Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Novel Nanotechnological Strategies for Skin Anti-aging

Author(s): Sara Pozos-Nonato, Clara Luisa Domínguez-Delgado*, Kenia Areli Campos-Santander, Allyson Amelia Benavides, Sandy María Pacheco-Ortin, Rosa Isabel Higuera-Piedrahita, Guillermo Resendiz-González and Eva María Molina-Trinidad

Volume 24, Issue 11, 2023

Published on: 20 January, 2023

Page: [1397 - 1419] Pages: 23

DOI: 10.2174/1389201024666221223095315

Price: $65

Abstract

Background: Nanoparticle formulations development for anti-aging treatment is increasing due to their multifunctional properties. These nanotechnological strategies can target cellular/ molecular pathways of the skin affected by the aging process. However, a review of these strategies is required to discuss their efficacy/safety and establish the needs for further research.

Objective: Innovative nanotechnological advances for skin anti-aging/rejuvenation are summarized and discussed in this work.

Methods: The information in this review was extracted from recent and relevant studies using nanotechnology for anti-aging treatment from scientific databases.

Results and Discussion: Results show an enhanced skin anti-aging effect of actives-loaded nanoparticles of next generation (nanostructured lipid carriers, fullerenes, transfersomes, protransfersomes, niosomes, ethosomes, transethosomes, glycerosomes, phytosomes) compared with nanocarriers of first generation or conventional formulations. Anti-aging active ingredients such as, flavonoids (rutin, hesperidin, quercetagetine, quercetin, epigallocatechin-3-gallate, myricetin, silibinin, curcuminoids, isoflavones); vitamins (E, D3, CoQ10); acids (hyaluronic, ascorbic, rosmarinic, gallic); extracts (Citrus sinensis, Tagetes erecta L., Achillea millefolium L., Citrus aurantium L., Glycyrrhiza glabra L., Aloe vera, propolis earned by Apis mellifera); and other compounds (adenosine, beta-glucan, heptapetide DEETGEF, resveratrol, cycloastragenol, melatonin, botulinum toxin, grapeseed oil), have been successfully entrapped into nanoparticles for skin rejuvenation. This encapsulation has improved their solubility, bioavailability, stability, permeability, and effectivity for skin anti-aging, providing a controlled drug release with minimized side effects.

Conclusion: Recent studies show a trend of anti-aging herbal active ingredients-loaded nanoparticles, enhancing the moisturizing, antioxidant, regenerating and photoprotective activity of the skin. Suitable safety/shelf-life stability of these novel formulations is key to a successful translation to the clinic/industry.

Keywords: Skin anti-aging, nanotechnological strategies, skin permeation, nanocarriers, rejuvenation or anti-wrinkle effect, topical and transdermal delivery, herbal-based anti-aging actives, nanoparticles.

Graphical Abstract
[1]
Nafisi, S.; Maibach, H.I. Nanotechnology in Cosmetics. In: Cosmetic Science and Technology; Sakamoto, K.; Lochhead, R.Y.; Maibach, H.I.; Yamashita, Y., Eds.; Elsevier: Amsterdam, 2017; pp. 337-369.
[http://dx.doi.org/10.1016/B978-0-12-802005-0.00022-7]
[2]
Inoue, S. Skin Aging. Cosmetic Science and Technology; Sakamoto, K.; Lochhead, R.Y.; Maibach, H.I; Yamashita, Y., Ed.; Elsevier: Amsterdam, 2017, pp. 711-728.
[http://dx.doi.org/10.1016/B978-0-12-802005-0.00043-4]
[3]
Fytianos, G.; Rahdar, A.; Kyzas, G.Z. Nanomaterials in cosmetics: Recent updates. Nanomaterials, 2020, 10(5), 979.
[http://dx.doi.org/10.3390/nano10050979] [PMID: 32443655]
[4]
Bhatia, E.; Kumari, D.; Sharma, S.; Ahamad, N.; Banerjee, R. Nanoparticle platforms for dermal ANTIAGING technologies: Insights in cellular and molecular mechanisms. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2022, 14(2), e1746.
[http://dx.doi.org/10.1002/wnan.1746] [PMID: 34423571]
[5]
Mohiuddin, A.K. Skin aging & modern age anti-aging strategies. PharmaTutor., 2019, 7(8), 22-70.
[6]
Srinivas, K. The current role of nanomaterials in cosmetics. J. Chem. Pharm. Res., 2016, 8(5), 906-914.
[7]
Stanisic, D.; Liu, L.H.B.; dos Santos, R.V.; Costa, A.F.; Durán, N.; Tasic, L. New sustainable process for hesperidin isolation and anti-ageing effects of hesperidin nanocrystals. Molecules, 2020, 25(19), 4534.
[http://dx.doi.org/10.3390/molecules25194534] [PMID: 33022944]
[8]
Leelapornpisid, P.; Kiattisin, K.; Jantrawut, P.; Phrutivorapongkul, A. Nanoemulsion loaded with marigold flower extract (Tagetes erecta Linn) in gel preparation as anti-wrinkles cosmeceutical. Int. J. Pharm. Pharm. Sci., 2014, 6(2), 231-236.
[9]
El-Leithy, E.S.; Makky, A.M.; Khattab, A.M.; Hussein, D.G. Optimization of nutraceutical coenzyme Q10 nanoemulsion with improved skin permeability and anti-wrinkle efficiency. Drug Dev. Ind. Pharm., 2018, 44(2), 316-328.
[http://dx.doi.org/10.1080/03639045.2017.1391836] [PMID: 29096550]
[10]
Leisyah, B.M. The effect of antioxidant of grapeseed oil as skin anti-aging in nanoemulsion and emulsion preparations. Rasayan J. Chem., 2019, 12(3), 1185-1194.
[http://dx.doi.org/10.31788/RJC.2019.1235337]
[11]
Bi, Y.; Xia, H.; Li, L.; Lee, R.J.; Xie, J.; Liu, Z.; Qiu, Z.; Teng, L. Liposomal vitamin D3 as an anti-aging agent for the skin. Pharmaceutics, 2019, 11(7), 311.
[http://dx.doi.org/10.3390/pharmaceutics11070311] [PMID: 31277236]
[12]
Maione-Silva, L.; de Castro, E.G.; Nascimento, T.L.; Cintra, E.R.; Moreira, L.C.; Cintra, B.A.S.; Valadares, M.C.; Lima, E.M. Ascorbic acid encapsulated into negatively charged liposomes exhibits increased skin permeation, retention and enhances collagen synthesis by fi-broblasts. Sci. Rep., 2019, 9(1), 522.
[http://dx.doi.org/10.1038/s41598-018-36682-9] [PMID: 30679479]
[13]
Hollmerus, S.; Yousaf, S.; Islam, Y.; Khan, I. Isoflavones-based liposome formulations as anti-aging for skincare. Nov Appro Drug Des Dev., 2018, 3(3), 1-4.
[14]
Vijayakumar, A.; Baskaran, R.; Jang, Y.S.; Oh, S.H.; Yoo, B.K. Quercetin-loaded solid lipid nanoparticle dispersion with improved physi-cochemical properties and cellular uptake. AAPS PharmSciTech, 2017, 18(3), 875-883.
[http://dx.doi.org/10.1208/s12249-016-0573-4] [PMID: 27368922]
[15]
Dhawan, S.; Kapil, R.; Singh, B. Formulation development and systematic optimization of solid lipid nanoparticles of quercetin for im-proved brain delivery. J. Pharm. Pharmacol., 2011, 63(3), 342-351.
[http://dx.doi.org/10.1111/j.2042-7158.2010.01225.x] [PMID: 21749381]
[16]
Bose, S.; Du, Y.; Takhistov, P.; Michniak-Kohn, B. Formulation optimization and topical delivery of quercetin from solid lipid based nanosystems. Int. J. Pharm., 2013, 441(1-2), 56-66.
[http://dx.doi.org/10.1016/j.ijpharm.2012.12.013] [PMID: 23262430]
[17]
Bose, S.; Michniak-Kohn, B. Preparation and characterization of lipid based nanosystems for topical delivery of quercetin. Eur. J. Pharm. Sci., 2013, 48(3), 442-452.
[http://dx.doi.org/10.1016/j.ejps.2012.12.005] [PMID: 23246734]
[18]
Pereira, A.; Ramalho, M.J.; Silva, R.; Silva, V.; Marques-Oliveira, R.; Silva, A.C.; Pereira, M.C.; Loureiro, J.A. Vine cane compounds to prevent skin cells aging through solid lipid nanoparticles. Pharmaceutics, 2022, 14(2), 240.
[http://dx.doi.org/10.3390/pharmaceutics14020240] [PMID: 35213973]
[19]
Estaji, M.; Mokhtari-Dizaji, M.; Movahedin, M.; Padash, A.; Ghaffari Khaligh, S. Effect of fullerene nanoemulsion on the repair of wrin-kles induced by UVB radiation: A c57bl6 mice model. Skin Res. Technol., 2021, 27(1), 32-40.
[http://dx.doi.org/10.1111/srt.12903] [PMID: 32621401]
[20]
Kato, S.; Taira, H.; Aoshima, H.; Saitoh, Y.; Miwa, N. Clinical evaluation of fullerene-C60 dissolved in squalane for anti-wrinkle cosmet-ics. J. Nanosci. Nanotechnol., 2010, 10(10), 6769-6774.
[http://dx.doi.org/10.1166/jnn.2010.3053] [PMID: 21137794]
[21]
Yapar, E.A.; Inal, O. Nanomaterials and cosmetics. J. Fac. Pharm. Istanbul., 2012, 42(1), 43-70.
[22]
Ray, L.; Gupta, K.C. Role of Nanotechnology in Skin Remedies.Photocarcinogenesis & Photoprotection; Ray, R.S.; Haldar, C.; Dwivedi, A.; Agarwal, N.; Singh, J., Eds.; Springer Singapore: Singapore, 2018, pp. 141-157.
[http://dx.doi.org/10.1007/978-981-10-5493-8_13]
[23]
Pezeshki, A.; Ghanbarzadeh, B.; Mohammadi, M.; Fathollahi, I.; Hamishehkar, H. Encapsulation of vitamin A palmitate in nanostructured lipid carrier (NLC)-effect of surfactant concentration on the formulation properties. Adv. Pharm. Bull., 2014, 4(Suppl. 2), 563-568.
[PMID: 25671190]
[24]
Frias, I.; Neves, A.; Pinheiro, M.; Reis, S. Design, development, and characterization of lipid nanocarriers-based epigallocatechin gallate delivery system for preventive and therapeutic supplementation. Drug Des. Devel. Ther., 2016, 10, 3519-3528.
[http://dx.doi.org/10.2147/DDDT.S109589] [PMID: 27826184]
[25]
Shetty, P.K.; Manikkath, J.; Tupally, K.; Kokil, G.; Hegde, A.R.; Raut, S.Y.; Parekh, H.S.; Mutalik, S. Skin delivery of EGCG and silibinin: Potential of peptide dendrimers for enhanced skin permeation and deposition. AAPS PharmSciTech, 2017, 18(6), 2346-2357.
[http://dx.doi.org/10.1208/s12249-017-0718-0] [PMID: 28124212]
[26]
Pentek, T.; Newenhouse, E.; O’Brien, B.; Chauhan, A. Development of a topical resveratrol formulation for commercial applications using dendrimer nanotechnology. Molecules, 2017, 22(1), 137.
[http://dx.doi.org/10.3390/molecules22010137] [PMID: 28098828]
[27]
Avadhani, K.S.; Manikkath, J.; Tiwari, M.; Chandrasekhar, M.; Godavarthi, A.; Vidya, S.M.; Hariharapura, R.C.; Kalthur, G.; Udupa, N.; Mutalik, S. Skin delivery of epigallocatechin-3-gallate (EGCG) and hyaluronic acid loaded nano-transfersomes for antioxidant and anti-aging effects in UV radiation induced skin damage. Drug Deliv., 2017, 24(1), 61-74.
[http://dx.doi.org/10.1080/10717544.2016.1228718] [PMID: 28155509]
[28]
Ayunin, Q.; Miatmoko, A.; Soeratri, W.; Erawati, T.; Susanto, J.; Legowo, D. Improving the anti-ageing activity of coenzyme Q10 through protransfersome-loaded emulgel. Sci. Rep., 2022, 12(1), 906.
[http://dx.doi.org/10.1038/s41598-021-04708-4] [PMID: 35042910]
[29]
Paladini, A.M.; Lopes, T.D.; Machado, K.E. Benefits of resveratrol as a cosmetic active in the prevention of aging cutaneous. Informa-Pharmaceutical Science, 2020, 32(4), 319-328.
[http://dx.doi.org/10.14450/2318-9312.v32.e4.a2020.pp319-328]
[30]
Chen, S.; Hanning, S.; Falconer, J.; Locke, M.; Wen, J. Recent advances in non-ionic surfactant vesicles (niosomes): Fabrication, charac-terization, pharmaceutical and cosmetic applications. Eur. J. Pharm. Biopharm., 2019, 144, 18-39.
[http://dx.doi.org/10.1016/j.ejpb.2019.08.015] [PMID: 31446046]
[31]
Rungphanichkul, N.; Nimmannit, U.; Muangsiri, W.; Rojsitthisak, P. Preparation of curcuminoid niosomes for enhancement of skin per-meation. Pharmazie, 2011, 66(8), 570-575.
[PMID: 21901978]
[32]
Yücel, Ç.; Şeker Karatoprak, G.; Değim, İ.T. Anti-aging formulation of rosmarinic acid-loaded ethosomes and liposomes. J. Microencapsul., 2019, 36(2), 180-191.
[http://dx.doi.org/10.1080/02652048.2019.1617363] [PMID: 31070486]
[33]
Andleeb, M.; Shoaib Khan, H.M.; Daniyal, M. Development, characterization and stability evaluation of topical gel loaded with ethosomes containing Achillea millefolium L. extract. Front. Pharmacol., 2021, 12, 1-11.
[http://dx.doi.org/10.3389/fphar.2021.603227] [PMID: 33912036]
[34]
Arora, D.; Khurana, B.; Nanda, S. Statistical development and in vivo evaluation of resveratrol-loaded topical gel containing deformable vesicles for a significant reduction in photo-induced skin aging and oxidative stress. Drug Dev. Ind. Pharm., 2020, 46(11), 1898-1910.
[http://dx.doi.org/10.1080/03639045.2020.1826507] [PMID: 32962434]
[35]
Vitonyte, J.; Manca, M.L.; Caddeo, C.; Valenti, D.; Peris, J.E.; Usach, I.; Nacher, A.; Matos, M.; Gutiérrez, G.; Orrù, G.; Fernàndez-Busquets, X.; Fadda, A.M.; Manconi, M. Bifunctional viscous nanovesicles co-loaded with resveratrol and gallic acid for skin protection against microbial and oxidative injuries. Eur. J. Pharm. Biopharm., 2017, 114, 278-287.
[http://dx.doi.org/10.1016/j.ejpb.2017.02.004] [PMID: 28192250]
[36]
Permana, A.D.; Utami, R.N.; Courtenay, A.J.; Manggau, M.A.; Donnelly, R.F.; Rahman, L. Phytosomal nanocarriers as platforms for im-proved delivery of natural antioxidant and photoprotective compounds in propolis: An approach for enhanced both dissolution behaviour in biorelevant media and skin retention profiles. J. Photochem. Photobiol. B, 2020, 205, 111846.
[http://dx.doi.org/10.1016/j.jphotobiol.2020.111846] [PMID: 32151785]
[37]
Barani, M.; Sangiovanni, E.; Angarano, M.; Rajizadeh, M.A.; Mehrabani, M.; Piazza, S.; Gangadharappa, H.V.; Pardakhty, A.; Mehrbani, M.; Dell’Agli, M.; Nematollahi, M.H. Phytosomes as innovative delivery systems for phytochemicals: A comprehensive review of litera-ture. Int. J. Nanomedicine, 2021, 16, 6983-7022.
[http://dx.doi.org/10.2147/IJN.S318416] [PMID: 34703224]
[38]
Damle, M.; Mallya, R. Development and evaluation of a novel delivery system containing phytophospholipid complex for skin aging. AAPS PharmSciTech, 2016, 17(3), 607-617.
[http://dx.doi.org/10.1208/s12249-015-0386-x] [PMID: 26285673]
[39]
Salvioni, L.; Morelli, L.; Ochoa, E.; Labra, M.; Fiandra, L.; Palugan, L.; Prosperi, D.; Colombo, M. The emerging role of nanotechnology in skincare. Adv. Colloid Interface Sci., 2021, 293, 102437.
[http://dx.doi.org/10.1016/j.cis.2021.102437] [PMID: 34023566]
[40]
Morganti, P.; Morganti, G.; Colao, C. Biofunctional textiles for aging skin. Biomedicines, 2019, 7(3), 51.
[http://dx.doi.org/10.3390/biomedicines7030051] [PMID: 31319516]
[41]
Nozaki, F. General aspects of cosmetics in relation to science and society: Social, cultural, science, and marketing aspects. In: Cosmetic Science and Technology; Sakamoto, K.; Lochhead, R.Y.; Maibach, H.I.; Yamashita, Y., Eds.; Elsevier: Amsterdam, 2017; pp. 3-14.
[http://dx.doi.org/10.1016/B978-0-12-802005-0.00001-X]
[42]
Morganti, P.; Fabrizi, G.; Palombo, P.; Palombo, M.; Guarneri, F.; Cardillo, A.; Morganti, G. New chitin complexes and their anti-aging activity from inside out. J. Nutr. Health Aging, 2012, 16(3), 242-245.
[http://dx.doi.org/10.1007/s12603-011-0358-0] [PMID: 22456780]
[43]
Ling, S.; Chen, W.; Fan, Y.; Zheng, K.; Jin, K.; Yu, H.; Buehler, M.J.; Kaplan, D.L. Biopolymer nanofibrils: Structure, modeling, prepara-tion, and applications. Prog. Polym. Sci., 2018, 85, 1-56.
[http://dx.doi.org/10.1016/j.progpolymsci.2018.06.004] [PMID: 31915410]
[44]
Escobar-Chávez, J.J.; Rodríguez-Cruz, I.M.; Domínguez-Delgado, C.L.; Díaz-Torres, R.; Revilla-Vázquez, A.L.; Aléncaster, N. Nanocarri-er systems for transdermal drug delivery. In: Recent Advances in Drug Carrier Systems; Sezer; A.D. InTech Croatia, 2012; pp. 201-240.
[45]
Nanda, S.; Nanda, A.; Lohan, S.; Kaur, R.; Singh, B. Nanocosmetics: Performance enhancement and safety assurance. In: Nanobiomateri-als in galenic formulations and cosmetics; Grumezescu, AM; William Andrew Publishing: Norwich, 2016; pp. 47-67.
[46]
Cornier, J.; Keck, C.M.; Van de Voorde, M. Nanocosmetics: From Ideas to Products; Springer: New York, 2019.
[http://dx.doi.org/10.1007/978-3-030-16573-4]
[47]
Yamada, M.; Prow, T.W. Physical drug delivery enhancement for aged skin, UV damaged skin and skin cancer: Translation and commer-cialization. Adv. Drug Deliv. Rev., 2020, 153, 2-17.
[http://dx.doi.org/10.1016/j.addr.2020.04.008] [PMID: 32339593]
[48]
Pyo, S.; Meinke, M.; Keck, C.; Müller, R. Rutin-Increased antioxidant activity and skin penetration by nanocrystal technology (smartCrys-tals). Cosmetics, 2016, 3(1), 9.
[http://dx.doi.org/10.3390/cosmetics3010009]
[49]
Morganti, P.; Palombo, M.; Tishchenko, G.; Yudin, V.; Guarneri, F.; Cardillo, M.; Del Ciotto, P.; Carezzi, F.; Morganti, G.; Fabrizi, G. Chitin-hyaluronan nanoparticles: A multifunctional carrier to deliver anti-aging active ingredients through the skin. Cosmetics, 2014, 1(3), 140-158.
[http://dx.doi.org/10.3390/cosmetics1030140]
[50]
Morganti, P.; Palombo, M.; Fabrizi, G.; Guarneri, F.; Slovacchia, F.; Cardillo, A. New insights on anti. Aging activity of chitin nanofibril. Hyaluronan block copolymers entrapping active ingredients: In vitro and in vivo study. J Appl Cosmetol., 2013, 31, 1-29.
[51]
Pardeike, J.; Schwabe, K.; Müller, R.H. Influence of nanostructured lipid carriers (NLC) on the physical properties of the Cutanova Nanorepair Q10 cream and the in vivo skin hydration effect. Int. J. Pharm., 2010, 396(1-2), 166-173.
[http://dx.doi.org/10.1016/j.ijpharm.2010.06.007] [PMID: 20541000]
[52]
Kim, S.; Dangol, M.; Kang, G.; Lahiji, S.F.; Yang, H.; Jang, M.; Ma, Y.; Li, C.; Lee, S.G.; Kim, C.H.; Choi, Y.W.; Kim, S.J.; Ryu, J.H.; Baek, J.H.; Koh, J.; Jung, H. Enhanced transdermal delivery by combined application of dissolving microneedle patch on serum-treated skin. Mol. Pharm., 2017, 14(6), 2024-2031.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00111] [PMID: 28447799]
[53]
Hong, J.Y.; Ko, E.J.; Choi, S.Y.; Li, K.; Kim, A.R.; Park, J.O.; Kim, B.J. Efficacy and safety of a novel, soluble microneedle patch for the improvement of facial wrinkle. J. Cosmet. Dermatol., 2018, 17(2), 235-241.
[http://dx.doi.org/10.1111/jocd.12426] [PMID: 28987023]
[54]
Banga, A.K. Transdermal and intradermal delivery of therapeutic agents: application of physical technologies; CRC press: Florida, 2011.
[http://dx.doi.org/10.1201/b10906]
[55]
Wang, F.C.; Hudson, P.L.; Burk, K.; Marangoni, A.G. Encapsulation of cycloastragenol in phospholipid vesicles enhances transport and delivery across the skin barrier. J. Colloid Interface Sci., 2022, 608(Pt 2), 1222-1228.
[http://dx.doi.org/10.1016/j.jcis.2021.10.143] [PMID: 34735856]
[56]
Pelikh, O.; Keck, C.M. Hair follicle targeting and dermal drug delivery with curcumin drug nanocrystals-essential influence of excipients. Nanomaterials, 2020, 10(11), 2323.
[http://dx.doi.org/10.3390/nano10112323] [PMID: 33238636]
[57]
Amer, R.I.; Ezzat, S.M.; Aborehab, N.M.; Ragab, M.F.; Mohamed, D.; Hashad, A.; Attia, D.; Salama, M.M.; El Bishbishy, M.H. Downreg-ulation of MMP1 expression mediates the anti-aging activity of Citrus sinensis peel extract nanoformulation in UV induced photoaging in mice. Biomed. Pharmacother., 2021, 138, 111537.
[http://dx.doi.org/10.1016/j.biopha.2021.111537] [PMID: 34311535]
[58]
Maksoud, S.; Abdel-Massih, R.M.; Rajha, H.N.; Louka, N.; Chemat, F.; Barba, F.J.; Debs, E. Citrus aurantium L. Active constituents, biological effects and extraction methods. an updated review. Molecules, 2021, 26(19), 5832.
[http://dx.doi.org/10.3390/molecules26195832] [PMID: 34641373]
[59]
El-Saber Batiha, G.; Magdy Beshbishy, A.; El-Mleeh, A.; Abdel-Daim, M.M.; Prasad Devkota, H. Traditional uses, bioactive chemical constituents, and pharmacological and toxicological activities of glycyrrhiza glabra L. (Fabaceae). Biomolecules, 2020, 10(3), 352.
[http://dx.doi.org/10.3390/biom10030352] [PMID: 32106571]
[60]
Jain, P.; Taleuzzaman, M.; Kala, C.; Kumar Gupta, D.; Ali, A.; Aslam, M. Quality by design (Qbd) assisted development of phytosomal gel of aloe vera extract for topical delivery. J. Liposome Res., 2021, 31(4), 381-388.
[http://dx.doi.org/10.1080/08982104.2020.1849279] [PMID: 33183121]
[61]
Gualeni, B.; Coulman, S.A.; Shah, D.; Eng, P.F.; Ashraf, H.; Vescovo, P.; Blayney, G.J.; Piveteau, L.D.; Guy, O.J.; Birchall, J.C. Minimally invasive and targeted therapeutic cell delivery to the skin using microneedle devices. Br. J. Dermatol., 2018, 178(3), 731-739.
[http://dx.doi.org/10.1111/bjd.15923] [PMID: 28865105]
[62]
Natsheh, H.; Touitou, E. Phospholipid vesicles for dermal/transdermal and nasal administration of active molecules: The effect of surfac-tants and alcohols on the fluidity of their lipid bilayers and penetration enhancement properties. Molecules, 2020, 25(13), 2959.
[http://dx.doi.org/10.3390/molecules25132959] [PMID: 32605117]
[63]
Domínguez-Delgado, C.; Rodríguez Cruz, I.; López-Cervantes, M. The skin: a valuable route for administration of drugs. In: Current Technologies to Increase the Transdermal Delivery of Drugs; Escobar-Chávez, J.J., Ed.; Bentham Science Publishers Ltd, 2010; pp. 01-22.
[64]
Grice, E.A.; Segre, J.A. The skin microbiome. Nat. Rev. Microbiol., 2011, 9(4), 244-253.
[http://dx.doi.org/10.1038/nrmicro2537] [PMID: 21407241]
[65]
de Paula Corrêa, M.; Germano Marciano, A.; Silveira Barreto Carvalho, V.; Bernardo de Souza, P.M.; da Silveira Carvalho Ripper, J.; Roy, D.; Breton, L.; De Vecchi, R. Exposome extrinsic factors in the tropics: The need for skin protection beyond solar UV radiation. Sci. Total Environ., 2021, 782, 146921.
[http://dx.doi.org/10.1016/j.scitotenv.2021.146921]
[66]
Yousef, H.; Alhajj, M.; Sharma, S. Anatomy, skin (integument), epidermis; StatPearls Publishing, 2017.
[67]
Freeman, S.C.; Sonthalia, S.J.S. Histology, keratohyalin granules; StatPearls Publishing, 2019.
[68]
Walters, K.A. Dermatological and transdermal formulations; CRC Press: Florida, 2002.
[http://dx.doi.org/10.1201/9780824743239]
[69]
Silva, C.L.; Topgaard, D.; Kocherbitov, V.; Sousa, J.J.S.; Pais, A.A.C.C.; Sparr, E. Stratum corneum hydration: Phase transformations and mobility in stratum corneum, extracted lipids and isolated corneocytes. Biochim. Biophys. Acta Biomembr., 2007, 1768(11), 2647-2659.
[http://dx.doi.org/10.1016/j.bbamem.2007.05.028] [PMID: 17927949]
[70]
Jain, S. Dermatology: Illustrated study guide and comprehensive board review; Springer: Heidelberg, 2017.
[http://dx.doi.org/10.1007/978-3-319-47395-6]
[71]
Chambers, E.S.; Vukmanovic-Stejic, M. Skin barrier immunity and ageing. Immunology, 2020, 160(2), 116-125.
[http://dx.doi.org/10.1111/imm.13152] [PMID: 31709535]
[72]
Garskaya, N.; Tresnitskiy, S.; Yenin, A.; Zelenkova, G.; Ladysh, I.; Tresnitskiy, A, editors. Lipid-containing and lipid-synthesizing structures of the young Poltava Meaty Breed boars’ skin. E3S Web of Conferences., 2021, 273(2), 02006.
[73]
Krueger, N.; Luebberding, S.; Oltmer, M.; Streker, M.; Kerscher, M. Age-related changes in skin mechanical properties: A quantitative evaluation of 120 female subjects. Skin Res. Technol., 2011, 17(2), 141-148.
[http://dx.doi.org/10.1111/j.1600-0846.2010.00486.x] [PMID: 21281361]
[74]
Choi, J.W.; Kwon, S.H.; Huh, C.H.; Park, K.C.; Youn, S.W. The influences of skin visco-elasticity, hydration level and aging on the for-mation of wrinkles: A comprehensive and objective approach. Skin Res. Technol., 2013, 19(1), e349-e355.
[http://dx.doi.org/10.1111/j.1600-0846.2012.00650.x] [PMID: 22672420]
[75]
Goldman, A.; Wollina, U. Facial rejuvenation for middle-aged women: A combined approach with minimally invasive procedures. Clin. Interv. Aging, 2010, 5, 293-299.
[PMID: 20924438]
[76]
Puizina-Ivić, N. Skin aging. Acta Dermatovenerol. Alp. Panonica Adriat., 2008, 17(2), 47-54.
[PMID: 18709289]
[77]
Sukhovei, Y.; Kostolomova, E.; Unger, I.; Koptyug, A.; Kaigorodov, D. Difference between the biologic and chronologic age as an indi-vidualized indicator for the skincare intensity selection: Skin cell profile and age difference studies. Biomed. Dermatol., 2019, 3(1), 10.
[http://dx.doi.org/10.1186/s41702-019-0051-1]
[78]
Coltman, C.E.; Steele, J.R.; McGhee, D.E. Effect of aging on breast skin thickness and elasticity: Implications for breast support. Skin Res. Technol., 2017, 23(3), 303-311.
[http://dx.doi.org/10.1111/srt.12335] [PMID: 27800637]
[79]
Wong, Q.Y.A.; Chew, F.T. Defining skin aging and its risk factors: A systematic review and meta-analysis. Sci. Rep., 2021, 11(1), 22075.
[http://dx.doi.org/10.1038/s41598-021-01573-z] [PMID: 34764376]
[80]
Csaba, G. Immunity and longevity. Acta Microbiol. Immunol. Hung., 2018, 66(1), 1-17.
[http://dx.doi.org/10.1556/030.65.2018.029] [PMID: 29968490]
[81]
Chiarelli-Neto, O.; Ferreira, A.S.; Martins, W.K.; Pavani, C.; Severino, D.; Faião-Flores, F.; Maria-Engler, S.S.; Aliprandini, E.; Martinez, G.R.; Di Mascio, P.; Medeiros, M.H.G.; Baptista, M.S. Melanin photosensitization and the effect of visible light on epithelial cells. PLoS One, 2014, 9(11), e113266.
[http://dx.doi.org/10.1371/journal.pone.0113266] [PMID: 25405352]
[82]
Delinasios, G.J.; Karbaschi, M.; Cooke, M.S.; Young, A.R. Vitamin E inhibits the UVAI induction of “light” and “dark” cyclobutane py-rimidine dimers, and oxidatively generated DNA damage, in keratinocytes. Sci. Rep., 2018, 8(1), 423.
[http://dx.doi.org/10.1038/s41598-017-18924-4] [PMID: 29323251]
[83]
Liebel, F.; Kaur, S.; Ruvolo, E.; Kollias, N.; Southall, M.D. Irradiation of skin with visible light induces reactive oxygen species and ma-trix-degrading enzymes. J. Invest. Dermatol., 2012, 132(7), 1901-1907.
[http://dx.doi.org/10.1038/jid.2011.476] [PMID: 22318388]
[84]
Nanda, A.; Nanda, S.; Nguyen, T.A.; Slimani, Y.; Rajendran, S. Nanocosmetics: Fundamentals, Applications and Toxicity: Micro and Nano Technologies; Elsevier: Amsterdam, 2020.
[85]
Nimse, S.B.; Pal, D. Free radicals, natural antioxidants, and their reaction mechanisms. RSC Advances, 2015, 5(35), 27986-28006.
[http://dx.doi.org/10.1039/C4RA13315C]
[86]
Jabłońska-Trypuć, A; Matejczyk, M; Rosochacki, S. Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs. J Enzyme Inhib Med Chem., 2016, 31(sup1), 177-183.
[87]
Pittayapruek, P.; Meephansan, J.; Prapapan, O.; Komine, M.; Ohtsuki, M. Role of matrix metalloproteinases in photoaging and photocar-cinogenesis. Int. J. Mol. Sci., 2016, 17(6), 868.
[http://dx.doi.org/10.3390/ijms17060868] [PMID: 27271600]
[88]
Shin, E.J.; Jo, S.; Choi, H.; Choi, S.; Byun, S.; Lim, T.G. Caffeic acid phenethyl ester inhibits UV-induced MMP-1 expression by targeting histone acetyltransferases in human skin. Int. J. Mol. Sci., 2019, 20(12), 3055.
[http://dx.doi.org/10.3390/ijms20123055] [PMID: 31234539]
[89]
Itoh, S.; Yamaguchi, M.; Shigeyama, K.; Sakaguchi, I. The anti-aging potential of extracts from chaenomeles sinensis. Cosmetics, 2019, 6(1), 21.
[http://dx.doi.org/10.3390/cosmetics6010021]
[90]
Vaiserman, A.; Koliada, A.; Zayachkivska, A.; Lushchak, O. Nanodelivery of natural antioxidants: an anti-aging perspective. Front. Bioeng. Biotechnol., 2020, 7, 447.
[http://dx.doi.org/10.3389/fbioe.2019.00447] [PMID: 31998711]
[91]
Joodaki, H.; Panzer, M.B. Skin mechanical properties and modeling: A review. Proc. Inst. Mech. Eng. H, 2018, 232(4), 323-343.
[http://dx.doi.org/10.1177/0954411918759801] [PMID: 29506427]
[92]
Uchechi, O.; Ogbonna, J.D.N.; Attama, A.A. Nanoparticles for dermal and transdermal drug delivery. Application of Nanotechnology in Drug Delivery; Sezer, A.D., Ed.; IntechOpen: London, 2014.
[http://dx.doi.org/10.5772/58672]
[93]
Meidan, V.M.; Docker, M.; Walmsley, A.D.; Irwin, W.J. Low intensity ultrasound as a probe to elucidate the relative follicular contribu-tion to total transdermal absorption. Pharm. Res., 1998, 15(1), 85-92.
[http://dx.doi.org/10.1023/A:1011956905388] [PMID: 9487552]
[94]
Ogiso, T.; Shiraki, T.; Okajima, K.; Tanino, T.; Iwaki, M.; Wada, T. Transfollicular drug delivery: Penetration of drugs through human scalp skin and comparison of penetration between scalp and abdominal skins in vitro. J. Drug Target., 2002, 10(5), 369-378.
[http://dx.doi.org/10.1080/1061186021000001814] [PMID: 12442807]
[95]
Dokka, S.; Cooper, S.R.; Kelly, S.; Hardee, G.E.; Karras, J.G. Dermal delivery of topically applied oligonucleotides via follicular transport in mouse skin. J. Invest. Dermatol., 2005, 124(5), 971-975.
[http://dx.doi.org/10.1111/j.0022-202X.2005.23672.x] [PMID: 15854038]
[96]
Grams, Y.Y.; Whitehead, L.; Lamers, G.; Sturmann, N.; Bouwstra, J.A. On-line diffusion profile of a lipophilic model dye in different depths of a hair follicle in human scalp skin. J. Invest. Dermatol., 2005, 125(4), 775-782.
[http://dx.doi.org/10.1111/j.0022-202X.2005.23854.x] [PMID: 16185278]
[97]
Jacobi, U.; Toll, R.; Sterry, W.; Lademann, J. Do follicles play a role as penetration pathways in in vitro studies on porcine skin?-: An optical study. L Phys., 2005, 15(11), 1594-1598.
[98]
Teichmann, A.; Ossadnik, M.; Richter, H.; Sterry, W.; Lademann, J. Semiquantitative determination of the penetration of a fluorescent hydrogel formulation into the hair follicle with and without follicular closure by microparticles by means of differential stripping. Skin Pharmacol. Physiol., 2006, 19(2), 101-105.
[http://dx.doi.org/10.1159/000091977] [PMID: 16685149]
[99]
Lademann, J.; Richter, H.; Schanzer, S.; Meinke, M.C.; Darvin, M.E.; Schleusener, J.; Carrer, V.; Breuckmann, P.; Patzelt, A. Follicular penetration of nanocarriers is an important penetration pathway for topically applied drugs. Hautarzt, 2019, 70(3), 185-192.
[http://dx.doi.org/10.1007/s00105-018-4343-y] [PMID: 30627746]
[100]
Lademann, J.; Otberg, N.; Jacobi, U.; Hoffman, R.M.; Blume-Peytavi, U. Follicular penetration and targeting. J. Investig. Dermatol. Symp. Proc., 2005, 10(3), 301-303.
[http://dx.doi.org/10.1111/j.1087-0024.2005.10121.x] [PMID: 16382687]
[101]
Meinke, M.C.; Syring, F.; Schanzer, S.; Haag, S.F.; Graf, R.; Loch, M.; Gersonde, I.; Groth, N.; Pflücker, F.; Lademann, J. Radical protec-tion by differently composed creams in the UV/VIS and IR spectral ranges. Photochem. Photobiol., 2013, 89(5), 1079-1084.
[http://dx.doi.org/10.1111/php.12137] [PMID: 23844556]
[102]
Ramezani, V.; Honarvar, M.; Seyedabadi, M.; Karimollah, A.; Ranjbar, A.M.; Hashemi, M. Formulation and optimization of transfersome containing minoxidil and caffeine. J. Drug Deliv. Sci. Technol., 2018, 44, 129-135.
[http://dx.doi.org/10.1016/j.jddst.2017.12.003]
[103]
Liu, X.; Grice, J.E.; Lademann, J.; Otberg, N.; Trauer, S.; Patzelt, A.; Roberts, M.S. Hair follicles contribute significantly to penetration through human skin only at times soon after application as a solvent deposited solid in man. Br. J. Clin. Pharmacol., 2011, 72(5), 768-774.
[http://dx.doi.org/10.1111/j.1365-2125.2011.04022.x] [PMID: 21599723]
[104]
Müller, R.H.; Keck, C.M. Twenty years of drug nanocrystals: Where are we, and where do we go? Eur. J. Pharm. Biopharm., 2012, 80(1), 1-3.
[http://dx.doi.org/10.1016/j.ejpb.2011.09.012] [PMID: 21971369]
[105]
Gilliam, A.C.; Kremer, I.B.; Yoshida, Y.; Stevens, S.R.; Tootell, E.; Teunissen, M.B.M.; Hammerberg, C.; Cooper, K.D. The human hair follicle: a reservoir of CD40+ B7-deficient Langerhans cells that repopulate epidermis after UVB exposure. J. Invest. Dermatol., 1998, 110(4), 422-427.
[http://dx.doi.org/10.1046/j.1523-1747.1998.00162.x] [PMID: 9540986]
[106]
Murphrey, M.B.; Agarwal, S.; Zito, P.M. Anatomy, Hair. StatPearls; StatPearls Publishing: Treasure Island, FL, 2022.
[107]
Díaz-Torres, R.; Rodríguez-Cruz, I.M.; García García, E.; Domínguez-Delgado, C.L.; Ramírez-Noguera, P. Nanocarrier systems with the use of physical enhancers. In: Current Technologies to Increase the Transdermal Delivery of Drugs_Physical Penetration Enhancers: Therapeutic Applications and Devices; Escobar-Chavez. J.J. Bentham Science Publishers, 2016, 2, 260-314.
[108]
Escobar-Chávez, J.J. Physical Penetration Enhancers: Therapeutic Applications and Devices; Bentham Science Publishers: Sharjah, 2016.
[109]
Campbell, C.S.J.; Contreras-Rojas, L.R.; Delgado-Charro, M.B.; Guy, R.H. Objective assessment of nanoparticle disposition in mammali-an skin after topical exposure. J. Control. Release, 2012, 162(1), 201-207.
[http://dx.doi.org/10.1016/j.jconrel.2012.06.024] [PMID: 22732479]
[110]
Ostrowski, A.; Nordmeyer, D.; Boreham, A.; Brodwolf, R.; Mundhenk, L.; Fluhr, J.W.; Lademann, J.; Graf, C.; Rühl, E.; Alexiev, U.; Gruber, A.D. Skin barrier disruptions in tape stripped and allergic dermatitis models have no effect on dermal penetration and systemic distribution of AHAPS-functionalized silica nanoparticles. Nanomedicine, 2014, 10(7), 1571-1581.
[http://dx.doi.org/10.1016/j.nano.2014.04.004] [PMID: 24768631]
[111]
Patzelt, A.; Antoniou, C.; Sterry, W.; Lademann, J. Skin penetration from the inside to the outside: A review. Drug Discov. Today Dis. Mech., 2008, 5(2), e229-e235.
[http://dx.doi.org/10.1016/j.ddmec.2008.05.002]
[112]
Darvin, M.E.; König, K.; Kellner-Hoefer, M.; Breunig, H.G.; Werncke, W.; Meinke, M.C.; Patzelt, A.; Sterry, W.; Lademann, J. Safety assessment by multiphoton fluorescence/second harmonic generation/hyper-Rayleigh scattering tomography of ZnO nanoparticles used in cosmetic products. Skin Pharmacol. Physiol., 2012, 25(4), 219-226.
[http://dx.doi.org/10.1159/000338976] [PMID: 22653438]
[113]
Teichmann, A.; Heuschkel, S.; Jacobi, U.; Presse, G.; Neubert, R.H.H.; Sterry, W.; Lademann, J. Comparison of stratum corneum penetra-tion and localization of a lipophilic model drug applied in an o/w microemulsion and an amphiphilic cream. Eur. J. Pharm. Biopharm., 2007, 67(3), 699-706.
[http://dx.doi.org/10.1016/j.ejpb.2007.04.006] [PMID: 17537622]
[114]
Patzelt, A.; Lademann, J.; Richter, H.; Darvin, M.E.; Schanzer, S.; Thiede, G.; Sterry, W.; Vergou, T.; Hauser, M. In vivo investigations on the penetration of various oils and their influence on the skin barrier. Skin Res. Technol., 2012, 18(3), 364-369.
[http://dx.doi.org/10.1111/j.1600-0846.2011.00578.x] [PMID: 22092829]
[115]
Takeuchi, I.; Hida, Y.; Makino, K. Minoxidil-encapsulated poly(L-lactide-co-glycolide) nanoparticles with hair follicle delivery properties prepared using W/O/W solvent evaporation and sonication. Biomed. Mater. Eng., 2018, 29(2), 217-228.
[http://dx.doi.org/10.3233/BME-171724] [PMID: 29457595]
[116]
Dahmana, N.; Mugnier, T.; Gabriel, D.; Favez, T.; Kowalczuk, L.; Behar-Cohen, F.; Gurny, R.; Kalia, Y.N. Polymeric micelle mediated follicular delivery of spironolactone: Targeting the mineralocorticoid receptor to prevent glucocorticoid-induced activation and delayed cutaneous wound healing. Int. J. Pharm., 2021, 604, 120773.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120773] [PMID: 34090990]
[117]
Matos, B.N.; Reis, T.A.; Gratieri, T.; Gelfuso, G.M. Chitosan nanoparticles for targeting and sustaining minoxidil sulphate delivery to hair follicles. Int. J. Biol. Macromol., 2015, 75, 225-229.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.01.036] [PMID: 25647618]
[118]
Fang, C.L.; Aljuffali, I.A.; Li, Y.C.; Fang, J.Y. Delivery and targeting of nanoparticles into hair follicles. Ther. Deliv., 2014, 5(9), 991-1006.
[http://dx.doi.org/10.4155/tde.14.61] [PMID: 25375342]
[119]
Su, S.; M Kang, P. Recent advances in nanocarrier-assisted therapeutics delivery systems. Pharmaceutics, 2020, 12(9), 837.
[http://dx.doi.org/10.3390/pharmaceutics12090837] [PMID: 32882875]
[120]
Carreón-Álvarez, C.; Sánchez-García, J.L.; Sanabria-Ayala, V.; Ortiz-Frade, L.A.; García-Rodríguez, M.E.; Rodríguez-López, J.L.; López-Revilla, R. Multibranched gold nanoparticles coated with serum proteins fit for photothermal tumor ablation. AIP Adv., 2020, 10(12), 125030.
[http://dx.doi.org/10.1063/5.0025368]
[121]
Köhler, J.M. Challenges for Nanotechnology. Encyclopedia, 2021, 1(3), 618-631.
[http://dx.doi.org/10.3390/encyclopedia1030051]
[122]
Bhagyaraj, S.M.; Oluwafemi, O.S. Nanotechnology: The science of the invisible. Synthesis of inorganic nanomaterials; Elsevier: Amsterdam, 2018, pp. 1-18.
[123]
Jeevanandam, J.; Barhoum, A.; Chan, Y.S.; Dufresne, A.; Danquah, M.K. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J. Nanotechnol., 2018, 9, 1050-1074.
[http://dx.doi.org/10.3762/bjnano.9.98] [PMID: 29719757]
[124]
Strambeanu, N.; Demetrovici, L.; Dragos, D.; Lungu, M. Nanoparticles: Definition, classification and general physical properties. Nano-particles’ promises and risks; Springer: Heidelberg, 2015, pp. 3-8.
[125]
Dhawan, S.; Sharma, P.; Nanda, S. Cosmetic nanoformulations and their intended use. Nanocosmetics; Elsevier: Amsterdam, 2020, pp. 141-169.
[126]
Linsinger, T.P.J.; Roebben, G.; Solans, C.; Ramsch, R. Reference materials for measuring the size of nanoparticles. Trends Analyt. Chem., 2011, 30(1), 18-27.
[http://dx.doi.org/10.1016/j.trac.2010.09.005]
[127]
Pandey, B.J. Synthesis of zinc-based nanomaterials: a biological perspective. IET Nanobiotech., 2012, 6(4), 144-148.
[128]
Zain, M.; Yasmeen, H.; Yadav, S.S.; Amir, S.; Bilal, M.; Shahid, A. Applications of nanotechnology in biological systems and medicine. Nanotechnology for Hematology, Blood Transfusion, and Artificial Blood; Denizli, A.; Nguyen, T.A.; Rajan, M.; Alam, M.F; Rahman, K., Ed.; Elsevier: Amsterdam, 2022, pp. 215-235.
[http://dx.doi.org/10.1016/B978-0-12-823971-1.00019-2]
[129]
Muñoz, L.E.; Bilyy, R.; Biermann, M.H.C.; Kienhöfer, D.; Maueröder, C.; Hahn, J.; Brauner, J.M.; Weidner, D.; Chen, J.; Scharin-Mehlmann, M.; Janko, C.; Friedrich, R.P.; Mielenz, D.; Dumych, T.; Lootsik, M.D.; Schauer, C.; Schett, G.; Hoffmann, M.; Zhao, Y.; Herrmann, M. Nanoparticles size-dependently initiate self-limiting NETosis-driven inflammation. Proc. Natl. Acad. Sci. USA, 2016, 113(40), E5856-E5865.
[http://dx.doi.org/10.1073/pnas.1602230113] [PMID: 27647892]
[130]
Sanguansri, P.; Augustin, M.A. Nanoscale materials development a food industry perspective. Trends Food Sci. Technol., 2006, 17(10), 547-556.
[http://dx.doi.org/10.1016/j.tifs.2006.04.010]
[131]
Ezhilarasi, P.N.; Karthik, P.; Chhanwal, N.; Anandharamakrishnan, C.; Technology, B. Nanoencapsulation techniques for food bioactive components: A review. Food Bioprocess Technol., 2013, 6(3), 628-647.
[http://dx.doi.org/10.1007/s11947-012-0944-0]
[132]
Alves, M.J.S.; Chacon, W.D.C.; Gagliardi, T.R.; Agudelo Henao, A.C.; Monteiro, A.R.; Ayala Valencia, G. Food applications of starch nanomaterials: A review. Stärke, 2021, 73(11-12), 2100046.
[http://dx.doi.org/10.1002/star.202100046]
[133]
Campelo, P.H.; Sant’Ana, A.S.; Pedrosa Silva Clerici, M.T. Starch nanoparticles: Production methods, structure, and properties for food applications. Curr. Opin. Food Sci., 2020, 33, 136-140.
[http://dx.doi.org/10.1016/j.cofs.2020.04.007]
[134]
Abla, M.J.; Singh, N.D.; Banga, A.K. Role of nanotechnology in skin delivery of drugs. Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement; Springer: Heidelberg, 2016, pp. 1-13.
[135]
Kreuter, J. Nanoparticles-a historical perspective. Int. J. Pharm., 2007, 331(1), 1-10.
[http://dx.doi.org/10.1016/j.ijpharm.2006.10.021] [PMID: 17110063]
[136]
Ayala-Fuentes, J.C.; Chavez-Santoscoy, R.A. Nanotechnology as a key to enhance the benefits and improve the bioavailability of flavo-noids in the food industry. Foods, 2021, 10(11), 2701.
[http://dx.doi.org/10.3390/foods10112701] [PMID: 34828981]
[137]
Mageswari, A.; Srinivasan, R.; Subramanian, P.; Ramesh, N.; Gothandam, K.M. Nanomaterials: Classification, biological synthesis and characterization. Nanoscience in Food and Agriculture 3; Springer: Heidelberg, 2016, pp. 31-71.
[138]
Koudelka, K.J.; Pitek, A.S.; Manchester, M.; Steinmetz, N.F. Virus-based nanoparticles as versatile nanomachines. Annu. Rev. Virol., 2015, 2(1), 379-401.
[http://dx.doi.org/10.1146/annurev-virology-100114-055141] [PMID: 26958921]
[139]
Laffleur, F.; Keckeis, V. Advances in drug delivery systems: Work in progress still needed? Int. J. Pharm., 2020, 590, 119912.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119912] [PMID: 32971178]
[140]
Lohani, A.; Verma, A.; Joshi, H.; Yadav, N.; Karki, N. Nanotechnology-based cosmeceuticals. ISRN Dermatol., 2014, 2014, 1-14.
[http://dx.doi.org/10.1155/2014/843687] [PMID: 24963412]
[141]
Landriscina, A.; Rosen, J.; Friedman, A. Nanotechnology, inflammation and the skin barrier: Innovative approaches for skin health and cosmesis. Cosmetics, 2015, 2(2), 177-186.
[http://dx.doi.org/10.3390/cosmetics2020177]
[142]
Younis, I.Y.; El-Hawary, S.S.; Eldahshan, O.A.; Abdel-Aziz, M.M.; Ali, Z.Y. Green synthesis of magnesium nanoparticles mediated from Rosa floribunda charisma extract and its antioxidant, antiaging and antibiofilm activities. Sci. Rep., 2021, 11(1), 16868.
[http://dx.doi.org/10.1038/s41598-021-96377-6] [PMID: 34413416]
[143]
Wu, Y.Z.; Tsai, Y.Y.; Chang, L.S.; Chen, Y.J. Evaluation of gallic acid-coated gold nanoparticles as an anti-aging ingredient. Pharmaceuti-cals, 2021, 14(11), 1071.
[http://dx.doi.org/10.3390/ph14111071] [PMID: 34832853]
[144]
Noordam, R.; Gunn, D.A.; Tomlin, C.C.; Maier, A.B.; Mooijaart, S.P.; Slagboom, P.E.; Westendorp, R.G.J.; de Craen, A.J.M.; van Heemst, D. High serum glucose levels are associated with a higher perceived age. AGE, 2013, 35(1), 189-195.
[http://dx.doi.org/10.1007/s11357-011-9339-9] [PMID: 22102339]
[145]
Chen, H.; Khemtong, C.; Yang, X.; Chang, X.; Gao, J. Nanonization strategies for poorly water-soluble drugs. Drug Discov. Today, 2011, 16(7-8), 354-360.
[http://dx.doi.org/10.1016/j.drudis.2010.02.009] [PMID: 20206289]
[146]
Junghanns, J-U.A.; Müller, R.H. Nanocrystal technology, drug delivery and clinical applications. Int. J. Nanomedicine, 2008, 3(3), 295-309.
[PMID: 18990939]
[147]
Müller, R.H.; Gohla, S.; Keck, C.M. State of the art of nanocrystals – Special features, production, nanotoxicology aspects and intracellu-lar delivery. Eur. J. Pharm. Biopharm., 2011, 78(1), 1-9.
[http://dx.doi.org/10.1016/j.ejpb.2011.01.007] [PMID: 21266197]
[148]
Parmar, P.K.; Wadhawan, J.; Bansal, A.K. Pharmaceutical nanocrystals: A promising approach for improved topical drug delivery. Drug Discov. Today, 2021, 26(10), 2329-2349.
[http://dx.doi.org/10.1016/j.drudis.2021.07.010] [PMID: 34265460]
[149]
Ratz-Łyko, A.; Arct, J.; Majewski, S.; Pytkowska, K. Influence of polyphenols on the physiological processes in the skin. Phytother. Res., 2015, 29(4), 509-517.
[http://dx.doi.org/10.1002/ptr.5289] [PMID: 25586195]
[150]
Chanet, A.; Milenkovic, D.; Manach, C.; Mazur, A.; Morand, C. Citrus flavanones: What is their role in cardiovascular protection? J. Agric. Food Chem., 2012, 60(36), 8809-8822.
[http://dx.doi.org/10.1021/jf300669s] [PMID: 22574825]
[151]
Garg, A.; Garg, S.; Zaneveld, L.J.D.; Singla, A.K. Chemistry and pharmacology of the citrus bioflavonoid hesperidin. Phytother. Res., 2001, 15(8), 655-669.
[http://dx.doi.org/10.1002/ptr.1074] [PMID: 11746857]
[152]
Heim, K.E.; Tagliaferro, A.R.; Bobilya, D.J. Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J. Nutr. Biochem., 2002, 13(10), 572-584.
[http://dx.doi.org/10.1016/S0955-2863(02)00208-5] [PMID: 12550068]
[153]
Roohbakhsh, A.; Parhiz, H.; Soltani, F.; Rezaee, R.; Iranshahi, M. Molecular mechanisms behind the biological effects of hesperidin and hesperetin for the prevention of cancer and cardiovascular diseases. Life Sci., 2015, 124, 64-74.
[http://dx.doi.org/10.1016/j.lfs.2014.12.030] [PMID: 25625242]
[154]
Jovanovic, S.V.; Steenken, S.; Tosic, M.; Marjanovic, B.; Simic, M.G. Flavonoids as Antioxidants. J. Am. Chem. Soc., 1994, 116(11), 4846-4851.
[http://dx.doi.org/10.1021/ja00090a032]
[155]
Chen, M.; Gu, H.; Ye, Y.; Lin, B.; Sun, L.; Deng, W.; Zhang, J.; Liu, J. Protective effects of hesperidin against oxidative stress of tert-butyl hydroperoxide in human hepatocytes. Food Chem. Toxicol., 2010, 48(10), 2980-2987.
[http://dx.doi.org/10.1016/j.fct.2010.07.037] [PMID: 20678535]
[156]
Parhiz, H.; Roohbakhsh, A.; Soltani, F.; Rezaee, R.; Iranshahi, M. Antioxidant and anti-inflammatory properties of the citrus flavonoids hesperidin and hesperetin: An updated review of their molecular mechanisms and experimental models. Phytother. Res., 2015, 29(3), 323-331.
[http://dx.doi.org/10.1002/ptr.5256] [PMID: 25394264]
[157]
Roursgaard, M.; Poulsen, S.S.; Kepley, C.L.; Hammer, M.; Nielsen, G.D.; Larsen, S.T. Polyhydroxylated C60 fullerene (fullerenol) atten-uates neutrophilic lung inflammation in mice. Basic Clin. Pharmacol. Toxicol., 2008, 103(4), 386-388.
[http://dx.doi.org/10.1111/j.1742-7843.2008.00315.x] [PMID: 18793270]
[158]
Kokubo, K.; Sato, N.; Sakurai, H. Colloidal gold nanoparticles stabilized by hydroxylated fullerenes. In: ECS Meeting Abstracts; IOP Publishing: Bristol, 2017.
[http://dx.doi.org/10.1149/MA2017-01/13/851]
[159]
Xu, Z.; Liang, Z.; Ding, F. Isomerization of sp2-hybridized carbon nanomaterials: Structural transformation and topological defects of fullerene, carbon nanotube, and graphene. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2017, 7(2), e1283.
[http://dx.doi.org/10.1002/wcms.1283]
[160]
Lens, M. Use of fullerenes in cosmetics. Recent Pat. Biotechnol., 2009, 3(2), 118-123.
[http://dx.doi.org/10.2174/187220809788700166] [PMID: 19519567]
[161]
Grumezescu, A. 2016.
[162]
Che Marzuki, N.H.; Wahab, R.A.; Abdul Hamid, M. An overview of nanoemulsion: concepts of development and cosmeceutical applica-tions. Biotechnol. Biotechnol. Equip., 2019, 33(1), 779-797.
[http://dx.doi.org/10.1080/13102818.2019.1620124]
[163]
Kumar, M.; Bishnoi, R.S.; Shukla, A.K.; Jain, C.P. Techniques for formulation of nanoemulsion drug delivery system: A review. Prev. Nutr. Food Sci., 2019, 24(3), 225-234.
[http://dx.doi.org/10.3746/pnf.2019.24.3.225] [PMID: 31608247]
[164]
Chou, T.H.; Nugroho, D.S.; Chang, J.Y.; Cheng, Y.S.; Liang, C.H.; Deng, M.J. Encapsulation and characterization of nanoemulsions based on an anti-oxidative polymeric amphiphile for topical apigenin delivery. Polymers, 2021, 13(7), 1016.
[http://dx.doi.org/10.3390/polym13071016] [PMID: 33806031]
[165]
Ling, S.; Kaplan, D.L.; Buehler, M.J. Nanofibrils in nature and materials engineering. Nat. Rev. Mater., 2018, 3(4), 18016.
[http://dx.doi.org/10.1038/natrevmats.2018.16] [PMID: 34168896]
[166]
Morganti, P.; Morganti, G.; Morganti, A. Transforming nanostructured chitin from crustacean waste into beneficial health products: A must for our society. Nanotechnol. Sci. Appl., 2011, 4, 123-129.
[http://dx.doi.org/10.2147/NSA.S22459] [PMID: 24198491]
[167]
Morganti, P.; Li, Y-H. From waste materials skin-friendly nanostructured products to save humans and the environment. Journal of Cos-metics Dermatological Sciences and Applications., 2011, 1(3), 99-105.
[168]
Morganti, P.; Morganti, A. Chitin nanofibrils: a natural nanostructured compound to save the environment. Curr. Top. Nutraceutical Res., 2011, 7(5), 50-52.
[169]
Danti, S.; Trombi, L.; Fusco, A.; Azimi, B.; Lazzeri, A.; Morganti, P.; Coltelli, M.B.; Donnarumma, G. Chitin nanofibrils and nanolignin as functional agents in skin regeneration. Int. J. Mol. Sci., 2019, 20(11), 2669.
[http://dx.doi.org/10.3390/ijms20112669] [PMID: 31151285]
[170]
Morganti, P; Fabrizi, G; Guarneri, F; Palombo, M; Palombo, P Repair activity of skin barrier by chitin-nanofibrils complexes. SOFW J., 2011, 137(5)
[171]
Pardeike, J.; Hommoss, A.; Müller, R.H. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int. J. Pharm., 2009, 366(1-2), 170-184.
[http://dx.doi.org/10.1016/j.ijpharm.2008.10.003] [PMID: 18992314]
[172]
Uner, M. Preparation, characterization and physico-chemical properties of solid lipid nanoparticles (SLN) and nanostructured lipid carri-ers (NLC): Their benefits as colloidal drug carrier systems. Pharmazie, 2006, 61(5), 375-386.
[PMID: 16724531]
[173]
Suter, F.; Schmid, D.; Wandrey, F.; Zülli, F. Heptapeptide-loaded solid lipid nanoparticles for cosmetic anti-aging applications. Eur. J. Pharm. Biopharm., 2016, 108, 304-309.
[http://dx.doi.org/10.1016/j.ejpb.2016.06.014] [PMID: 27343822]
[174]
Kawabata, K.; Mukai, R.; Ishisaka, A. Quercetin and related polyphenols: new insights and implications for their bioactivity and bioavail-ability. Food Funct., 2015, 6(5), 1399-1417.
[http://dx.doi.org/10.1039/C4FO01178C] [PMID: 25761771]
[175]
Li, Y.; Yao, J.; Han, C.; Yang, J.; Chaudhry, M.; Wang, S.; Liu, H.; Yin, Y. Quercetin, inflammation and immunity. Nutrients, 2016, 8(3), 167.
[http://dx.doi.org/10.3390/nu8030167] [PMID: 26999194]
[176]
Haq, S.H.; AlAmro, A.A. Neuroprotective effect of quercetin in murine cortical brain tissue cultures. Clin. Nutr. Exp., 2019, 23, 89-96.
[http://dx.doi.org/10.1016/j.yclnex.2018.10.002]
[177]
Xu, D.; Hu, M.J.; Wang, Y.Q.; Cui, Y.L. Antioxidant activities of quercetin and its complexes for medicinal application. Molecules, 2019, 24(6), 1123.
[http://dx.doi.org/10.3390/molecules24061123] [PMID: 30901869]
[178]
Rice-evans, C.A.; Miller, N.J.; Bolwell, P.G.; Bramley, P.M.; Pridham, J.B. The relative antioxidant activities of plant-derived polyphenolic flavonoids. Free Radic. Res., 1995, 22(4), 375-383.
[http://dx.doi.org/10.3109/10715769509145649] [PMID: 7633567]
[179]
Langel, U. Cell-penetrating peptides: processes and applications, 1st ed.; CRC press: Forida, 2002.
[180]
Schuetz, Y.B.; Naik, A.; Guy, R.H.; Vuaridel, E.; Kalia, Y.N. Transdermal iontophoretic delivery of triptorelin in vitro. J. Pharm. Sci., 2005, 94(10), 2175-2182.
[http://dx.doi.org/10.1002/jps.20433] [PMID: 16136544]
[181]
Mutalik, S.; Parekh, H.S.; Anissimov, Y.G.; Grice, J.E.; Roberts, M.S. Iontophoresis-mediated transdermal permeation of peptide den-drimers across human epidermis. Skin Pharmacol. Physiol., 2013, 26(3), 127-138.
[http://dx.doi.org/10.1159/000348469] [PMID: 23549205]
[182]
Nakhaei, P.; Margiana, R.; Bokov, D.O.; Abdelbasset, W.K.; Jadidi Kouhbanani, M.A.; Varma, R.S.; Marofi, F.; Jarahian, M.; Behesht-khoo, N. Liposomes: Structure, biomedical applications, and stability parameters with emphasis on cholesterol. Front. Bioeng. Biotechnol., 2021, 9, 705886.
[http://dx.doi.org/10.3389/fbioe.2021.705886] [PMID: 34568298]
[183]
Souto, E.B.; Macedo, A.S.; Dias-Ferreira, J.; Cano, A.; Zielińska, A.; Matos, C.M. Elastic and ultradeformable liposomes for transdermal delivery of active pharmaceutical ingredients (APIs). Int. J. Mol. Sci., 2021, 22(18), 9743.
[http://dx.doi.org/10.3390/ijms22189743] [PMID: 34575907]
[184]
Ansam, M.; Bnyan, R.; Yousaf, S.; Khan, I. Anti-aging liposomal formulation: A mini review. Nov Appro Drug Des Dev., 2018, 3(3), 555614.
[185]
Drulis-Kawa, Z.; Dorotkiewicz-Jach, A. Liposomes as delivery systems for antibiotics. Int. J. Pharm., 2010, 387(1-2), 187-198.
[http://dx.doi.org/10.1016/j.ijpharm.2009.11.033] [PMID: 19969054]
[186]
Garg, T.K.; Goyal, A. Liposomes: Targeted and controlled delivery system. Drug Deliv. Lett., 2014, 4(1), 62-71.
[http://dx.doi.org/10.2174/22103031113036660015]
[187]
Ashtikar, M.; Nagarsekar, K.; Fahr, A. Transdermal delivery from liposomal formulations-evolution of the technology over the last three decades. J. Control. Release, 2016, 242, 126-140.
[http://dx.doi.org/10.1016/j.jconrel.2016.09.008] [PMID: 27620074]
[188]
Chaurasiya, P.; Ganju, E.; Upmanyu, N.; Ray, S.K.; Jain, P. Transfersomes: a novel technique for transdermal drug delivery. J. Drug Deliv. Ther., 2019, 9(1), 279-285.
[http://dx.doi.org/10.22270/jddt.v9i1.2198]
[189]
Sala, M.; Diab, R.; Elaissari, A.; Fessi, H. Lipid nanocarriers as skin drug delivery systems: Properties, mechanisms of skin interactions and medical applications. Int. J. Pharm., 2018, 535(1-2), 1-17.
[http://dx.doi.org/10.1016/j.ijpharm.2017.10.046] [PMID: 29111097]
[190]
Fang, J.Y.; Hung, C.F.; Hwang, T.L.; Huang, Y.L. Physicochemical characteristics and in vivo deposition of liposome-encapsulated tea catechins by topical and intratumor administrations. J. Drug Target., 2005, 13(1), 19-27.
[http://dx.doi.org/10.1080/10611860400015977] [PMID: 15848951]
[191]
Brand, R.M.; Jendrzejewski, J.L. Topical treatment with (−)-epigallocatechin-3-gallate and genistein after a single UV exposure can reduce skin damage. J. Dermatol. Sci., 2008, 50(1), 69-72.
[http://dx.doi.org/10.1016/j.jdermsci.2007.11.008] [PMID: 18215507]
[192]
Atrux-Tallau, N.; Lasselin, J.; Han, S.H.; Delmas, T.; Bibette, J. Quantitative analysis of ligand effects on bioefficacy of nanoemulsion encapsulating depigmenting active. Colloids Surf. B Biointerfaces, 2014, 122, 390-395.
[http://dx.doi.org/10.1016/j.colsurfb.2014.07.021] [PMID: 25087020]
[193]
Rattanapak, T.; Young, K.; Rades, T.; Hook, S. Comparative study of liposomes, transfersomes, ethosomes and cubosomes for transcutaneous immunisation: characterisation and in vitro skin penetration. J. Pharm. Pharmacol., 2012, 64(11), 1560-1569.
[http://dx.doi.org/10.1111/j.2042-7158.2012.01535.x] [PMID: 23058043]
[194]
Gupta, V.; Trivedi, P. Enhancement of storage stability of cisplatin-loaded protransfersome topical drug delivery system by surface modi-fication with block copolymer and gelling agent. J. Drug Deliv. Sci. Technol., 2012, 22(4), 361-366.
[http://dx.doi.org/10.1016/S1773-2247(12)50060-2]
[195]
Sayali, T.; Makarand, G.; Kishor, G. Formulation and development of ketorolac tromethamine protransfersomal gel. Int. J. Inst. Pharm. Life Sci., 2015, 5, 411-428.
[196]
Miatmoko, A. Evaluation of transfersome and protransfersome for percutaneous delivery of cisplatin in hairless mice. J. Pharm. Pharmacol., 2015, S-7.
[197]
Rai, S.; Pandey, V.; Rai, G. Transfersomes as versatile and flexible nano-vesicular carriers in skin cancer therapy: the state of the art. Nano Rev. Exp., 2017, 8(1), 1325708.
[http://dx.doi.org/10.1080/20022727.2017.1325708] [PMID: 30410704]
[198]
Iskandarsyah, I.I.; Rahmi, A.D.; Pangesti, D.M. Comparison of the characteristics of transfersomes and protransfersomes containing azelaic acid. J. Young Pharm., 2018, 10(2s), S11-S15.
[http://dx.doi.org/10.5530/jyp.2018.2s.3]
[199]
Gupta, V.; Dhote, V.; Paul, B.N.; Trivedi, P. Development of novel topical drug delivery system containing cisplatin and imiquimod for dual therapy in cutaneous epithelial malignancy. J. Liposome Res., 2014, 24(2), 150-162.
[http://dx.doi.org/10.3109/08982104.2013.865216] [PMID: 24328725]
[200]
Gaynanova, G.; Vasileva, L.; Kashapov, R.; Kuznetsova, D.; Kushnazarova, R.; Tyryshkina, A.; Vasilieva, E.; Petrov, K.; Zakharova, L.; Sinyashin, O. Self-assembling drug formulations with tunable permeability and biodegradability. Molecules, 2021, 26(22), 6786.
[http://dx.doi.org/10.3390/molecules26226786] [PMID: 34833877]
[201]
Camilo, C.J.J.; Leite, D.O.D.; Silva, A.R.A.; Menezes, I.R.A.; Coutinho, H.D.M.; Costa, J.G.M. Lipid vesicles: Applications, principal components and methods used in their formulations: A review. Acta Biol. Colomb., 2020, 25(2), 339-352.
[http://dx.doi.org/10.15446/abc.v25n2.74830]
[202]
Handjani-Vila, R.M.; Ribier, A.; Rondot, B.; Vanlerberghie, G. Dispersions of lamellar phases of non-ionic lipids in cosmetic products. Int. J. Cosmet. Sci., 1979, 1(5), 303-314.
[http://dx.doi.org/10.1111/j.1467-2494.1979.tb00224.x] [PMID: 19467076]
[203]
Chacko, I.A.; Ghate, V.M.; Dsouza, L.; Lewis, S.A. Lipid vesicles: A versatile drug delivery platform for dermal and transdermal applica-tions. Colloids Surf. B Biointerfaces, 2020, 195, 111262.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111262] [PMID: 32736123]
[204]
Lu, J.; Guo, T.; Fan, Y.; Li, Z.; He, Z.; Yin, S.; Feng, N. Recent developments in the principles, modification and application prospects of functionalized ethosomes for topical delivery. Curr. Drug Deliv., 2021, 18(5), 570-582.
[http://dx.doi.org/10.2174/1567201817666200826093102] [PMID: 32851961]
[205]
Song, C.K.; Balakrishnan, P.; Shim, C.K.; Chung, S.J.; Chong, S.; Kim, D.D. A novel vesicular carrier, transethosome, for enhanced skin delivery of voriconazole: Characterization and in vitro/in vivo evaluation. Colloids Surf. B Biointerfaces, 2012, 92, 299-304.
[http://dx.doi.org/10.1016/j.colsurfb.2011.12.004] [PMID: 22205066]
[206]
Lin, Y.L.; Chang, Y.Y.; Kuo, Y.H.; Shiao, M.S. Anti-lipid-peroxidative principles from Tournefortia s Armentosa. J. Nat. Prod., 2002, 65(5), 745-747.
[http://dx.doi.org/10.1021/np010538y] [PMID: 12027757]
[207]
Hajimehdipoor, H.; Saeidnia, S.; Gohari, A.R.; Hamedani, M.P.; Shekarchi, M. Comparative study of rosmarinic acid content in some plants of Labiatae family. Pharmacogn. Mag., 2012, 8(29), 37-41.
[http://dx.doi.org/10.4103/0973-1296.93316] [PMID: 22438661]
[208]
Elliott, J.G. Application of antioxidant vitamins in foods and beverages: Developing nutraceuticals for the new millenium. Food Technol., 1999, 53(2), 46-48.
[209]
Canelas, V.; Teixeira da Costa, C. Quantitative HPLC analysis of rosmarinic acid in extracts of Melissa officinalis and spectrophotometric measurement of their antioxidant activities. J. Chem. Educ., 2007, 84(9), 1502-1504.
[http://dx.doi.org/10.1021/ed084p1502]
[210]
Gülçin, İ. Comparison of in vitro antioxidant and antiradical activities of L-tyrosine and L-Dopa. Amino Acids, 2007, 32(3), 431-438.
[http://dx.doi.org/10.1007/s00726-006-0379-x] [PMID: 16932840]
[211]
Bhise, J.J.; Bhusnure, O.G.; Jagtap, S.R.; Gholve, S.B.; Wale, R. Phytosomes: a novel drug delivery for herbal extracts. J. Drug Deliv. Ther., 2019, 9(3-s), 924-930.
[212]
Dewan, N.; Dasgupta, D.; Pandit, S.; Ahmed, P. Review on-Herbosomes: A new arena for drug delivery. J. Pharmacogn. Phytochem., 2016, 5(4), 104.
[213]
Rajasekaran, S.; Ravi, K.; Sivagnanam, K.; Subramanian, S. Beneficial effects of aloe vera leaf gel extract on lipid profile status in rats with streptozotocin diabetes. Clin. Exp. Pharmacol. Physiol., 2006, 33(3), 232-237.
[http://dx.doi.org/10.1111/j.1440-1681.2006.04351.x] [PMID: 16487267]
[214]
Sanghi, S.B. Aloe vera: A medicinal herb. IJRG, 2015, 3(11), 32-34.
[215]
Rahmani, A.; Aldebasi, Y.; Srikar, S.; Khan, A.; Aly, S. Aloe vera: Potential candidate in health management via modulation of biological activities. Pharmacogn. Rev., 2015, 9(18), 120-126.
[http://dx.doi.org/10.4103/0973-7847.162118] [PMID: 26392709]
[216]
Wagh, V.D. Propolis: A wonder bees product and its pharmacological potentials. Adv. Pharmacol. Sci., 2013, 2013, 1-11.
[http://dx.doi.org/10.1155/2013/308249] [PMID: 24382957]
[217]
Yang, B.; Dong, Y.; Wang, F.; Zhang, Y. Nanoformulations to enhance the bioavailability and physiological functions of polyphenols. Molecules, 2020, 25(20), 4613.
[http://dx.doi.org/10.3390/molecules25204613] [PMID: 33050462]
[218]
Zhang, W.; Gao, J.; Zhu, Q.; Zhang, M.; Ding, X.; Wang, X.; Hou, X.; Fan, W.; Ding, B.; Wu, X.; Wang, X.; Gao, S. Penetration and distri-bution of PLGA nanoparticles in the human skin treated with microneedles. Int. J. Pharm., 2010, 402(1-2), 205-212.
[http://dx.doi.org/10.1016/j.ijpharm.2010.09.037] [PMID: 20932886]
[219]
Esposito, E.; Menegatti, E.; Cortesi, R. Ethosomes and liposomes as topical vehicles for azelaic acid: A preformulation study. Int. J. Cosmet. Sci., 2004, 26(5), 270-271.
[http://dx.doi.org/10.1111/j.1467-2494.2004.00233_2.x] [PMID: 15264053]
[220]
Liu, P.; Zhao, H.; Luo, Y. Anti-aging implications of Astragalus membranaceus (Huangqi): A well-known chinese tonic. Aging Dis., 2017, 8(6), 868-886.
[http://dx.doi.org/10.14336/AD.2017.0816] [PMID: 29344421]
[221]
Dhapte-Pawar, V.; Kadam, S.; Saptarsi, S.; Kenjale, P.P. Nanocosmeceuticals: Facets and aspects. Future Sci. OA, 2020, 6(10), FSO613.
[http://dx.doi.org/10.2144/fsoa-2019-0109] [PMID: 33312696]
[222]
Kaul, S.; Gulati, N.; Verma, D.; Mukherjee, S.; Nagaich, U. Role of nanotechnology in cosmeceuticals: A review of recent advances. J. Pharm., 2018, 2018, 1-19.
[http://dx.doi.org/10.1155/2018/3420204] [PMID: 29785318]
[223]
Santos, A.C.; Rodrigues, D.; Sequeira, J.A.D.; Pereira, I.; Simões, A.; Costa, D.; Peixoto, D.; Costa, G.; Veiga, F. Nanotechnological break-throughs in the development of topical phytocompounds-based formulations. Int. J. Pharm., 2019, 572, 118787.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118787] [PMID: 31678376]
[224]
Zielińska, A.; Nowak, I. Solid lipid nanoparticles and nanostructured lipid carriers as novel carriers for cosmetic ingredients. Nanobi-omaterials in galenic formulations and cosmetics; Elsevier: Amsterdam, 2016, pp. 231-255.
[225]
De Jong, W.H.; Hagens, W.I.; Krystek, P.; Burger, M.C.; Sips, A.J.A.M.; Geertsma, R.E. Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials, 2008, 29(12), 1912-1919.
[http://dx.doi.org/10.1016/j.biomaterials.2007.12.037] [PMID: 18242692]
[226]
Sukhanova, A.; Bozrova, S.; Sokolov, P.; Berestovoy, M.; Karaulov, A.; Nabiev, I. Dependence of nanoparticle toxicity on their physical and chemical properties. Nanoscale Res. Lett., 2018, 13(1), 44.
[http://dx.doi.org/10.1186/s11671-018-2457-x] [PMID: 29417375]
[227]
Ahamad, N.; Bhardwaj, P.; Bhatia, E.; Banerjee, R. Clinical Toxicity of Nanomedicines.Nano Medicine and Nano Safety: Recent Trends and Clinical Evidences; Das, M.K.; Pathak, Y.V., Eds.; Springer Singapore: Singapore, 2020, pp. 533-560.
[http://dx.doi.org/10.1007/978-981-15-6255-6_20]
[228]
Domínguez-Delgado, C.L.; Akhtar, Z.; Awuah-Mensah, G.; Wu, B.; Smyth, H.D.C. Effects of process and formulation parameters on submicron polymeric particles produced by a rapid emulsion-diffusion method. Nanomaterials, 2022, 12(2), 229.
[http://dx.doi.org/10.3390/nano12020229] [PMID: 35055248]
[229]
Winter, M.; Beer, H.D.; Hornung, V.; Krämer, U.; Schins, R.P.F.; Förster, I. Activation of the inflammasome by amorphous silica and TiO2 nanoparticles in murine dendritic cells. Nanotoxicology, 2011, 5(3), 326-340.
[http://dx.doi.org/10.3109/17435390.2010.506957] [PMID: 20846021]
[230]
Wang, M.; Lai, X.; Shao, L.; Li, L. Evaluation of immunoresponses and cytotoxicity from skin exposure to metallic nanoparticles. Int. J. Nanomedicine, 2018, 13, 4445-4459.
[http://dx.doi.org/10.2147/IJN.S170745] [PMID: 30122919]
[231]
Rani, M.; Yadav, J.; Shanker, U. Toxicity and safety assessment of green nanomaterials. Green Nanomaterials for Industrial Applications; Shanker, U.; Hussain, C.M; Rani, M., Ed.; Elsevier: Amsterdam, 2022, pp. 509-522.
[http://dx.doi.org/10.1016/B978-0-12-823296-5.00010-1]
[232]
Bengalli, R.; Colantuoni, A.; Perelshtein, I.; Gedanken, A.; Collini, M.; Mantecca, P.; Fiandra, L. In vitro skin toxicity of CuO and ZnO nanoparticles: Application in the safety assessment of antimicrobial coated textiles. NanoImpact, 2021, 21, 100282.
[http://dx.doi.org/10.1016/j.impact.2020.100282] [PMID: 35559774]
[233]
Dormont, F.; Rouquette, M.; Mahatsekake, C.; Gobeaux, F.; Peramo, A.; Brusini, R.; Calet, S.; Testard, F.; Lepetre-Mouelhi, S.; Desmaële, D.; Varna, M.; Couvreur, P. Translation of nanomedicines from lab to industrial scale synthesis: The case of squalene-adenosine nano-particles. J. Control. Release, 2019, 307, 302-314.
[http://dx.doi.org/10.1016/j.jconrel.2019.06.040] [PMID: 31260754]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy