.2147/DDDT.S146521] [PMID: 29317800]
[5]
Chakravarty, J.; Sundar, S. Current and emerging medications for the treatment of leishmaniasis. Expert Opin. Pharmacother., 2019, 20(10), 1251-1265.
[http://dx.doi.org/10.1080/14656566.2019.1609940] [PMID: 31063412]
[6]
Magalhães, L.S.; Bomfim, L.G.S.; Santos, C.N.O.; dos Santos, P.L.; Tanajura, D.M.; Lipscomb, M.W.; de Jesus, A.R.; de Almeida, R.P.; de Moura, T.R.; Ribeiro, A. Antimony resistance associated with persistence of Leishmania (Leishmania) infantum infection in macrophages. Parasitol. Res., 2021, 120(8), 2959-2964.
[http://dx.doi.org/10.1007/s00436-021-07231-7] [PMID: 34272999]
[7]
Saleem, K.; Khursheed, Z.; Hano, C.; Anjum, I.; Anjum, S. Applications of nanomaterials in leishmaniasis: A focus on recent advances and challenges. Nanomaterials (Basel), 2019, 9(12), 1749.
[http://dx.doi.org/10.3390/nano9121749] [PMID: 31818029]
[8]
Durak, S.; Arasoglu, T.; Ates, S.C.; Derman, S. Enhanced antibacterial and antiparasitic activity of multifunctional polymeric nanoparticles. Nanotechnology, 2020, 31(17), 175705.
[http://dx.doi.org/10.1088/1361-6528/ab6ab9] [PMID: 31931488]
[9]
Kumar Singh, P.; Gorain, B.; Choudhury, H.; Kumar Singh, S.; Whadwa, P.; Shilpa; Sahu, S.; Gulati, M.; Kesharwani, P. Macrophage targeted amphotericin B nanodelivery systems against visceral leishmaniasis. Mater. Sci. Eng. B, 2020, 258, 114571.
[http://dx.doi.org/10.1016/j.mseb.2020.114571]
[10]
Ali-Boucetta, H.; Al-Jamal, K.T.; Kostarelos, K. Cytotoxic assessment of carbon nanotube interaction with cell cultures. Methods Mol. Biol., 2011, 726, 299-312.
[http://dx.doi.org/10.1007/978-1-61779-052-2_19] [PMID: 21424457]
[11]
Mishra, V.; Bansal, K.; Verma, A.; Yadav, N.; Thakur, S.; Sudhakar, K.; Rosenholm, J. Solid lipid nanoparticles: Emerging colloidal nano drug delivery systems. Pharmaceutics, 2018, 10(4), 191.
[http://dx.doi.org/10.3390/pharmaceutics10040191] [PMID: 30340327]
[12]
Sherje, A.P.; Jadhav, M.; Dravyakar, B.R.; Kadam, D. Dendrimers: A versatile nanocarrier for drug delivery and targeting. Int. J. Pharm., 2018, 548(1), 707-720.
[http://dx.doi.org/10.1016/j.ijpharm.2018.07.030] [PMID: 30012508]
[13]
Luther, D.C.; Huang, R.; Jeon, T.; Zhang, X.; Lee, Y.W.; Nagaraj, H.; Rotello, V.M. Delivery of drugs, proteins, and nucleic acids using inorganic nanoparticles. Adv. Drug Deliv. Rev., 2020, 156, 188-213.
[http://dx.doi.org/10.1016/j.addr.2020.06.020] [PMID: 32610061]
[14]
Chen, Z.; Wu, C.; Zhang, Z.; Wu, W.; Wang, X.; Yu, Z. Synthesis, functionalization, and nanomedical applications of functional magnetic nanoparticles. Chin. Chem. Lett., 2018, 29(11), 1601-1608.
[http://dx.doi.org/10.1016/j.cclet.2018.08.007]
[15]
Patil, S.M.; Sawant, S.S.; Kunda, N.K. Exosomes as drug delivery systems: A brief overview and progress update. Eur. J. Pharm. Biopharm., 2020, 154(April), 259-269.
[http://dx.doi.org/10.1016/j.ejpb.2020.07.026] [PMID: 32717385]
[16]
Begines, B.; Ortiz, T.; Pérez-Aranda, M.; Martínez, G.; Merinero, M.; Argüelles-Arias, F.; Alcudia, A. Polymeric nanoparticles for drug delivery: Recent developments and future prospects. Nanomaterials (Basel), 2020, 10(7), 1403.
[http://dx.doi.org/10.3390/nano10071403] [PMID: 32707641]
[17]
Prasanna, P.; Kumar, P.; Kumar, S.; Rajana, V.K.; Kant, V.; Prasad, S.R.; Mohan, U.; Ravichandiran, V.; Mandal, D. Current status of nanoscale drug delivery and the future of nano-vaccine development for leishmaniasis – A review. Biomed. Pharmacother., 2021, 141, 111920.
[http://dx.doi.org/10.1016/j.biopha.2021.111920] [PMID: 34328115]
[18]
Téllez, J.; Echeverry, M.C.; Romero, I.; Guatibonza, A.; Santos Ramos, G.; Borges De Oliveira, A.C.; Frézard, F.; Demicheli, C. Use of liposomal nanoformulations in antileishmania therapy: challenges and perspectives. J. Liposome Res., 2021, 31(2), 169-176.
[http://dx.doi.org/10.1080/08982104.2020.1749067] [PMID: 32228210]
[19]
Aragão Horoiwa, T.; Cortez, M.; Sauter, I.P.; Migotto, A.; Bandeira, C.L.; Cerize, N.N.P.; de Oliveira, A.M. Sugar-based colloidal nanocarriers for topical meglumine antimoniate application to cutaneous leishmaniasis treatment: Ex vivo cutaneous retention and in vivo evaluation. Eur. J. Pharm. Sci., 2020, 147, 105295.
[http://dx.doi.org/10.1016/j.ejps.2020.105295] [PMID: 32145429]
[20]
Berbert, T.R.N.; Mello, T.F.P.; Wolf Nassif, P.; Mota, C.A.; Silveira, A.V.; Duarte, G.C.; Demarchi, I.G.; Aristides, S.M.A.; Lonardoni, M.V.C.; Vieira Teixeira, J.J.; Silveira, T.G.V. Pentavalent antimonials combined with other therapeutic alternatives for the treatment of cutaneous and mucocutaneous leishmaniasis : A systematic review. Dermatol. Res. Pract., 2018, 2018, 9014726.
[http://dx.doi.org/10.1155/2018/9014726] [PMID: 30675152]
[21]
Sundar, S.; Singh, B. Emerging therapeutic targets for treatment of leishmaniasis. Expert Opin. Ther. Targets, 2018, 22(6), 467-486.
[http://dx.doi.org/10.1080/14728222.2018.1472241]
[22]
Carvalho, S.H.; Frézard, F.; Pereira, N.P.; Moura, A.S.; Ramos, L.M.Q.C.; Carvalho, G.B.; Rocha, M.O.C. American tegumentary leishmaniasis in Brazil: a critical review of the current therapeutic approach with systemic meglumine antimoniate and short-term possibilities for an alternative treatment. Trop. Med. Int. Health, 2019, 24(4), 380-391.
[http://dx.doi.org/10.1111/tmi.13210] [PMID: 30681239]
[23]
Santos Braga, S. Treating an old disease with new tricks: strategies based on host–guest chemistry for leishmaniasis therapy. J. Incl. Phenom. Macrocycl. Chem., 2019, 93(3-4), 145-155.
[http://dx.doi.org/10.1007/s10847-019-00885-y]
[24]
Matos, A.P.S.; Viçosa, A.L.; Ré, M.I.; Ricci-Júnior, E.; Holandino, C. A review of current treatments strategies based on paromomycin for leishmaniasis. J. Drug Deliv. Sci. Technol., 2020, 57, 101664.
[http://dx.doi.org/10.1016/j.jddst.2020.101664]
[25]
Verrest, L.; Wasunna, M.; Kokwaro, G.; Aman, R.; Musa, A.M.; Khalil, E.A.G.; Mudawi, M.; Younis, B.M.; Hailu, A.; Hurissa, Z.; Hailu, W.; Tesfaye, S.; Makonnen, E.; Mekonnen, Y.; Huitema, A.D.R.; Beijnen, J.H.; Kshirsagar, S.A.; Chakravarty, J.; Rai, M.; Sundar, S.; Alves, F.; Dorlo, T.P.C. Geographical variability in paromomycin pharmacokinetics does not explain efficacy differences between eastern african and indian visceral leishmaniasis patients. Clin. Pharmacokinet., 2021, 60(11), 1463-1473.
[http://dx.doi.org/10.1007/s40262-021-01036-8] [PMID: 34105063]
[26]
Davidson, R.N.; den Boer, M.; Ritmeijer, K. Paromomycin. Trans. R. Soc. Trop. Med. Hyg., 2009, 103(7), 653-660.
[http://dx.doi.org/10.1016/j.trstmh.2008.09.008] [PMID: 18947845]
[27]
Wiwanitkit, V. Interest in paromomycin for the treatment of visceral leishmaniasis (kala-azar). Ther. Clin. Risk Manag., 2012, 8, 323-328.
[http://dx.doi.org/10.2147/TCRM.S30139] [PMID: 22802694]
[28]
Vechi, H.T.; Sousa, A.S.V.; Cunha, M.A.; Shaw, J.J.; Luz, K.G. Case Report : Combination therapy with liposomal amphotericin B, N-Methyl meglumine antimoniate, and pentamidine isethionate for disseminated visceral leishmaniasis in a splenectomized adult patient. Am. J. Trop. Med. Hyg., 2020, 102(2), 268-273.
[http://dx.doi.org/10.4269/ajtmh.18-0999] [PMID: 31872796]
[29]
Andreana, I.; Bincoletto, V.; Milla, P.; Dosio, F.; Stella, B.; Arpicco, S. Nanotechnological approaches for pentamidine delivery. Drug Deliv. Transl. Res., 2022, 12(8), 1911-1927.
[http://dx.doi.org/10.1007/s13346-022-01127-4] [PMID: 35217992]
[30]
Pham, T.T.H.; Loiseau, P.M.; Barratt, G. Strategies for the design of orally bioavailable antileishmanial treatments. Int. J. Pharm., 2013, 454(1), 539-552.
[http://dx.doi.org/10.1016/j.ijpharm.2013.07.035] [PMID: 23871737]
[31]
Mérian, J.; De Souza, R.; Dou, Y.; Ekdawi, S.N.; Ravenelle, F.; Allen, C. Development of a liposome formulation for improved biodistribution and tumor accumulation of pentamidine for oncology applications. Int. J. Pharm., 2015, 488(1-2), 154-164.
[http://dx.doi.org/10.1016/j.ijpharm.2015.04.060] [PMID: 25910415]
[32]
Eissa, M.M.; El-Moslemany, R.M.; Ramadan, A.A.; Amer, E.I.; El-Azzouni, M.Z.; El-Khordagui, L.K. Miltefosine lipid nanocapsules for single dose oral treatment of Schistosomiasis Mansoni: A preclinical study. PLoS One, 2015, 10(11), e0141788.
[http://dx.doi.org/10.1371/journal.pone.0141788] [PMID: 26574746]
[33]
Malheiros, B.; de Castro, R.D.; Lotierzo, M.C.; Casadei, B.R.; Mariani, P.; Barbosa, L.R.S.; Barbosa, L.R.S. Influence of hexadecylphosphocholine (Miltefosine) in phytantriol-based cubosomes: A structural investigation. Colloids Surf. A Physicochem. Eng. Asp., 2022, 632, 127720.
[http://dx.doi.org/10.1016/j.colsurfa.2021.127720]
[34]
Kumar, R.; Sahoo, G.C.; Pandey, K.; Das, V.N.R.; Topno, R.K.; Ansari, M.Y.; Rana, S.; Das, P. Development of PLGA–PEG encapsulated miltefosine based drug delivery system against visceral leishmaniasis. Mater. Sci. Eng. C, 2016, 59, 748-753.
[http://dx.doi.org/10.1016/j.msec.2015.10.083] [PMID: 26652429]
[35]
Dorlo, T.P.C.; Balasegaram, M.; Beijnen, J.H.; de Vries, P.J. Miltefosine: a review of its pharmacology and therapeutic efficacy in the treatment of leishmaniasis. J. Antimicrob. Chemother., 2012, 67(11), 2576-2597.
[http://dx.doi.org/10.1093/jac/dks275] [PMID: 22833634]
[36]
Ware, J.M.; O’Connell, E.M.; Brown, T.; Wetzler, L.; Talaat, K.R.; Nutman, T.B.; Nash, T.E. Efficacy and tolerability of miltefosine in the treatment of cutaneous leishmaniasis. Clin. Infect. Dis., 2021, 73(7), e2457-e2562.
[http://dx.doi.org/10.1093/cid/ciaa1238] [PMID: 33124666]
[37]
Nimtrakul, P.; Williams, D.B.; Tiyaboonchai, W.; Prestidge, C.A. Copolymeric micelles overcome the oral delivery challenges of amphotericin B. Pharmaceuticals (Basel), 2020, 13(6), 121.
[http://dx.doi.org/10.3390/ph13060121] [PMID: 32545189]
[38]
Lanza, J.S.; Pomel, S.; Loiseau, P.M.; Frézard, F. Recent advances in amphotericin B delivery strategies for the treatment of leishmaniases. Expert Opin. Drug Deliv., 2019, 16(10), 1063-1079.
[http://dx.doi.org/10.1080/17425247.2019.1659243] [PMID: 31433678]
[39]
Silva-Carvalho, R.; Fidalgo, J.; Melo, K.R.; Queiroz, M.F.; Leal, S.; Rocha, H.A.; Cruz, T.; Parpot, P.; Tomás, A.M.; Gama, M. Development of dextrin-amphotericin B formulations for the treatment of Leishmaniasis. Int. J. Biol. Macromol., 2020, 153, 276-288.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.03.019] [PMID: 32145228]
[40]
Kapil, S.; Singh, P.K.; Silakari, O. An update on small molecule strategies targeting leishmaniasis. Eur. J. Med. Chem., 2018, 157, 339-367.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.012] [PMID: 30099256]
[41]
Souza, M.L.; Gonzaga da Costa, L.A.; Silva, E.O.; Sousa, A.L.M.D.; Santos, W.M.; Rolim Neto, P.J. Recent strategies for the development of oral medicines for the treatment of visceral leishmaniasis. Drug Dev. Res., 2020, 81(7), 803-814.
[http://dx.doi.org/10.1002/ddr.21684] [PMID: 32394440]
[42]
Bocxlaer, K.V.; Croft, S.L. Pharmacokinetics and pharmacodynamics in the treatment of cutaneous leishmaniasis - challenges and opportunities. RSC Med. Chem., 2021, 12, 472-482.
[http://dx.doi.org/10.1039/D0MD00343C] [PMID: 34041488]
[43]
Patino, L.H.; Muskus, C.; Ramírez, J.D. Transcriptional responses of Leishmania (Leishmania) amazonensis in the presence of trivalent sodium stibogluconate. Parasit. Vectors, 2019, 12(1), 348.
[http://dx.doi.org/10.1186/s13071-019-3603-8] [PMID: 31300064]
[44]
Dar, M.J.; Din, F.U.; Khan, G.M. Sodium stibogluconate loaded nano-deformable liposomes for topical treatment of leishmaniasis: macrophage as a target cell. Drug Deliv., 2018, 25(1), 1595-1606.
[http://dx.doi.org/10.1080/10717544.2018.1494222] [PMID: 30105918]
[45]
El-Say, K.M.; El-Sawy, H.S. Polymeric nanoparticles: Promising platform for drug delivery. Int. J. Pharm., 2017, 528(1-2), 675-691.
[http://dx.doi.org/10.1016/j.ijpharm.2017.06.052] [PMID: 28629982]
[46]
Calzoni, E.; Cesaretti, A.; Polchi, A.; Di Michele, A.; Tancini, B.; Emiliani, C. Biocompatible polymer nanoparticles for drug delivery applications in cancer and neurodegenerative disorder therapies. J. Funct. Biomater., 2019, 10(1), 4.
[http://dx.doi.org/10.3390/jfb10010004] [PMID: 30626094]
[47]
Kim, B.H.; Hackett, M.J.; Park, J.; Hyeon, T. Synthesis, characterization, and application of ultrasmall nanoparticles. Chem. Mater., 2014, 26(1), 59-71.
[http://dx.doi.org/10.1021/cm402225z]
[48]
Nafari, A.; Cheraghipour, K.; Sepahvand, M.; Shahrokhi, G.; Gabal, E.; Mahmoudvand, H. Nanoparticles: New agents toward treatment of leishmaniasis. Parasite Epidemiol. Control, 2020, 10, e00156.
[http://dx.doi.org/10.1016/j.parepi.2020.e00156] [PMID: 32566773]
[49]
Marques, C.S.F.; Machado Júnior, J.B.; Andrade, L.R.M.; Andrade, L.N.; Santos, A.L.S.; Cruz, M.S.P.; Chaud, M.; Fricks, A.T.; Severino, P. Use of pharmaceutical nanotechnology for the treatment of leishmaniasis. Rev. Soc. Bras. Med. Trop., 2019, 52, e20180246.
[http://dx.doi.org/10.1590/0037-8682-0246-2018] [PMID: 30994800]
[50]
Anderson, S.D.; Gwenin, V.V.; Gwenin, C.D. Magnetic functionalized nanoparticles for biomedical, drug delivery and imaging applications. Nanoscale Res. Lett., 2019, 14(1), 188.
[http://dx.doi.org/10.1186/s11671-019-3019-6] [PMID: 31147786]
[51]
Cosco, D.; Bruno, F.; Castelli, G.; Puleio, R.; Bonacci, S.; Procopio, A.; Britti, D.; Fresta, M.; Vitale, F.; Paolino, D. Meglumine antimoniate-loaded aqueous-core PLA nanocapsules: Old drug, new formulation against leishmania-related diseases. Macromol. Biosci., 2021, 21(7), 2100046.
[http://dx.doi.org/10.1002/mabi.202100046] [PMID: 34117834]
[52]
Bertrand, N.; Grenier, P.; Mahmoudi, M.; Lima, E.M.; Appel, E.A.; Dormont, F.; Lim, J.M.; Karnik, R.; Langer, R.; Farokhzad, O.C. Mechanistic understanding of in vivo protein corona formation on polymeric nanoparticles and impact on pharmacokinetics. Nat. Commun., 2017, 8(1), 777.
[http://dx.doi.org/10.1038/s41467-017-00600-w] [PMID: 28974673]
[53]
Loría-Cervera, E.N.; Andrade-Narvaez, F. The role of monocytes/macrophages in Leishmania infection: A glance at the human response. Acta Trop., 2020, 207, 105456.
[http://dx.doi.org/10.1016/j.actatropica.2020.105456] [PMID: 32222362]
[54]
Saqib, M.; Ali Bhatti, A.S.; Ahmad, N.M.; Ahmed, N.; Shahnaz, G.; Lebaz, N.; Elaissari, A. Amphotericin B loaded polymeric nanoparticles for treatment of leishmania infections. Nanomaterials (Basel), 2020, 10(6), 1152.
[http://dx.doi.org/10.3390/nano10061152] [PMID: 32545473]
[55]
Messeder, M.M.S.; Miranda, D.; Lamas de Souza, S.O.; Dorneles, M.; Giunchetti, R.; Oréfice, R.L. Positively-charged electrosprayed nanoparticles based on biodegradable polymers containing amphotericin B for the treatment of leishmaniasis. Int. J. Polym. Mater., 2021, 70(16), 1189-1202.
[http://dx.doi.org/10.1080/00914037.2020.1785457]
[56]
Dwivedi, R.; Kumar, S.; Pandey, R.; Mahajan, A.; Nandana, D.; Katti, D.S.; Mehrotra, D. Polycaprolactone as biomaterial for bone scaffolds: Review of literature. J. Oral Biol. Craniofac. Res., 2020, 10(1), 381-388.
[http://dx.doi.org/10.1016/j.jobcr.2019.10.003] [PMID: 31754598]
[57]
Ghosh, S.; Kar, N.; Bera, T. Oleanolic acid loaded poly lactic co- glycolic acid- vitamin E TPGS nanoparticles for the treatment of Leishmania donovani infected visceral leishmaniasis. Int. J. Biol. Macromol., 2016, 93(Pt A), 961-970.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.09.014] [PMID: 27645930]
[58]
Abu Ammar, A.; Nasereddin, A.; Ereqat, S.; Dan-Goor, M.; Jaffe, C.L.; Zussman, E.; Abdeen, Z. Amphotericin B-loaded nanoparticles for local treatment of cutaneous leishmaniasis. Drug Deliv. Transl. Res., 2019, 9(1), 76-84.
[http://dx.doi.org/10.1007/s13346-018-00603-0] [PMID: 30484256]
[59]
Valle, I.V.; Machado, M.E.; Araújo, C.C.B.; da Cunha-Junior, E.F.; da Silva Pacheco, J.; Torres-Santos, E.C.; da Silva, L.C.R.P.; Cabral, L.M.; do Carmo, F.A.; Sathler, P.C. Oral pentamidine-loaded poly(d,l-lactic-co-glycolic) acid nanoparticles: an alternative approach for leishmaniasis treatment. Nanotechnology, 2019, 30(45), 455102.
[http://dx.doi.org/10.1088/1361-6528/ab373e] [PMID: 31365912]
[60]
Machatschek, R.; Schulz, B.; Lendlein, A. The influence of pH on the molecular degradation mechanism of PLGA. MRS Adv., 2018, 3(63), 3883-3889.
[http://dx.doi.org/10.1557/adv.2018.602]
[61]
Makadia, H.K.; Siegel, S.J. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers (Basel), 2011, 3(3), 1377-1397.
[http://dx.doi.org/10.3390/polym3031377] [PMID: 22577513]
[62]
Boltnarova, B.; Kubackova, J.; Skoda, J.; Stefela, A.; Smekalova, M.; Svacinova, P.; Pavkova, I.; Dittrich, M.; Scherman, D.; Zbytovska, J.; Pavek, P.; Holas, O. PLGA based nanospheres as a potent macrophage-specific drug delivery system. Nanomaterials (Basel), 2021, 11(3), 749.
[http://dx.doi.org/10.3390/nano11030749] [PMID: 33809764]
[63]
Riezk, A.; Van Bocxlaer, K.; Yardley, V.; Murdan, S.; Croft, S.L. Activity of amphotericin B-loaded chitosan nanoparticles against experimental cutaneous leishmaniasis. Molecules, 2020, 25(17), 4002.
[http://dx.doi.org/10.3390/molecules25174002] [PMID: 32887341]
[64]
Yang, X.; Yu, T.; Zeng, Y.; Lian, K.; Zhou, X.; Li, S.; Qiu, G.; Jin, X.; Yuan, H.; Hu, F. Tumor-draining lymph node targeting chitosan micelles as antigen-capturing adjuvants for personalized immunotherapy. Carbohydr. Polym., 2020, 240, 116270.
[http://dx.doi.org/10.1016/j.carbpol.2020.116270] [PMID: 32475559]
[65]
Sohail, A.; Khan, R.U.; Khan, M.; Khokhar, M.; Ullah, S.; Ali, A.; Bilal, H.; Khattak, S.; Khan, M.; Ahmad, B. Comparative efficacy of amphotericin B-loaded chitosan nanoparticles and free amphotericin B drug against Leishmania tropica. Bull. Natl. Res. Cent., 2021, 45(1), 187.
[http://dx.doi.org/10.1186/s42269-021-00644-5]
[66]
Coelho, E.; Ribeiro, T.; Fuscaldi, L.; Santos, M.; Duarte, M.; Lage, P.; Martins, V.; Costa, L.; Diniz, S.; Cardoso, V.; Castilho, R.; Soto, M.; Tavares, C.A.; Fumagalli, M.; Ribeiro, J.; Faraco, A. An optimized nanoparticle delivery system based on chitosan and chondroitin sulfate molecules reduces the toxicity of amphotericin B and is effective in treating tegumentary leishmaniasis. Int. J. Nanomedicine, 2014, 9, 5341-5353.
[http://dx.doi.org/10.2147/IJN.S68966] [PMID: 25429219]
[67]
Boroumand, H.; Badie, F.; Mazaheri, S.; Seyedi, Z.S.; Nahand, J.S.; Nejati, M.; Baghi, H.B.; Abbasi-Kolli, M.; Badehnoosh, B.; Ghandali, M.; Hamblin, M.R.; Mirzaei, H. Chitosan-based nanoparticles against viral infections. Front. Cell. Infect. Microbiol., 2021, 11, 643953.
[http://dx.doi.org/10.3389/fcimb.2021.643953] [PMID: 33816349]
[68]
Piras, A.M.; Sandreschi, S.; Maisetta, G.; Esin, S.; Batoni, G.; Chiellini, F. Chitosan nanoparticles for the linear release of model cationic Peptide. Pharm. Res., 2015, 32(7), 2259-2265.
[http://dx.doi.org/10.1007/s11095-014-1615-9] [PMID: 25559891]
[69]
Mulla, M.Z.; Rahman, M.R.T.; Marcos, B.; Tiwari, B.; Pathania, S. Poly Lactic Acid (PLA) Nanocomposites: Effect of inorganic nanoparticles reinforcement on its performance and food packaging applications. Molecules, 2021, 26(7), 1967.
[http://dx.doi.org/10.3390/molecules26071967] [PMID: 33807351]
[70]
da Silva, D.; Kaduri, M.; Poley, M.; Adir, O.; Krinsky, N.; Shainsky-Roitman, J.; Schroeder, A. Biocompatibility, biodegradation and excretion of polylactic acid (PLA) in medical implants and theranostic systems. Chem. Eng. J., 2018, 340, 9-14.
[http://dx.doi.org/10.1016/j.cej.2018.01.010] [PMID: 31384170]
[71]
Casalini, T.; Rossi, F.; Castrovinci, A.; Perale, G. A Perspective on polylactic acid-based polymers use for nanoparticles synthesis and applications. Front. Bioeng. Biotechnol., 2019, 7, 259.
[http://dx.doi.org/10.3389/fbioe.2019.00259] [PMID: 31681741]
[72]
Matha, K.; Calvignac, B.; Gangneux, J.P.; Benoit, J.P. The advantages of nanomedicine in the treatment of visceral leishmaniasis: between sound arguments and wishful thinking. Expert Opin. Drug Deliv., 2021, 18(4), 471-487.
[http://dx.doi.org/10.1080/17425247.2021.1853701] [PMID: 33217254]
[73]
Khalid, S.; Salman, S.; Iqbal, K.; Rehman, F.; Ullah, I.; Satoskar, A.R.; Khan, G.M.; Dar, M.J. Surfactant free synthesis of cationic nano-vesicles: A safe triple drug loaded vehicle for the topical treatment of cutaneous leishmaniasis. Nanomedicine, 2022, 40, 102490.
[http://dx.doi.org/10.1016/j.nano.2021.102490] [PMID: 34748957]
[74]
Kohli, N.; Ho, S.; Brown, S.J.; Sawadkar, P.; Sharma, V.; Snow, M.; García-Gareta, E. Bone remodelling in vitro: Where are we headed? Bone, 2018, 110, 38-46.
[http://dx.doi.org/10.1016/j.bone.2018.01.015] [PMID: 29355746]
[75]
Pinto, S.; Pintado, M.E.; Sarmento, B. In vivo, ex vivo and in vitro assessment of buccal permeation of drugs from delivery systems. Expert Opin. Drug Deliv., 2020, 17(1), 33-48.
[http://dx.doi.org/10.1080/17425247.2020.1699913] [PMID: 31786958]
[76]
Bogdan, C. Macrophages as host, effector and immunoregulatory cells in leishmaniasis: Impact of tissue micro-environment and metabolism. Cytokine X, 2020, 2(4), 100041.
[http://dx.doi.org/10.1016/j.cytox.2020.100041] [PMID: 33604563]
[77]
Espinoza, S.M.; Patil, H.I.; San Martin Martinez, E.; Casañas Pimentel, R.; Ige, P.P. Poly-ε-caprolactone (PCL), a promising polymer for pharmaceutical and biomedical applications: Focus on nanomedicine in cancer. Int. J. Polym. Mater., 2020, 69(2), 85-126.
[http://dx.doi.org/10.1080/00914037.2018.1539990]
[78]
Afzal, I.; Sarwar, H.S.; Sohail, M.F.; Varikuti, S.; Jahan, S.; Akhtar, S.; Yasinzai, M.; Satoskar, A.R.; Shahnaz, G. Mannosylated thiolated paromomycin-loaded PLGA nanoparticles for the oral therapy of visceral leishmaniasis. Nanomedicine (Lond.), 2019, 14(4), 387-406.
[http://dx.doi.org/10.2217/nnm-2018-0038] [PMID: 30688557]
[79]
Pinelli, F.; Perale, G.; Rossi, F. Coating and functionalization strategies for nanogels and nanoparticles for selective drug delivery. Gels, 2020, 6(1), 6.
[http://dx.doi.org/10.3390/gels6010006] [PMID: 32033057]
[80]
Angioletti-Uberti, S. Theory, simulations and the design of functionalized nanoparticles for biomedical applications: A Soft Matter Perspective. NPJ Comput. Mater, 2017, 3(1), 48.
[http://dx.doi.org/10.1038/s41524-017-0050-y]
[81]
Chaubey, P.; Mishra, B.; Mudavath, S.L.; Patel, R.R.; Chaurasia, S.; Sundar, S.; Suvarna, V.; Monteiro, M. Mannose-conjugated curcumin-chitosan nanoparticles: Efficacy and toxicity assessments against Leishmania donovani. Int. J. Biol. Macromol., 2018, 111, 109-120.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.12.143] [PMID: 29307805]
[82]
Jhaveri, J.; Raichura, Z.; Khan, T.; Momin, M.; Omri, A. Chitosan nanoparticles-insight into properties, functionalization and applications in drug delivery and theranostics. Molecules, 2021, 26(2), 272.
[http://dx.doi.org/10.3390/molecules26020272] [PMID: 33430478]
[83]
Federer, C.; Kurpiers, M.; Bernkop-Schnürch, A. Thiolated chitosans: A multi-talented class of polymers for various applications. Biomacromolecules, 2021, 22(1), 24-56.
[http://dx.doi.org/10.1021/acs.biomac.0c00663] [PMID: 32567846]
[84]
Machatschek, R.; Lendlein, A. Fundamental insights in PLGA degradation from thin film studies. J. Control. Release, 2020, 319, 276-284.
[http://dx.doi.org/10.1016/j.jconrel.2019.12.044] [PMID: 31884098]
[85]
Sarwar, H.S.; Ashraf, S.; Akhtar, S.; Sohail, M.F.; Hussain, S.Z.; Rafay, M.; Yasinzai, M.; Hussain, I.; Shahnaz, G. Mannosylated thiolated polyethylenimine nanoparticles for the enhanced efficacy of antimonial drug against Leishmaniasis. Nanomedicine (Lond.), 2018, 13(1), 25-41.
[http://dx.doi.org/10.2217/nnm-2017-0255] [PMID: 29173059]
[86]
Chen, Z.; Lv, Z.; Sun, Y.; Chi, Z.; Qing, G. Recent advancements in polyethyleneimine-based materials and their biomedical, biotechnology, and biomaterial applications. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(15), 2951-2973.
[http://dx.doi.org/10.1039/C9TB02271F] [PMID: 32159205]
[87]
Ghosh, S.; Das, S.; De, A.K.; Kar, N.; Bera, T. Amphotericin B-loaded mannose modified poly( D, L -lactide-co-glycolide) polymeric nanoparticles for the treatment of visceral leishmaniasis: In vitro and in vivo approaches. RSC Advances, 2017, 7(47), 29575-29590.
[http://dx.doi.org/10.1039/C7RA04951J]
[88]
Marques, A.C.; Costa, P.J.; Velho, S.; Amaral, M.H. Functionalizing nanoparticles with cancer-targeting antibodies: A comparison of strategies. J. Control. Release, 2020, 320, 180-200.
[http://dx.doi.org/10.1016/j.jconrel.2020.01.035] [PMID: 31978444]
[89]
Costa, A.; Sarmento, B.; Seabra, V. Mannose-functionalized solid lipid nanoparticles are effective in targeting alveolar macrophages. Eur. J. Pharm. Sci., 2018, 114, 103-113.
[http://dx.doi.org/10.1016/j.ejps.2017.12.006] [PMID: 29229273]
[90]
Choi, B.; Park, W.; Park, S.B.; Rhim, W.K.; Han, D.K. Recent trends in cell membrane-cloaked nanoparticles for therapeutic applications. Methods, 2020, 177, 2-14.
[http://dx.doi.org/10.1016/j.ymeth.2019.12.004] [PMID: 31874237]
[91]
Hua, S.; de Matos, M.B.C.; Metselaar, J.M.; Storm, G. Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: Pathways for translational development and commercialization. Front. Pharmacol., 2018, 9, 790.
[http://dx.doi.org/10.3389/fphar.2018.00790] [PMID: 30065653]
[92]
Patel, J.; Patel, S. Major obstacles in technology transfer of nanomedicine from conception to major obstacles in technology transfer of nanomedicine from conception to commercialisation. 2021, 5(2), 333-342.
[93]
Valencia, P.M.; Farokhzad, O.C.; Karnik, R.; Langer, R. Microfluidic technologies for accelerating the clinical translation of nanoparticles. Nat. Nanotechnol., 2012, 7(10), 623-629.
[http://dx.doi.org/10.1038/nnano.2012.168] [PMID: 23042546]
[94]
Weber, C.; Voigt, M.; Simon, J.; Danner, A.K.; Frey, H.; Mailänder, V.; Helm, M.; Morsbach, S.; Landfester, K. Functionalization of liposomes with hydrophilic polymers results in macrophage uptake independent of the protein corona. Biomacromolecules, 2019, 20(8), 2989-2999.
[http://dx.doi.org/10.1021/acs.biomac.9b00539] [PMID: 31268685]
[95]
Kad, A.; Pundir, A.; Arya, S.K.; Bhardwaj, N.; Khatri, M. An elucidative review to analytically sieve the viability of nanomedicine market. J. Pharm. Innov., 2022, 17(1), 249-265.
[http://dx.doi.org/10.1007/s12247-020-09495-5] [PMID: 32983280]
[96]
Rai, R.; Alwani, S.; Badea, I. Polymeric nanoparticles in gene therapy: New avenues of design and optimization for delivery applications. Polymers (Basel), 2019, 11(4), 745.
[http://dx.doi.org/10.3390/polym11040745] [PMID: 31027272]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy