Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Design, Synthesis, and Anti-tuberculosis Activity of Streptomycin Derivatives

Author(s): Yinyong Zhang, Wenhao Zhao, Yushe Yang, Xianli Zhou* and Bin Guo*

Volume 21, Issue 4, 2024

Published on: 31 January, 2023

Page: [738 - 748] Pages: 11

DOI: 10.2174/1570180820666230116144553

Price: $65

conference banner
Abstract

Background: The treatment of tuberculosis has been a serious medical and health problem that needs to be solved urgently. Streptomycin has been one of the important anti-tuberculosis drugs for decades; however, no systematic structural modification of streptomycin has been done, which means that the anti-tuberculosis ability of streptomycin derivatives deserves further exploration.

Objective: In this study, we investigated the effect of systematic structural modification of the aldehyde groups in streptomycin on its anti-tuberculosis activity.

Methods: Streptomycin was selected as the lead compound, and its aldehyde group was modified to obtain hydrazone, amino hydrazide, and sulfonyl hydrazide derivatives, respectively. In addition, siderophore fragments were introduced into streptomycin. The anti-tuberculosis activities of the new compounds against H37Rv were evaluated.

Results: A total of 21 novel streptomycin derivatives have been designed and synthesized. All compounds were characterized with 1H NMR, 13C NMR, and HRMS. The preliminary bioactivity test showed that most analogues bearing hydrazine, acylhydrazine, or sulfonyl hydrazine, such as 12a, 13a-d, and 15a-f, possessed potent anti-tuberculosis activity with MIC value of 2 μg/mL, which was comparable to streptomycin, while secondary amine or siderophore derivatives caused a dramatic reduction in activity.

Conclusion: The structural modification and structure-activity relationship of the aldehyde group of streptomycin were systematically studied for the first time. The results showed that the aldehyde group was not necessary for exhibiting its activity. It was well tolerated when the aldehyde group was converted into hydrazine, acylhydrazine, or sulfonyl hydrazine. These novel analogues provide potential lead structures for further modification in the future.

Keywords: Multidrug-resistant, hydrazine, hydrazide, sulfonyl hydrazide, siderophore, synthesis, anti-tuberculosis activity.

Graphical Abstract
[1]
WHO Global Tuberculosis Report. 2020. Available from: https://apps.who.int/iris/bitstream/handle/10665/336069/9789240013131-eng.pdf
[2]
Lipman, M.; McQuaid, C.F.; Abubakar, I.; Khan, M.; Kranzer, K.; McHugh, T.; Padmapriyadarsini, C.; Rangaka, M.; Stoker, N. The impact of COVID-19 on global tuberculosis control. Indian J. Med. Res., 2021, 153(4), 404-408.
[http://dx.doi.org/10.4103/ijmr.IJMR_326_21] [PMID: 34380784]
[3]
Floyd, K.; Raviglione, M.; Glaziou, P. Global epidemiology of tuberculosis. Semin. Respir. Crit. Care Med., 2018, 39(3), 271-285.
[http://dx.doi.org/10.1055/s-0038-1651492] [PMID: 30071543]
[4]
Dheda, K.; Gumbo, T.; Maartens, G.; Dooley, K.E.; McNerney, R.; Murray, M.; Furin, J.; Nardell, E.A.; London, L.; Lessem, E.; Theron, G.; van Helden, P.; Niemann, S.; Merker, M.; Dowdy, D.; Van Rie, A.; Siu, G.K.H.; Pasipanodya, J.G.; Rodrigues, C.; Clark, T.G.; Sirgel, F.A.; Esmail, A.; Lin, H-H.; Atre, S.R.; Schaaf, H.S.; Chang, K.C.; Lange, C.; Nahid, P.; Udwadia, Z.F.; Horsburgh, C.R., Jr; Churchyard, G.J.; Menzies, D.; Hesseling, A.C.; Nuermberger, E.; McIlleron, H.; Fennelly, K.P.; Goemaere, E.; Jaramillo, E.; Low, M.; Jara, C.M.; Padayatchi, N.; Warren, R.M. The epidemiology, pathogenesis, transmission, diagnosis, and management of multidrug-resistant, extensively drug-resistant, and incurable tuberculosis. Lancet Respir. Med., 2017, 5(4), 291-360.
[http://dx.doi.org/10.1016/S2213-2600(17)30079-6] [PMID: 28109869]
[5]
Daley, C.L. The global fight against tuberculosis. Thorac. Surg. Clin., 2019, 29(1), 19-25.
[http://dx.doi.org/10.1016/j.thorsurg.2018.09.010] [PMID: 30454918]
[6]
Singh, R.; Dwivedi, S.P.; Gaharwar, U.S.; Meena, R.; Rajamani, P.; Prasad, T. Recent updates on drug resistance in Mycobacterium tuberculosis. J. Appl. Microbiol., 2020, 128(6), 1547-1567.
[http://dx.doi.org/10.1111/jam.14478] [PMID: 31595643]
[7]
Kenyon, T. Tuberculosis is a threat to global health security. Health Aff., 2018, 37(9), 1536.
[http://dx.doi.org/10.1377/hlthaff.2018.0894] [PMID: 30179557]
[8]
Chetty, S.; Ramesh, M.; Singh-Pillay, A.; Soliman, M.E.S. Recent advancements in the development of anti-tuberculosis drugs. Bioorg. Med. Chem. Lett., 2017, 27(3), 370-386.
[http://dx.doi.org/10.1016/j.bmcl.2016.11.084] [PMID: 28017531]
[9]
Pietersen, E.; Ignatius, E.; Streicher, E.M.; Mastrapa, B.; Padanilam, X.; Pooran, A.; Badri, M.; Lesosky, M.; van Helden, P.; Sirgel, F.A.; Warren, R.; Dheda, K. Long-term outcomes of patients with extensively drug-resistant tuberculosis in South Africa: A cohort study. Lancet, 2014, 383(9924), 1230-1239.
[http://dx.doi.org/10.1016/S0140-6736(13)62675-6] [PMID: 24439237]
[10]
Dheda, K.; Gumbo, T.; Gandhi, N.R.; Murray, M.; Theron, G.; Udwadia, Z.; Migliori, G.B.; Warren, R. Global control of tuberculosis: From extensively drug-resistant to untreatable tuberculosis. Lancet Respir. Med., 2014, 2(4), 321-338.
[http://dx.doi.org/10.1016/S2213-2600(14)70031-1] [PMID: 24717628]
[11]
Dheda, K.; Migliori, G.B. The global rise of extensively drug-resistant tuberculosis: Is the time to bring back sanatoria now overdue? Lancet, 2012, 379(9817), 773-775.
[http://dx.doi.org/10.1016/S0140-6736(11)61062-3] [PMID: 22033020]
[12]
Bloemberg, G.V.; Keller, P.M.; Stucki, D.; Trauner, A.; Borrell, S.; Latshang, T.; Coscolla, M.; Rothe, T.; Hömke, R.; Ritter, C.; Feldmann, J.; Schulthess, B.; Gagneux, S.; Böttger, E.C. Acquired resistance to bedaquiline and delamanid in therapy for tuberculosis. N. Engl. J. Med., 2015, 373(20), 1986-1988.
[http://dx.doi.org/10.1056/NEJMc1505196] [PMID: 26559594]
[13]
Nguyen, T.V.A.; Anthony, R.M.; Cao, T.T.H.; Bañuls, A.L.; Nguyen, V.A.T.; Vu, D.H.; Nguyen, N.V.; Alffenaar, J.W.C. Delamanid resistance: Update and clinical management. Clin. Infect. Dis., 2020, 71(12), 3252-3259.
[http://dx.doi.org/10.1093/cid/ciaa755] [PMID: 32521000]
[14]
Mokrousov, I.; Akhmedova, G.; Molchanov, V.; Fundovnaya, E.; Kozlova, E.; Ostankova, Y.; Semenov, A.; Maslennikova, N.; Leontev, D.; Zhuravlev, V.; Turkin, E.; Vyazovaya, A. Frequent acquisition of bedaquiline resistance by epidemic extensively drug-resistant Mycobacterium tuberculosis strains in Russia during long-term treatment. Clin. Microbiol. Infect., 2021, 27(3), 478-480.
[http://dx.doi.org/10.1016/j.cmi.2020.08.030] [PMID: 32891766]
[15]
Sykowski, P. Streptomycin treatment of conjunctival tuberculosis. Am. J. Ophthalmol., 1950, 33(8), 1291-1292.
[http://dx.doi.org/10.1016/0002-9394(50)91008-7] [PMID: 15432575]
[16]
Feldman, W.H.; Hinshaw, H.C. Streptomycin; a valuable anti-tuberculosis agent. BMJ, 1948, 1(4541), 87-92.
[http://dx.doi.org/10.1136/bmj.1.4541.87] [PMID: 18921002]
[17]
Bogen, E. Streptomycin treatment for tuberculosis. J. Natl. Med. Assoc., 1948, 40(1), 32.
[PMID: 18860637]
[18]
Powers, T.; Noller, H.F. Selective perturbation of G530 of 16 S rRNA by translational miscoding agents and a streptomycin-dependence mutation in protein S12. J. Mol. Biol., 1994, 235(1), 156-172.
[http://dx.doi.org/10.1016/S0022-2836(05)80023-3] [PMID: 8289238]
[19]
Chang, F.N.; Flaks, J.G. Binding of dihydrostreptomycin to Escherichia coli ribosomes: Characteristics and equilibrium of the reaction. Antimicrob. Agents Chemother., 1972, 2(4), 294-307.
[http://dx.doi.org/10.1128/AAC.2.4.294] [PMID: 4133236]
[20]
Grisé-Miron, L.; Brakier-Gingras, L. Effect of neomycin and protein S1 on the binding of streptomycin to the ribosome. Eur. J. Biochem., 1982, 123(3), 643-646.
[http://dx.doi.org/10.1111/j.1432-1033.1982.tb06580.x] [PMID: 6176448]
[21]
Gardner, J.C.; Goliath, R.; Viljoen, D.; Sellars, S.; Cortopassi, G.; Hutchin, T.; Greenberg, J.; Beighton, P. Familial streptomycin ototoxicity in a South African family: A mitochondrial disorder. J. Med. Genet., 1997, 34(11), 904-906.
[http://dx.doi.org/10.1136/jmg.34.11.904] [PMID: 9391883]
[22]
Carter, A.P.; Clemons, W.M.; Brodersen, D.E.; Morgan-Warren, R.J.; Wimberly, B.T.; Ramakrishnan, V. Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature, 2000, 407(6802), 340-348.
[http://dx.doi.org/10.1038/35030019] [PMID: 11014183]
[23]
Hayashi, M.; Miyaki, K.; Yoda, S.; Derivatives, S.H. Streptomycylidene hydrazine derivatives. Yakugaku Zasshi, 1953, 73(8), 898-899.
[http://dx.doi.org/10.1248/yakushi1947.73.8_898]
[24]
Page, M.G.P.; Dantier, C.; Desarbre, E. In vitro properties of BAL30072, a novel siderophore sulfactam with activity against multiresistant gram-negative bacilli. Antimicrob. Agents Chemother., 2010, 54(6), 2291-2302.
[http://dx.doi.org/10.1128/AAC.01525-09] [PMID: 20308379]
[25]
Tan, L.; Tao, Y.; Wang, T.; Zou, F.; Zhang, S.; Kou, Q.; Niu, A.; Chen, Q.; Chu, W.; Chen, X.; Wang, H.; Yang, Y. Discovery of novel pyridone-conjugated monosulfactams as potent and broad-spectrum antibiotics for multidrug-resistant Gram-negative infections. J. Med. Chem., 2017, 60(7), 2669-2684.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01261] [PMID: 28287720]
[26]
Aoki, T.; Yoshizawa, H.; Yamawaki, K.; Yokoo, K.; Sato, J.; Hisakawa, S.; Hasegawa, Y.; Kusano, H.; Sano, M.; Sugimoto, H.; Nishitani, Y.; Sato, T.; Tsuji, M.; Nakamura, R.; Nishikawa, T.; Yamano, Y. Cefiderocol (S-649266), A new siderophore cephalosporin exhibiting potent activities against Pseudomonas aeruginosa and other gram-negative pathogens including multi-drug resistant bacteria: Structure activity relationship. Eur. J. Med. Chem., 2018, 155, 847-868.
[http://dx.doi.org/10.1016/j.ejmech.2018.06.014] [PMID: 29960205]
[27]
Zama, Y.; Naitou, T.; Yamamoto, T. Pyridine-N-oxide derivative. U.S. Patent 5,081,248, 1992.
[28]
Ai, H.; Ding, J.; He, S.; Liu, Y.; Wan, D.; Wang, H.; Yuan, Y.; Zhang, Q.; Zhuang, Z.; Ma, Z. Penam derivatives for treating bacterial infections. U.S. Patent 11,040,987, 2021.
[29]
Wallace, R.J., Jr; Nash, D.R.; Steele, L.C.; Steingrube, V. Susceptibility testing of slowly growing mycobacteria by a microdilution MIC method with 7H9 broth. J. Clin. Microbiol., 1986, 24(6), 976-981.
[http://dx.doi.org/10.1128/jcm.24.6.976-981.1986] [PMID: 3097069]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy