Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Effectiveness In Vivo and In Vitro of Polymeric Nanoparticles as a Drug Release System in the Treatment of Leishmaniasis

Author(s): Lívia Maria Coelho de Carvalho Moreira, Ana Beatriz Almeida de Sousa Silva, Kaline de Araújo Medeiros, João Augusto Oshiro Júnior, Dayanne Tomaz Casimiro da Silva and Bolívar Ponciano Goulart de Lima Damasceno*

Volume 31, Issue 3, 2024

Published on: 20 March, 2023

Page: [286 - 307] Pages: 22

DOI: 10.2174/0929867330666230120163543

Price: $65

Abstract

Leishmaniasis is a neglected disease caused by the parasite of the genus Leishmania. Current treatment regimens are obsolete and cause several side effects, promoting poor patient compliance, in addition to the vast majority already having the potential for resistance. Therefore, polymeric nanoparticles emerge as one of the viable alternatives to overcome existing limitations, through passive or active vectorization. This review aims to summarize the latest studies of polymeric nanoparticles as an alternative treatment for leishmaniasis. In the first section, the main pharmacokinetic and pharmacodynamic challenges of current drugs are reported. The second section details how nanoparticles with and without functionalization are efficient in the treatment of leishmaniasis, discussing the characteristics of the polymer in the formulation. In this way, polymeric nanoparticles can improve the physicochemical properties of leishmanicidal drugs, improving solubility and stability, as well as improve the release of these drugs, directly or indirectly reaching monocytes/macrophages. 64.28% drugs were focused on the treatment of visceral leishmaniasis, and 28.57% on cutaneous leishmaniasis. The most chosen polymers in the literature are chitosan (35.71%) and PLGA (35.71%), the others represented 14.30% drugs, with all able to manage the drug release and increase the in vitro and/or in vivo efficacy of the original molecule. However, there are several barriers for these nanoformulations to cross laboratory research and is necessary more in-depth studies about the metabolites and degradation pathways of the polymers used in the formulations and plasma proteomics studies.

Keywords: Neglected disease, leishmania, release systems, polymeric nanoparticles, passive vectorization, functionalized nanoparticles, active vectoring.

[1]
de Souza, A.; Marins, D.S.S.; Mathias, S.L.; Monteiro, L.M.; Yukuyama, M.N.; Scarim, C.B.; Löbenberg, R.; Bou-Chacra, N.A. Promising nanotherapy in treating leishmaniasis. Int. J. Pharm., 2018, 547(1-2), 421-431.
[http://dx.doi.org/10.1016/j.ijpharm.2018.06.018] [PMID: 29886097]
[2]
J, B.; M, B.M.; Chanda, K. An overview on the therapeutics of neglected infectious diseases — Leishmaniasis and chagas diseases. Front Chem., 2021, 9, 622286.
[http://dx.doi.org/10.3389/fchem.2021.622286]
[3]
Sasidharan, S.; Saudagar, P. Leishmaniasis: where are we and where are we heading? Parasitol. Res., 2021, 120(5), 1541-1554.
[http://dx.doi.org/10.1007/s00436-021-07139-2] [PMID: 33825036]
[4]
Ghorbani, M.; Farhoudi, R. Leishmaniasis in humans: drug or vaccine therapy? Drug Des. Devel. Ther., 2017, 12, 25-40.
[http://dx.doi.org/10.2147/DDDT.S146521] [PMID: 29317800]
[5]
Chakravarty, J.; Sundar, S. Current and emerging medications for the treatment of leishmaniasis. Expert Opin. Pharmacother., 2019, 20(10), 1251-1265.
[http://dx.doi.org/10.1080/14656566.2019.1609940] [PMID: 31063412]
[6]
Magalhães, L.S.; Bomfim, L.G.S.; Santos, C.N.O.; dos Santos, P.L.; Tanajura, D.M.; Lipscomb, M.W.; de Jesus, A.R.; de Almeida, R.P.; de Moura, T.R.; Ribeiro, A. Antimony resistance associated with persistence of Leishmania (Leishmania) infantum infection in macrophages. Parasitol. Res., 2021, 120(8), 2959-2964.
[http://dx.doi.org/10.1007/s00436-021-07231-7] [PMID: 34272999]
[7]
Saleem, K.; Khursheed, Z.; Hano, C.; Anjum, I.; Anjum, S. Applications of nanomaterials in leishmaniasis: A focus on recent advances and challenges. Nanomaterials (Basel), 2019, 9(12), 1749.
[http://dx.doi.org/10.3390/nano9121749] [PMID: 31818029]
[8]
Durak, S.; Arasoglu, T.; Ates, S.C.; Derman, S. Enhanced antibacterial and antiparasitic activity of multifunctional polymeric nanoparticles. Nanotechnology, 2020, 31(17), 175705.
[http://dx.doi.org/10.1088/1361-6528/ab6ab9] [PMID: 31931488]
[9]
Kumar Singh, P.; Gorain, B.; Choudhury, H.; Kumar Singh, S.; Whadwa, P.; Shilpa; Sahu, S.; Gulati, M.; Kesharwani, P. Macrophage targeted amphotericin B nanodelivery systems against visceral leishmaniasis. Mater. Sci. Eng. B, 2020, 258, 114571.
[http://dx.doi.org/10.1016/j.mseb.2020.114571]
[10]
Ali-Boucetta, H.; Al-Jamal, K.T.; Kostarelos, K. Cytotoxic assessment of carbon nanotube interaction with cell cultures. Methods Mol. Biol., 2011, 726, 299-312.
[http://dx.doi.org/10.1007/978-1-61779-052-2_19] [PMID: 21424457]
[11]
Mishra, V.; Bansal, K.; Verma, A.; Yadav, N.; Thakur, S.; Sudhakar, K.; Rosenholm, J. Solid lipid nanoparticles: Emerging colloidal nano drug delivery systems. Pharmaceutics, 2018, 10(4), 191.
[http://dx.doi.org/10.3390/pharmaceutics10040191] [PMID: 30340327]
[12]
Sherje, A.P.; Jadhav, M.; Dravyakar, B.R.; Kadam, D. Dendrimers: A versatile nanocarrier for drug delivery and targeting. Int. J. Pharm., 2018, 548(1), 707-720.
[http://dx.doi.org/10.1016/j.ijpharm.2018.07.030] [PMID: 30012508]
[13]
Luther, D.C.; Huang, R.; Jeon, T.; Zhang, X.; Lee, Y.W.; Nagaraj, H.; Rotello, V.M. Delivery of drugs, proteins, and nucleic acids using inorganic nanoparticles. Adv. Drug Deliv. Rev., 2020, 156, 188-213.
[http://dx.doi.org/10.1016/j.addr.2020.06.020] [PMID: 32610061]
[14]
Chen, Z.; Wu, C.; Zhang, Z.; Wu, W.; Wang, X.; Yu, Z. Synthesis, functionalization, and nanomedical applications of functional magnetic nanoparticles. Chin. Chem. Lett., 2018, 29(11), 1601-1608.
[http://dx.doi.org/10.1016/j.cclet.2018.08.007]
[15]
Patil, S.M.; Sawant, S.S.; Kunda, N.K. Exosomes as drug delivery systems: A brief overview and progress update. Eur. J. Pharm. Biopharm., 2020, 154(April), 259-269.
[http://dx.doi.org/10.1016/j.ejpb.2020.07.026] [PMID: 32717385]
[16]
Begines, B.; Ortiz, T.; Pérez-Aranda, M.; Martínez, G.; Merinero, M.; Argüelles-Arias, F.; Alcudia, A. Polymeric nanoparticles for drug delivery: Recent developments and future prospects. Nanomaterials (Basel), 2020, 10(7), 1403.
[http://dx.doi.org/10.3390/nano10071403] [PMID: 32707641]
[17]
Prasanna, P.; Kumar, P.; Kumar, S.; Rajana, V.K.; Kant, V.; Prasad, S.R.; Mohan, U.; Ravichandiran, V.; Mandal, D. Current status of nanoscale drug delivery and the future of nano-vaccine development for leishmaniasis – A review. Biomed. Pharmacother., 2021, 141, 111920.
[http://dx.doi.org/10.1016/j.biopha.2021.111920] [PMID: 34328115]
[18]
Téllez, J.; Echeverry, M.C.; Romero, I.; Guatibonza, A.; Santos Ramos, G.; Borges De Oliveira, A.C.; Frézard, F.; Demicheli, C. Use of liposomal nanoformulations in antileishmania therapy: challenges and perspectives. J. Liposome Res., 2021, 31(2), 169-176.
[http://dx.doi.org/10.1080/08982104.2020.1749067] [PMID: 32228210]
[19]
Aragão Horoiwa, T.; Cortez, M.; Sauter, I.P.; Migotto, A.; Bandeira, C.L.; Cerize, N.N.P.; de Oliveira, A.M. Sugar-based colloidal nanocarriers for topical meglumine antimoniate application to cutaneous leishmaniasis treatment: Ex vivo cutaneous retention and in vivo evaluation. Eur. J. Pharm. Sci., 2020, 147, 105295.
[http://dx.doi.org/10.1016/j.ejps.2020.105295] [PMID: 32145429]
[20]
Berbert, T.R.N.; Mello, T.F.P.; Wolf Nassif, P.; Mota, C.A.; Silveira, A.V.; Duarte, G.C.; Demarchi, I.G.; Aristides, S.M.A.; Lonardoni, M.V.C.; Vieira Teixeira, J.J.; Silveira, T.G.V. Pentavalent antimonials combined with other therapeutic alternatives for the treatment of cutaneous and mucocutaneous leishmaniasis : A systematic review. Dermatol. Res. Pract., 2018, 2018, 9014726.
[http://dx.doi.org/10.1155/2018/9014726] [PMID: 30675152]
[21]
Sundar, S.; Singh, B. Emerging therapeutic targets for treatment of leishmaniasis. Expert Opin. Ther. Targets, 2018, 22(6), 467-486.
[http://dx.doi.org/10.1080/14728222.2018.1472241]
[22]
Carvalho, S.H.; Frézard, F.; Pereira, N.P.; Moura, A.S.; Ramos, L.M.Q.C.; Carvalho, G.B.; Rocha, M.O.C. American tegumentary leishmaniasis in Brazil: a critical review of the current therapeutic approach with systemic meglumine antimoniate and short-term possibilities for an alternative treatment. Trop. Med. Int. Health, 2019, 24(4), 380-391.
[http://dx.doi.org/10.1111/tmi.13210] [PMID: 30681239]
[23]
Santos Braga, S. Treating an old disease with new tricks: strategies based on host–guest chemistry for leishmaniasis therapy. J. Incl. Phenom. Macrocycl. Chem., 2019, 93(3-4), 145-155.
[http://dx.doi.org/10.1007/s10847-019-00885-y]
[24]
Matos, A.P.S.; Viçosa, A.L.; Ré, M.I.; Ricci-Júnior, E.; Holandino, C. A review of current treatments strategies based on paromomycin for leishmaniasis. J. Drug Deliv. Sci. Technol., 2020, 57, 101664.
[http://dx.doi.org/10.1016/j.jddst.2020.101664]
[25]
Verrest, L.; Wasunna, M.; Kokwaro, G.; Aman, R.; Musa, A.M.; Khalil, E.A.G.; Mudawi, M.; Younis, B.M.; Hailu, A.; Hurissa, Z.; Hailu, W.; Tesfaye, S.; Makonnen, E.; Mekonnen, Y.; Huitema, A.D.R.; Beijnen, J.H.; Kshirsagar, S.A.; Chakravarty, J.; Rai, M.; Sundar, S.; Alves, F.; Dorlo, T.P.C. Geographical variability in paromomycin pharmacokinetics does not explain efficacy differences between eastern african and indian visceral leishmaniasis patients. Clin. Pharmacokinet., 2021, 60(11), 1463-1473.
[http://dx.doi.org/10.1007/s40262-021-01036-8] [PMID: 34105063]
[26]
Davidson, R.N.; den Boer, M.; Ritmeijer, K. Paromomycin. Trans. R. Soc. Trop. Med. Hyg., 2009, 103(7), 653-660.
[http://dx.doi.org/10.1016/j.trstmh.2008.09.008] [PMID: 18947845]
[27]
Wiwanitkit, V. Interest in paromomycin for the treatment of visceral leishmaniasis (kala-azar). Ther. Clin. Risk Manag., 2012, 8, 323-328.
[http://dx.doi.org/10.2147/TCRM.S30139] [PMID: 22802694]
[28]
Vechi, H.T.; Sousa, A.S.V.; Cunha, M.A.; Shaw, J.J.; Luz, K.G. Case Report : Combination therapy with liposomal amphotericin B, N-Methyl meglumine antimoniate, and pentamidine isethionate for disseminated visceral leishmaniasis in a splenectomized adult patient. Am. J. Trop. Med. Hyg., 2020, 102(2), 268-273.
[http://dx.doi.org/10.4269/ajtmh.18-0999] [PMID: 31872796]
[29]
Andreana, I.; Bincoletto, V.; Milla, P.; Dosio, F.; Stella, B.; Arpicco, S. Nanotechnological approaches for pentamidine delivery. Drug Deliv. Transl. Res., 2022, 12(8), 1911-1927.
[http://dx.doi.org/10.1007/s13346-022-01127-4] [PMID: 35217992]
[30]
Pham, T.T.H.; Loiseau, P.M.; Barratt, G. Strategies for the design of orally bioavailable antileishmanial treatments. Int. J. Pharm., 2013, 454(1), 539-552.
[http://dx.doi.org/10.1016/j.ijpharm.2013.07.035] [PMID: 23871737]
[31]
Mérian, J.; De Souza, R.; Dou, Y.; Ekdawi, S.N.; Ravenelle, F.; Allen, C. Development of a liposome formulation for improved biodistribution and tumor accumulation of pentamidine for oncology applications. Int. J. Pharm., 2015, 488(1-2), 154-164.
[http://dx.doi.org/10.1016/j.ijpharm.2015.04.060] [PMID: 25910415]
[32]
Eissa, M.M.; El-Moslemany, R.M.; Ramadan, A.A.; Amer, E.I.; El-Azzouni, M.Z.; El-Khordagui, L.K. Miltefosine lipid nanocapsules for single dose oral treatment of Schistosomiasis Mansoni: A preclinical study. PLoS One, 2015, 10(11), e0141788.
[http://dx.doi.org/10.1371/journal.pone.0141788] [PMID: 26574746]
[33]
Malheiros, B.; de Castro, R.D.; Lotierzo, M.C.; Casadei, B.R.; Mariani, P.; Barbosa, L.R.S.; Barbosa, L.R.S. Influence of hexadecylphosphocholine (Miltefosine) in phytantriol-based cubosomes: A structural investigation. Colloids Surf. A Physicochem. Eng. Asp., 2022, 632, 127720.
[http://dx.doi.org/10.1016/j.colsurfa.2021.127720]
[34]
Kumar, R.; Sahoo, G.C.; Pandey, K.; Das, V.N.R.; Topno, R.K.; Ansari, M.Y.; Rana, S.; Das, P. Development of PLGA–PEG encapsulated miltefosine based drug delivery system against visceral leishmaniasis. Mater. Sci. Eng. C, 2016, 59, 748-753.
[http://dx.doi.org/10.1016/j.msec.2015.10.083] [PMID: 26652429]
[35]
Dorlo, T.P.C.; Balasegaram, M.; Beijnen, J.H.; de Vries, P.J. Miltefosine: a review of its pharmacology and therapeutic efficacy in the treatment of leishmaniasis. J. Antimicrob. Chemother., 2012, 67(11), 2576-2597.
[http://dx.doi.org/10.1093/jac/dks275] [PMID: 22833634]
[36]
Ware, J.M.; O’Connell, E.M.; Brown, T.; Wetzler, L.; Talaat, K.R.; Nutman, T.B.; Nash, T.E. Efficacy and tolerability of miltefosine in the treatment of cutaneous leishmaniasis. Clin. Infect. Dis., 2021, 73(7), e2457-e2562.
[http://dx.doi.org/10.1093/cid/ciaa1238] [PMID: 33124666]
[37]
Nimtrakul, P.; Williams, D.B.; Tiyaboonchai, W.; Prestidge, C.A. Copolymeric micelles overcome the oral delivery challenges of amphotericin B. Pharmaceuticals (Basel), 2020, 13(6), 121.
[http://dx.doi.org/10.3390/ph13060121] [PMID: 32545189]
[38]
Lanza, J.S.; Pomel, S.; Loiseau, P.M.; Frézard, F. Recent advances in amphotericin B delivery strategies for the treatment of leishmaniases. Expert Opin. Drug Deliv., 2019, 16(10), 1063-1079.
[http://dx.doi.org/10.1080/17425247.2019.1659243] [PMID: 31433678]
[39]
Silva-Carvalho, R.; Fidalgo, J.; Melo, K.R.; Queiroz, M.F.; Leal, S.; Rocha, H.A.; Cruz, T.; Parpot, P.; Tomás, A.M.; Gama, M. Development of dextrin-amphotericin B formulations for the treatment of Leishmaniasis. Int. J. Biol. Macromol., 2020, 153, 276-288.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.03.019] [PMID: 32145228]
[40]
Kapil, S.; Singh, P.K.; Silakari, O. An update on small molecule strategies targeting leishmaniasis. Eur. J. Med. Chem., 2018, 157, 339-367.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.012] [PMID: 30099256]
[41]
Souza, M.L.; Gonzaga da Costa, L.A.; Silva, E.O.; Sousa, A.L.M.D.; Santos, W.M.; Rolim Neto, P.J. Recent strategies for the development of oral medicines for the treatment of visceral leishmaniasis. Drug Dev. Res., 2020, 81(7), 803-814.
[http://dx.doi.org/10.1002/ddr.21684] [PMID: 32394440]
[42]
Bocxlaer, K.V.; Croft, S.L. Pharmacokinetics and pharmacodynamics in the treatment of cutaneous leishmaniasis - challenges and opportunities. RSC Med. Chem., 2021, 12, 472-482.
[http://dx.doi.org/10.1039/D0MD00343C] [PMID: 34041488]
[43]
Patino, L.H.; Muskus, C.; Ramírez, J.D. Transcriptional responses of Leishmania (Leishmania) amazonensis in the presence of trivalent sodium stibogluconate. Parasit. Vectors, 2019, 12(1), 348.
[http://dx.doi.org/10.1186/s13071-019-3603-8] [PMID: 31300064]
[44]
Dar, M.J.; Din, F.U.; Khan, G.M. Sodium stibogluconate loaded nano-deformable liposomes for topical treatment of leishmaniasis: macrophage as a target cell. Drug Deliv., 2018, 25(1), 1595-1606.
[http://dx.doi.org/10.1080/10717544.2018.1494222] [PMID: 30105918]
[45]
El-Say, K.M.; El-Sawy, H.S. Polymeric nanoparticles: Promising platform for drug delivery. Int. J. Pharm., 2017, 528(1-2), 675-691.
[http://dx.doi.org/10.1016/j.ijpharm.2017.06.052] [PMID: 28629982]
[46]
Calzoni, E.; Cesaretti, A.; Polchi, A.; Di Michele, A.; Tancini, B.; Emiliani, C. Biocompatible polymer nanoparticles for drug delivery applications in cancer and neurodegenerative disorder therapies. J. Funct. Biomater., 2019, 10(1), 4.
[http://dx.doi.org/10.3390/jfb10010004] [PMID: 30626094]
[47]
Kim, B.H.; Hackett, M.J.; Park, J.; Hyeon, T. Synthesis, characterization, and application of ultrasmall nanoparticles. Chem. Mater., 2014, 26(1), 59-71.
[http://dx.doi.org/10.1021/cm402225z]
[48]
Nafari, A.; Cheraghipour, K.; Sepahvand, M.; Shahrokhi, G.; Gabal, E.; Mahmoudvand, H. Nanoparticles: New agents toward treatment of leishmaniasis. Parasite Epidemiol. Control, 2020, 10, e00156.
[http://dx.doi.org/10.1016/j.parepi.2020.e00156] [PMID: 32566773]
[49]
Marques, C.S.F.; Machado Júnior, J.B.; Andrade, L.R.M.; Andrade, L.N.; Santos, A.L.S.; Cruz, M.S.P.; Chaud, M.; Fricks, A.T.; Severino, P. Use of pharmaceutical nanotechnology for the treatment of leishmaniasis. Rev. Soc. Bras. Med. Trop., 2019, 52, e20180246.
[http://dx.doi.org/10.1590/0037-8682-0246-2018] [PMID: 30994800]
[50]
Anderson, S.D.; Gwenin, V.V.; Gwenin, C.D. Magnetic functionalized nanoparticles for biomedical, drug delivery and imaging applications. Nanoscale Res. Lett., 2019, 14(1), 188.
[http://dx.doi.org/10.1186/s11671-019-3019-6] [PMID: 31147786]
[51]
Cosco, D.; Bruno, F.; Castelli, G.; Puleio, R.; Bonacci, S.; Procopio, A.; Britti, D.; Fresta, M.; Vitale, F.; Paolino, D. Meglumine antimoniate-loaded aqueous-core PLA nanocapsules: Old drug, new formulation against leishmania-related diseases. Macromol. Biosci., 2021, 21(7), 2100046.
[http://dx.doi.org/10.1002/mabi.202100046] [PMID: 34117834]
[52]
Bertrand, N.; Grenier, P.; Mahmoudi, M.; Lima, E.M.; Appel, E.A.; Dormont, F.; Lim, J.M.; Karnik, R.; Langer, R.; Farokhzad, O.C. Mechanistic understanding of in vivo protein corona formation on polymeric nanoparticles and impact on pharmacokinetics. Nat. Commun., 2017, 8(1), 777.
[http://dx.doi.org/10.1038/s41467-017-00600-w] [PMID: 28974673]
[53]
Loría-Cervera, E.N.; Andrade-Narvaez, F. The role of monocytes/macrophages in Leishmania infection: A glance at the human response. Acta Trop., 2020, 207, 105456.
[http://dx.doi.org/10.1016/j.actatropica.2020.105456] [PMID: 32222362]
[54]
Saqib, M.; Ali Bhatti, A.S.; Ahmad, N.M.; Ahmed, N.; Shahnaz, G.; Lebaz, N.; Elaissari, A. Amphotericin B loaded polymeric nanoparticles for treatment of leishmania infections. Nanomaterials (Basel), 2020, 10(6), 1152.
[http://dx.doi.org/10.3390/nano10061152] [PMID: 32545473]
[55]
Messeder, M.M.S.; Miranda, D.; Lamas de Souza, S.O.; Dorneles, M.; Giunchetti, R.; Oréfice, R.L. Positively-charged electrosprayed nanoparticles based on biodegradable polymers containing amphotericin B for the treatment of leishmaniasis. Int. J. Polym. Mater., 2021, 70(16), 1189-1202.
[http://dx.doi.org/10.1080/00914037.2020.1785457]
[56]
Dwivedi, R.; Kumar, S.; Pandey, R.; Mahajan, A.; Nandana, D.; Katti, D.S.; Mehrotra, D. Polycaprolactone as biomaterial for bone scaffolds: Review of literature. J. Oral Biol. Craniofac. Res., 2020, 10(1), 381-388.
[http://dx.doi.org/10.1016/j.jobcr.2019.10.003] [PMID: 31754598]
[57]
Ghosh, S.; Kar, N.; Bera, T. Oleanolic acid loaded poly lactic co- glycolic acid- vitamin E TPGS nanoparticles for the treatment of Leishmania donovani infected visceral leishmaniasis. Int. J. Biol. Macromol., 2016, 93(Pt A), 961-970.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.09.014] [PMID: 27645930]
[58]
Abu Ammar, A.; Nasereddin, A.; Ereqat, S.; Dan-Goor, M.; Jaffe, C.L.; Zussman, E.; Abdeen, Z. Amphotericin B-loaded nanoparticles for local treatment of cutaneous leishmaniasis. Drug Deliv. Transl. Res., 2019, 9(1), 76-84.
[http://dx.doi.org/10.1007/s13346-018-00603-0] [PMID: 30484256]
[59]
Valle, I.V.; Machado, M.E.; Araújo, C.C.B.; da Cunha-Junior, E.F.; da Silva Pacheco, J.; Torres-Santos, E.C.; da Silva, L.C.R.P.; Cabral, L.M.; do Carmo, F.A.; Sathler, P.C. Oral pentamidine-loaded poly(d,l-lactic-co-glycolic) acid nanoparticles: an alternative approach for leishmaniasis treatment. Nanotechnology, 2019, 30(45), 455102.
[http://dx.doi.org/10.1088/1361-6528/ab373e] [PMID: 31365912]
[60]
Machatschek, R.; Schulz, B.; Lendlein, A. The influence of pH on the molecular degradation mechanism of PLGA. MRS Adv., 2018, 3(63), 3883-3889.
[http://dx.doi.org/10.1557/adv.2018.602]
[61]
Makadia, H.K.; Siegel, S.J. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers (Basel), 2011, 3(3), 1377-1397.
[http://dx.doi.org/10.3390/polym3031377] [PMID: 22577513]
[62]
Boltnarova, B.; Kubackova, J.; Skoda, J.; Stefela, A.; Smekalova, M.; Svacinova, P.; Pavkova, I.; Dittrich, M.; Scherman, D.; Zbytovska, J.; Pavek, P.; Holas, O. PLGA based nanospheres as a potent macrophage-specific drug delivery system. Nanomaterials (Basel), 2021, 11(3), 749.
[http://dx.doi.org/10.3390/nano11030749] [PMID: 33809764]
[63]
Riezk, A.; Van Bocxlaer, K.; Yardley, V.; Murdan, S.; Croft, S.L. Activity of amphotericin B-loaded chitosan nanoparticles against experimental cutaneous leishmaniasis. Molecules, 2020, 25(17), 4002.
[http://dx.doi.org/10.3390/molecules25174002] [PMID: 32887341]
[64]
Yang, X.; Yu, T.; Zeng, Y.; Lian, K.; Zhou, X.; Li, S.; Qiu, G.; Jin, X.; Yuan, H.; Hu, F. Tumor-draining lymph node targeting chitosan micelles as antigen-capturing adjuvants for personalized immunotherapy. Carbohydr. Polym., 2020, 240, 116270.
[http://dx.doi.org/10.1016/j.carbpol.2020.116270] [PMID: 32475559]
[65]
Sohail, A.; Khan, R.U.; Khan, M.; Khokhar, M.; Ullah, S.; Ali, A.; Bilal, H.; Khattak, S.; Khan, M.; Ahmad, B. Comparative efficacy of amphotericin B-loaded chitosan nanoparticles and free amphotericin B drug against Leishmania tropica. Bull. Natl. Res. Cent., 2021, 45(1), 187.
[http://dx.doi.org/10.1186/s42269-021-00644-5]
[66]
Coelho, E.; Ribeiro, T.; Fuscaldi, L.; Santos, M.; Duarte, M.; Lage, P.; Martins, V.; Costa, L.; Diniz, S.; Cardoso, V.; Castilho, R.; Soto, M.; Tavares, C.A.; Fumagalli, M.; Ribeiro, J.; Faraco, A. An optimized nanoparticle delivery system based on chitosan and chondroitin sulfate molecules reduces the toxicity of amphotericin B and is effective in treating tegumentary leishmaniasis. Int. J. Nanomedicine, 2014, 9, 5341-5353.
[http://dx.doi.org/10.2147/IJN.S68966] [PMID: 25429219]
[67]
Boroumand, H.; Badie, F.; Mazaheri, S.; Seyedi, Z.S.; Nahand, J.S.; Nejati, M.; Baghi, H.B.; Abbasi-Kolli, M.; Badehnoosh, B.; Ghandali, M.; Hamblin, M.R.; Mirzaei, H. Chitosan-based nanoparticles against viral infections. Front. Cell. Infect. Microbiol., 2021, 11, 643953.
[http://dx.doi.org/10.3389/fcimb.2021.643953] [PMID: 33816349]
[68]
Piras, A.M.; Sandreschi, S.; Maisetta, G.; Esin, S.; Batoni, G.; Chiellini, F. Chitosan nanoparticles for the linear release of model cationic Peptide. Pharm. Res., 2015, 32(7), 2259-2265.
[http://dx.doi.org/10.1007/s11095-014-1615-9] [PMID: 25559891]
[69]
Mulla, M.Z.; Rahman, M.R.T.; Marcos, B.; Tiwari, B.; Pathania, S. Poly Lactic Acid (PLA) Nanocomposites: Effect of inorganic nanoparticles reinforcement on its performance and food packaging applications. Molecules, 2021, 26(7), 1967.
[http://dx.doi.org/10.3390/molecules26071967] [PMID: 33807351]
[70]
da Silva, D.; Kaduri, M.; Poley, M.; Adir, O.; Krinsky, N.; Shainsky-Roitman, J.; Schroeder, A. Biocompatibility, biodegradation and excretion of polylactic acid (PLA) in medical implants and theranostic systems. Chem. Eng. J., 2018, 340, 9-14.
[http://dx.doi.org/10.1016/j.cej.2018.01.010] [PMID: 31384170]
[71]
Casalini, T.; Rossi, F.; Castrovinci, A.; Perale, G. A Perspective on polylactic acid-based polymers use for nanoparticles synthesis and applications. Front. Bioeng. Biotechnol., 2019, 7, 259.
[http://dx.doi.org/10.3389/fbioe.2019.00259] [PMID: 31681741]
[72]
Matha, K.; Calvignac, B.; Gangneux, J.P.; Benoit, J.P. The advantages of nanomedicine in the treatment of visceral leishmaniasis: between sound arguments and wishful thinking. Expert Opin. Drug Deliv., 2021, 18(4), 471-487.
[http://dx.doi.org/10.1080/17425247.2021.1853701] [PMID: 33217254]
[73]
Khalid, S.; Salman, S.; Iqbal, K.; Rehman, F.; Ullah, I.; Satoskar, A.R.; Khan, G.M.; Dar, M.J. Surfactant free synthesis of cationic nano-vesicles: A safe triple drug loaded vehicle for the topical treatment of cutaneous leishmaniasis. Nanomedicine, 2022, 40, 102490.
[http://dx.doi.org/10.1016/j.nano.2021.102490] [PMID: 34748957]
[74]
Kohli, N.; Ho, S.; Brown, S.J.; Sawadkar, P.; Sharma, V.; Snow, M.; García-Gareta, E. Bone remodelling in vitro: Where are we headed? Bone, 2018, 110, 38-46.
[http://dx.doi.org/10.1016/j.bone.2018.01.015] [PMID: 29355746]
[75]
Pinto, S.; Pintado, M.E.; Sarmento, B. In vivo, ex vivo and in vitro assessment of buccal permeation of drugs from delivery systems. Expert Opin. Drug Deliv., 2020, 17(1), 33-48.
[http://dx.doi.org/10.1080/17425247.2020.1699913] [PMID: 31786958]
[76]
Bogdan, C. Macrophages as host, effector and immunoregulatory cells in leishmaniasis: Impact of tissue micro-environment and metabolism. Cytokine X, 2020, 2(4), 100041.
[http://dx.doi.org/10.1016/j.cytox.2020.100041] [PMID: 33604563]
[77]
Espinoza, S.M.; Patil, H.I.; San Martin Martinez, E.; Casañas Pimentel, R.; Ige, P.P. Poly-ε-caprolactone (PCL), a promising polymer for pharmaceutical and biomedical applications: Focus on nanomedicine in cancer. Int. J. Polym. Mater., 2020, 69(2), 85-126.
[http://dx.doi.org/10.1080/00914037.2018.1539990]
[78]
Afzal, I.; Sarwar, H.S.; Sohail, M.F.; Varikuti, S.; Jahan, S.; Akhtar, S.; Yasinzai, M.; Satoskar, A.R.; Shahnaz, G. Mannosylated thiolated paromomycin-loaded PLGA nanoparticles for the oral therapy of visceral leishmaniasis. Nanomedicine (Lond.), 2019, 14(4), 387-406.
[http://dx.doi.org/10.2217/nnm-2018-0038] [PMID: 30688557]
[79]
Pinelli, F.; Perale, G.; Rossi, F. Coating and functionalization strategies for nanogels and nanoparticles for selective drug delivery. Gels, 2020, 6(1), 6.
[http://dx.doi.org/10.3390/gels6010006] [PMID: 32033057]
[80]
Angioletti-Uberti, S. Theory, simulations and the design of functionalized nanoparticles for biomedical applications: A Soft Matter Perspective. NPJ Comput. Mater, 2017, 3(1), 48.
[http://dx.doi.org/10.1038/s41524-017-0050-y]
[81]
Chaubey, P.; Mishra, B.; Mudavath, S.L.; Patel, R.R.; Chaurasia, S.; Sundar, S.; Suvarna, V.; Monteiro, M. Mannose-conjugated curcumin-chitosan nanoparticles: Efficacy and toxicity assessments against Leishmania donovani. Int. J. Biol. Macromol., 2018, 111, 109-120.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.12.143] [PMID: 29307805]
[82]
Jhaveri, J.; Raichura, Z.; Khan, T.; Momin, M.; Omri, A. Chitosan nanoparticles-insight into properties, functionalization and applications in drug delivery and theranostics. Molecules, 2021, 26(2), 272.
[http://dx.doi.org/10.3390/molecules26020272] [PMID: 33430478]
[83]
Federer, C.; Kurpiers, M.; Bernkop-Schnürch, A. Thiolated chitosans: A multi-talented class of polymers for various applications. Biomacromolecules, 2021, 22(1), 24-56.
[http://dx.doi.org/10.1021/acs.biomac.0c00663] [PMID: 32567846]
[84]
Machatschek, R.; Lendlein, A. Fundamental insights in PLGA degradation from thin film studies. J. Control. Release, 2020, 319, 276-284.
[http://dx.doi.org/10.1016/j.jconrel.2019.12.044] [PMID: 31884098]
[85]
Sarwar, H.S.; Ashraf, S.; Akhtar, S.; Sohail, M.F.; Hussain, S.Z.; Rafay, M.; Yasinzai, M.; Hussain, I.; Shahnaz, G. Mannosylated thiolated polyethylenimine nanoparticles for the enhanced efficacy of antimonial drug against Leishmaniasis. Nanomedicine (Lond.), 2018, 13(1), 25-41.
[http://dx.doi.org/10.2217/nnm-2017-0255] [PMID: 29173059]
[86]
Chen, Z.; Lv, Z.; Sun, Y.; Chi, Z.; Qing, G. Recent advancements in polyethyleneimine-based materials and their biomedical, biotechnology, and biomaterial applications. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(15), 2951-2973.
[http://dx.doi.org/10.1039/C9TB02271F] [PMID: 32159205]
[87]
Ghosh, S.; Das, S.; De, A.K.; Kar, N.; Bera, T. Amphotericin B-loaded mannose modified poly( D, L -lactide-co-glycolide) polymeric nanoparticles for the treatment of visceral leishmaniasis: In vitro and in vivo approaches. RSC Advances, 2017, 7(47), 29575-29590.
[http://dx.doi.org/10.1039/C7RA04951J]
[88]
Marques, A.C.; Costa, P.J.; Velho, S.; Amaral, M.H. Functionalizing nanoparticles with cancer-targeting antibodies: A comparison of strategies. J. Control. Release, 2020, 320, 180-200.
[http://dx.doi.org/10.1016/j.jconrel.2020.01.035] [PMID: 31978444]
[89]
Costa, A.; Sarmento, B.; Seabra, V. Mannose-functionalized solid lipid nanoparticles are effective in targeting alveolar macrophages. Eur. J. Pharm. Sci., 2018, 114, 103-113.
[http://dx.doi.org/10.1016/j.ejps.2017.12.006] [PMID: 29229273]
[90]
Choi, B.; Park, W.; Park, S.B.; Rhim, W.K.; Han, D.K. Recent trends in cell membrane-cloaked nanoparticles for therapeutic applications. Methods, 2020, 177, 2-14.
[http://dx.doi.org/10.1016/j.ymeth.2019.12.004] [PMID: 31874237]
[91]
Hua, S.; de Matos, M.B.C.; Metselaar, J.M.; Storm, G. Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: Pathways for translational development and commercialization. Front. Pharmacol., 2018, 9, 790.
[http://dx.doi.org/10.3389/fphar.2018.00790] [PMID: 30065653]
[92]
Patel, J.; Patel, S. Major obstacles in technology transfer of nanomedicine from conception to major obstacles in technology transfer of nanomedicine from conception to commercialisation. 2021, 5(2), 333-342.
[93]
Valencia, P.M.; Farokhzad, O.C.; Karnik, R.; Langer, R. Microfluidic technologies for accelerating the clinical translation of nanoparticles. Nat. Nanotechnol., 2012, 7(10), 623-629.
[http://dx.doi.org/10.1038/nnano.2012.168] [PMID: 23042546]
[94]
Weber, C.; Voigt, M.; Simon, J.; Danner, A.K.; Frey, H.; Mailänder, V.; Helm, M.; Morsbach, S.; Landfester, K. Functionalization of liposomes with hydrophilic polymers results in macrophage uptake independent of the protein corona. Biomacromolecules, 2019, 20(8), 2989-2999.
[http://dx.doi.org/10.1021/acs.biomac.9b00539] [PMID: 31268685]
[95]
Kad, A.; Pundir, A.; Arya, S.K.; Bhardwaj, N.; Khatri, M. An elucidative review to analytically sieve the viability of nanomedicine market. J. Pharm. Innov., 2022, 17(1), 249-265.
[http://dx.doi.org/10.1007/s12247-020-09495-5] [PMID: 32983280]
[96]
Rai, R.; Alwani, S.; Badea, I. Polymeric nanoparticles in gene therapy: New avenues of design and optimization for delivery applications. Polymers (Basel), 2019, 11(4), 745.
[http://dx.doi.org/10.3390/polym11040745] [PMID: 31027272]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy