Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Research Article

Hepatic and Systemic Inflammation for Left Ventricular Mass in Physically Fit Adults: CHIEF Heart Study

Author(s): Yi-Ting Chou, Kai-Wen Chen, Pang-Yen Liu, Kun-Zhe Tsai, Yen-Po Lin and Gen-Min Lin*

Volume 23, Issue 7, 2023

Published on: 20 February, 2023

Page: [977 - 983] Pages: 7

DOI: 10.2174/1871530323666230119145010

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Both low-grade systemic and hepatic inflammation could result in increased left ventricular mass (LVM) in the general population. However, the associations, which might be modified by exercise, have not been clarified in physically active young adults.

Methods: The study included 2,004 military males aged 18–43 years in eastern Taiwan. Systemic and hepatic inflammation was defined by the upper tertiles of blood white blood cell (WBC) counts (7.51-11.00 x 103/μL) and serum alanine aminotransferase (ALT: 30-120 U/L), respectively. LVM indexed for the body height ≥49 g/m2.7 was defined as left ventricular hypertrophy (LVH) based on echocardiography. Multiple logistic regression analysis adjusting for age, smoking, alcohol intake, physical fitness, and metabolic syndrome was utilized to determine the associations.

Results: As compared to the lower WBC/lower ALT group, there tended to have an increased risk of LVH with the higher WBC/lower ALT group, the lower WBC/higher ALT group, and the higher WBC/higher ALT group [odds ratios: 0.89 (95% confidence intervals (CI): 0.41-1.94), 1.90 (95% CI: 0.86-4.22) and 2.48 (95% CI: 1.04-5.92); p-value for trend = 0.01].

Conclusion: Our study suggested that in physically active males, those with hepatic inflammation rather than low-grade systemic inflammation had a higher risk of LVH. Hepatic injury might be relevant to LVH as an early sign of end-organ damage regardless of physical fitness in young adults.

Keywords: Alanine aminotransferase, left ventricular hypertrophy, left ventricular mass, physical fitness, white blood cell counts, hepatic inflammation.

Graphical Abstract
[1]
Yildiz, M.; Oktay, A.A.; Stewart, M.H.; Milani, R.V.; Ventura, H.O.; Lavie, C.J. Left ventricular hypertrophy and hypertension. Prog. Cardiovasc. Dis., 2020, 63(1), 10-21.
[http://dx.doi.org/10.1016/j.pcad.2019.11.009] [PMID: 31759953]
[2]
Dekker, J.M.; Girman, C.; Rhodes, T.; Nijpels, G.; Stehouwer, C.D.A.; Bouter, L.M.; Heine, R.J. Metabolic syndrome and 10-year cardiovascular disease risk in the Hoorn Study. Circulation, 2005, 112(5), 666-673.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.104.516948] [PMID: 16061755]
[3]
Mottillo, S.; Filion, K.B.; Genest, J.; Joseph, L.; Pilote, L.; Poirier, P.; Rinfret, S.; Schiffrin, E.L.; Eisenberg, M.J. The metabolic syndrome and cardiovascular risk a systematic review and meta-analysis. J. Am. Coll. Cardiol., 2010, 56(14), 1113-1132.
[http://dx.doi.org/10.1016/j.jacc.2010.05.034] [PMID: 20863953]
[4]
Joseph, G.; Marott, J.L.; Biering-Sørensen, T.; Johansen, M.N.; Saevereid, H.A.; Nielsen, G.; Schnohr, P.; Prescott, E.; Søgaard, P.; Mogelvang, R. Level of physical activity, left ventricular mass, hypertension, and prognosis. Hypertension, 2020, 75(3), 693-701.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.119.14287] [PMID: 31884852]
[5]
Visco, V.; Pascale, A.V.; Virtuoso, N.; Mongiello, F.; Cinque, F.; Gioia, R.; Finelli, R.; Mazzeo, P.; Manzi, M.V.; Morisco, C.; Rozza, F.; Izzo, R.; Cerasuolo, F.; Ciccarelli, M.; Iaccarino, G. Serum uric acid and left ventricular mass in essential hypertension. Front. Cardiovasc. Med., 2020, 7, 570000.
[http://dx.doi.org/10.3389/fcvm.2020.570000] [PMID: 33324684]
[6]
Lee, H.J.; Kim, H.L.; Lim, W.H.; Seo, J.B.; Kim, S.H.; Zo, J.H.; Kim, M.A. Subclinical alterations in left ventricular structure and function according to obesity and metabolic health status. PLoS One, 2019, 14(9), e0222118.
[http://dx.doi.org/10.1371/journal.pone.0222118] [PMID: 31513625]
[7]
Aung, N.; Sanghvi, M.M.; Piechnik, S.K.; Neubauer, S.; Munroe, P.B.; Petersen, S.E. The effect of blood lipids on the left ventricle. J. Am. Coll. Cardiol., 2020, 76(21), 2477-2488.
[http://dx.doi.org/10.1016/j.jacc.2020.09.583] [PMID: 33213727]
[8]
Feng, P.; Huang, Y.; Wang, S.; Yu, G.; Li, G.; Lei, H.; Qin, S.; Huang, W. Analysis of the associations between obesity indices and left ventricular mass. Cardiology, 2018, 141, 183-189.
[http://dx.doi.org/10.1159/000496177]
[9]
Pietri, P.; Georgiopoulos, G.; Tsiachris, D.; Kordalis, A.; Vlachopoulos, C.; Vyssoulis, G.; Stefanadis, C. Triglycerides are related to left ventricular mass in hypertensive patients independently of other cardiometabolic risk factors: the effect of gender. Sci. Rep., 2020, 10(1), 13253.
[http://dx.doi.org/10.1038/s41598-020-70237-1] [PMID: 32764712]
[10]
Tsai, K.Z.; Su, F.Y.; Cheng, W.C.; Lin, Y.P.; Lin, G.M. Association between hepatic and systemic inflammation and localized stage II/III periodontitis in young males: The CHIEF Oral Health study. J. Clin. Periodontol., 2022, 49(5), 458-466.
[http://dx.doi.org/10.1111/jcpe.13556] [PMID: 34611936]
[11]
Ichihara, Y.; Ohno, J.; Suzuki, M.; Anno, T.; Sugino, M.; Nagata, K. Higher C-reactive protein concentration and white blood cell count in subjects with more coronary risk factors and/or lower physical fitness among apparently healthy. Japanese. Circ. J., 2002, 66(7), 677-684.
[http://dx.doi.org/10.1253/circj.66.677] [PMID: 12135138]
[12]
Chung, P.S.; Tsai, K.Z.; Lin, Y.P.; Lin, Y.K.; Lin, G.M. Association between leukocyte counts and physical fitness in male military members: The CHIEF Study. Sci. Rep., 2020, 10(1), 6082.
[http://dx.doi.org/10.1038/s41598-020-63147-9] [PMID: 32269281]
[13]
Rateri, D.L.; Howatt, D.A.; Moorleghen, J.J.; Charnigo, R.; Cassis, L.A.; Daugherty, A. Prolonged infusion of angiotensin II in apoE(-/-) mice promotes macrophage recruitment with continued expansion of abdominal aortic aneurysm. Am. J. Pathol., 2011, 179(3), 1542-1548.
[http://dx.doi.org/10.1016/j.ajpath.2011.05.049] [PMID: 21763672]
[14]
Shi, H.; Chu, H.; Lv, Z.; Qi, G.; Guo, J.; Fu, W.; Wang, X.; Guo, X.; Ge, J.; Yin, C. Association of white blood cell counts with left ventricular mass index in hypertensive patients undergoing anti-hypertensive drug therapy. Exp. Ther. Med., 2017, 13(4), 1566-1571.
[http://dx.doi.org/10.3892/etm.2017.4119] [PMID: 28413510]
[15]
Zou, Y.; Zhong, L.; Hu, C.; Sheng, G. Association between the alanine aminotransferase/aspartate aminotransferase ratio and new-onset non-alcoholic fatty liver disease in a nonobese Chinese population: a population-based longitudinal study. Lipids Health Dis., 2020, 19(1), 245.
[http://dx.doi.org/10.1186/s12944-020-01419-z] [PMID: 33239040]
[16]
Piontek, K.; Schmidt, C.O.; Baumeister, S.E.; Lerch, M.M.; Mayerle, J.; Dörr, M.; Felix, S.B.; Völzke, H. Is hepatic steatosis associated with left ventricular mass index increase in the general population? World J. Hepatol., 2017, 9(19), 857-866.
[http://dx.doi.org/10.4254/wjh.v9.i19.857] [PMID: 28740597]
[17]
Lin, G.M.; Li, Y.H.; Lee, C.J.; Shiang, J.C.; Lin, K.H.; Chen, K.W.; Chen, Y.J.; Wu, C.F.; Lin, B.S.; Yu, Y.S.; Lin, F.; Su, F.Y.; Wang, C.H. Rationale and design of the cardiorespiratory fitness and hospitalization events in armed forces study in Eastern Taiwan. World J. Cardiol., 2016, 8(8), 464-471.
[http://dx.doi.org/10.4330/wjc.v8.i8.464] [PMID: 27621774]
[18]
Lin, G.M.; Liu, K. An electrocardiographic system with anthropometrics via machine learning to screen left ventricular hypertrophy among young adults. IEEE J. Transl. Eng. Health Med., 2020, 8, 1-11.
[http://dx.doi.org/10.1109/JTEHM.2020.2990073] [PMID: 32419990]
[19]
Chao, W.H.; Su, F.Y.; Lin, F.; Yu, Y.S.; Lin, G.M. Association of electrocardiographic left and right ventricular hypertrophy with physical fitness of military males: The CHIEF study. Eur. J. Sport Sci., 2019, 19(9), 1214-1220.
[http://dx.doi.org/10.1080/17461391.2019.1595741] [PMID: 30955480]
[20]
Hsu, C.Y.; Liu, P.Y.; Liu, S.H.; Kwon, Y.; Lavie, C.J.; Lin, G.M. Machine learning for electrocardiographic features to identify left atrial enlargement in young adults: CHIEF Heart Study. Front. Cardiovasc. Med., 2022, 9, 840585.
[http://dx.doi.org/10.3389/fcvm.2022.840585] [PMID: 35299979]
[21]
Liu, P.Y.; Tsai, K.Z.; Lima, J.A.C.; Lavie, C.J.; Lin, G.M. Athlete’s heart in asian military males: The CHIEF Heart Study. Front. Cardiovasc. Med., 2021, 8, 725852.
[http://dx.doi.org/10.3389/fcvm.2021.725852] [PMID: 34660727]
[22]
Lin, Y.K.; Tsai, K.Z.; Han, C.L.; Lee, J.T.; Lin, G.M. Athlete’s heart assessed by sit-up strength exercises in military men and women: The CHIEF heart study. Front. Cardiovasc. Med., 2022, 8, 737607.
[http://dx.doi.org/10.3389/fcvm.2021.737607] [PMID: 35155593]
[23]
Grundy, S.M.; Cleeman, J.I.; Daniels, S.R.; Donato, K.A.; Eckel, R.H.; Franklin, B.A.; Gordon, D.J.; Krauss, R.M.; Savage, P.J.; Smith, S.C., Jr; Spertus, J.A.; Costa, F. Diagnosis and management of the metabolic syndrome. Circulation, 2005, 112(17), 2735-2752.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.105.169404] [PMID: 16157765]
[24]
Su, F.Y.; Li, Y.H.; Lin, Y.P.; Lee, C.J.; Wang, C.H.; Meng, F.C.; Yu, Y.S.; Lin, F.; Wu, H.T.; Lin, G.M. A comparison of Cornell and Sokolow-Lyon electrocardiographic criteria for left ventricular hypertrophy in a military male population in Taiwan: the Cardiorespiratory fitness and HospItalization Events in armed Forces study. Cardiovasc. Diagn. Ther., 2017, 7(3), 244-251.
[http://dx.doi.org/10.21037/cdt.2017.01.16] [PMID: 28567350]
[25]
Devereux, R.B.; Casale, P.N.; Eisenberg, R.R.; Miller, D.H.; Kligfield, P. Electrocardiographic detection of left ventricular hypertrophy using echocardiographic determination of left ventricular mass as the reference standard. J. Am. Coll. Cardiol., 1984, 3(1), 82-87.
[http://dx.doi.org/10.1016/S0735-1097(84)80433-7] [PMID: 6228571]
[26]
Desimone, G.; Kizer, J.; Chinali, M.; Roman, M.; Bella, J.; Best, L.; Lee, E.; Devereux, R. Normalization for body size and population-attributable risk of left ventricular hypertrophythe strong heart study. Am. J. Hypertens., 2005, 18(2), 191-196.
[http://dx.doi.org/10.1016/j.amjhyper.2004.08.032] [PMID: 15752946]
[27]
Prati, D.; Taioli, E.; Zanella, A.; Torre, E.D.; Butelli, S.; Del Vecchio, E.; Vianello, L.; Zanuso, F.; Mozzi, F.; Milani, S.; Conte, D.; Colombo, M.; Sirchia, G. Updated definitions of healthy ranges for serum alanine aminotransferase levels. Ann. Intern. Med., 2002, 137(1), 1-10.
[http://dx.doi.org/10.7326/0003-4819-137-1-200207020-00006] [PMID: 12093239]
[28]
Salles, G.F.; Fiszman, R.; Cardoso, C.R.L.; Muxfeldt, E.S. Relation of left ventricular hypertrophy with systemic inflammation and endothelial damage in resistant hypertension. Hypertension, 2007, 50(4), 723-728.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.107.093120] [PMID: 17635853]
[29]
Mehta, S.K.; Rame, J.E.; Khera, A.; Murphy, S.A.; Canham, R.M.; Peshock, R.M.; de Lemos, J.A.; Drazner, M.H. Left ventricular hypertrophy, subclinical atherosclerosis, and inflammation. Hypertension, 2007, 49(6), 1385-1391.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.107.087890] [PMID: 17404181]
[30]
Shen, Y.; Zhang, F.Q.; Wei, X. Truncated monocyte chemoattractant protein-1 can alleviate cardiac injury in mice with viral myocarditis via infiltration of mononuclear cells. Microbiol. Immunol., 2014, 58(3), 195-201.
[http://dx.doi.org/10.1111/1348-0421.12130] [PMID: 24401088]
[31]
Ning, J.; Li, Y.H.; Zhang, C.B. Expression of monocyte chemoattractant protein-1 in sudden death due to viral myocarditis and its medicolegal significance. Fa Yi Xue Za Zhi, 2009, 25(5), 334-336.
[PMID: 20000039]
[32]
VanWagner, L.B.; Wilcox, J.E.; Ning, H.; Lewis, C.E.; Carr, J.J.; Rinella, M.E.; Shah, S.J.; Lima, J.A.C.; Lloyd-Jones, D.M. Longitudinal association of non-alcoholic fatty liver disease with changes in myocardial structure and function: The CARDIA Study. J. Am. Heart Assoc., 2020, 9(4), e014279.
[http://dx.doi.org/10.1161/JAHA.119.014279] [PMID: 32067588]
[33]
Kawamoto, R.; Kohara, K.; Kusunoki, T.; Tabara, Y.; Abe, M.; Miki, T. Alanine aminotransferase/aspartate aminotransferase ratio is the best surrogate marker for insulin resistance in non-obese Japanese adults. Cardiovasc. Diabetol., 2012, 11(1), 117.
[http://dx.doi.org/10.1186/1475-2840-11-117] [PMID: 23020992]
[34]
Fan, J.G.; Saibara, T.; Chitturi, S.; Kim, B.I.; Sung, J.J.Y.; Chutaputti, A. What are the risk factors and settings for non-alcoholic fatty liver disease in Asia Pacific? J. Gastroenterol. Hepatol., 2007, 22(6), 794-800.
[http://dx.doi.org/10.1111/j.1440-1746.2007.04952.x] [PMID: 17498218]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy