Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Liposome Based Drug Delivery for the Management of Psoriasis - A Comprehensive Review

Author(s): Shiv Bahadur* and Manisha Sharma

Volume 24, Issue 11, 2023

Published on: 09 January, 2023

Page: [1383 - 1396] Pages: 14

DOI: 10.2174/1389201024666221213144228

Price: $65

Abstract

Psoriasis has been considered as a chronic inflammatory skin disease which leads to the dysfunction of immune systems. According to the World Psoriasis Day consortium, psoriasis affects around 125 million individuals globally or about 2% to 3% of the overall population. Most of the conventional drug delivery systems primarily attempt to relieve symptoms of psoriasis and are ineffective in providing targeted action and higher bioavailability because of the drug's short half-life and instability, as well as they lack safety and efficacy. The shortcomings of conventional drug delivery systems give rise to the development of novel drug delivery systems which includes liposomes, transferosomes, ethosomes, niosomes, emulsomes, dendrimers, hydrogel, nanoparticles, etc. These novel formulations may enhance the therapeutic effects by changing physiological and pharmacokinetic parameters. Several research reports suggest that these novel drug delivery systems may enhance therapeutic effects which can be used as a promising approach for the treatment of psoriasis. The liposomes based drug delivery system have been considered as most promising vehicles for enhancing therapeutic potentials of drugs into or through the skin upon topical application. Liposomes have small unilamellar vesicles which may enhance the penetration ability through stratum corneum layer of skin. Therefore, present review article highlights on the different aspects of the liposomes as potential drug delivery system for the treatment of psoriasis.

Keywords: Liposomes, topical delivery, psoriasis, stratum corneum, skin disease, drug delivery system, drug delivery.

Graphical Abstract
[1]
Torchilin, V.P. Structure and design of polymeric surfactant-based drug delivery systems. J. Control. Release, 2001, 73(2-3), 137-172.
[http://dx.doi.org/10.1016/S0168-3659(01)00299-1] [PMID: 11516494]
[2]
The National Psoriasis Foundation. Available from: https://www.psoriasis.org/ [Accessed March 23, 2022].
[3]
Sala, M.; Elaissari, A.; Fessi, H. Advances in psoriasis physiopathology and treatments: Up to date of mechanistic insights and perspec-tives of novel therapies based on Innovative Skin Drug Delivery Systems (ISDDS). J. Control. Release, 2016, 239, 182-202.
[http://dx.doi.org/10.1016/j.jconrel.2016.07.003] [PMID: 27381248]
[4]
Pradhan, M.; Alexander, A.; Singh, M.R.; Singh, D.; Saraf, S.; Saraf, S. Ajazuddin, Understanding the prospective of nano-formulations towards the treatment of psoriasis. Biomed. Pharmacother., 2018, 107(7), 447-463.
[http://dx.doi.org/10.1016/j.biopha.2018.07.156] [PMID: 30103117]
[5]
Henseler, T.; Christophers, E. Psoriasis of early and late onset: Characterization of two types of psoriasis vulgaris. J. Am. Acad. Dermatol., 1985, 13(3), 450-456.
[http://dx.doi.org/10.1016/S0190-9622(85)70188-0] [PMID: 4056119]
[6]
Jyothi, S.L.; Krishna, K.L.; Ameena Shirin, V.K.; Sankar, R.; Pramod, K.; Gangadharappa, H.V. Drug delivery systems for the treatment of psoriasis: Current status and prospects. J. Drug Deliv. Sci. Technol., 2021, 62(12), 102364.
[http://dx.doi.org/10.1016/j.jddst.2021.102364]
[7]
Armstrong, A.W.; Gordon, K.B.; Wu, J.J.; Wu, J.J. Common and not-so-common comorbidities of psoriasis. Semin. Cutan. Med. Surg., 2018, 37(2S), S48-S51.
[http://dx.doi.org/10.12788/j.sder.2018.011] [PMID: 29614138]
[8]
FitzGerald, O.; Dougados, M. Psoriatic arthritis: One or more diseases? Best Pract. Res. Clin. Rheumatol., 2006, 20(3), 435-450.
[http://dx.doi.org/10.1016/j.berh.2006.02.002] [PMID: 16777575]
[9]
Tambe, V.S.; Nautiyal, A.; Wairkar, S. Topical lipid nanocarriers for management of psoriasis - an overview. J. Drug Deliv. Sci. Technol., 2021, 64(5), 102671.
[http://dx.doi.org/10.1016/j.jddst.2021.102671]
[10]
Gelfand, J.M.; Gladman, D.D.; Mease, P.J.; Smith, N.; Margolis, D.J.; Nijsten, T.; Stern, R.S.; Feldman, S.R.; Rolstad, T. Epidemiology of psoriatic arthritis in the population of the United States. J. Am. Acad. Dermatol., 2005, 53(4), 573.e1-573.e13.
[http://dx.doi.org/10.1016/j.jaad.2005.03.046] [PMID: 16198775]
[11]
Levine, D.; Gottlieb, A. Evaluation and management of psoriasis: An internist’s guide. Med. Clin. North Am., 2009, 93(6), 1291-1303.
[http://dx.doi.org/10.1016/j.mcna.2009.08.003] [PMID: 19932332]
[12]
Raychaudhuri, S.K.; Maverakis, E.; Raychaudhuri, S.P. Diagnosis and classification of psoriasis. Autoimmun. Rev., 2014, 13(4-5), 490-495.
[http://dx.doi.org/10.1016/j.autrev.2014.01.008] [PMID: 24434359]
[13]
Griffiths, C.E.M.; Armstrong, A.W.; Gudjonsson, J.E.; Barker, J.N.W.N. Psoriasis. Lancet, 2021, 397(10281), 1301-1315.
[http://dx.doi.org/10.1016/S0140-6736(20)32549-6] [PMID: 33812489]
[14]
Rendon, A.; Schäkel, K. Psoriasis pathogenesis and treatment. Int. J. Mol. Sci., 2019, 20(6), 1475.
[http://dx.doi.org/10.3390/ijms20061475] [PMID: 30909615]
[15]
Saleh, D.; Tanner, L.S. Guttate psoriasis; Stat Pearls Publishing: Florida, 2022. Available from: https://www.ncbi.nlm.nih.gov/books/NBK482498/ [Accessed March 27, 2022].
[16]
Guttate Psoriasis: Overview of Guttate Psoriasis, Pathophysiology of Guttate Psoriasis, Epidemiology of Guttate Psoriasis. Available from: https://emedicine.medscape.com/article/1107850-overview [Accessed March 27, 2022].
[17]
Armstrong, A.W.; Read, C. Pathophysiology, clinical presentation, and treatment of psoriasis. JAMA, 2020, 323(19), 1945-1960.
[http://dx.doi.org/10.1001/jama.2020.4006] [PMID: 32427307]
[18]
Tsoi, L.C.; Stuart, P.E.; Tian, C. Large scale meta-analysis characterizes genetic architecture for common psoriasis associated variants. Nat Commun 2017, 2017, 8(1), 1-8.
[http://dx.doi.org/10.1038/ncomms15382]
[19]
Di Meglio, P.; Villanova, F.; Nestle, F.O. Psoriasis. Cold Spring Harb. Perspect. Med., 2014, 4(8), a015354.
[http://dx.doi.org/10.1101/cshperspect.a015354] [PMID: 25085957]
[20]
Navarini, A.A.; Burden, A.D.; Capon, F.; Mrowietz, U.; Puig, L.; Köks, S.; Kingo, K.; Smith, C.; Barker, J.N. European consensus state-ment on phenotypes of pustular psoriasis. J. Eur. Acad. Dermatol. Venereol., 2017, 31(11), 1792-1799.
[http://dx.doi.org/10.1111/jdv.14386] [PMID: 28585342]
[21]
Liao, W.; Singh, R.; Lee, K.; ucmak, ; Brodsky, M.; Atanelov, Z.; Farahnik, B.; Abrouk, M.; Nakamura, M.; Hao Zhu, T. Erythrodermic psoriasis: Pathophysiology and current treatment perspectives. Psoriasis, 2016, 6, 93-104.
[http://dx.doi.org/10.2147/PTT.S101232] [PMID: 28856115]
[22]
Teran, C.G.; Teran-Escalera, C.N.; Balderrama, C. A severe case of erythrodermic psoriasis associated with advanced nail and joint mani-festations: A case report. J. Med. Case Reports, 2010, 4(1), 179.
[http://dx.doi.org/10.1186/1752-1947-4-179] [PMID: 20550707]
[23]
Rosenbach, M.; Hsu, S.; Korman, N.J.; Lebwohl, M.G.; Young, M.; Bebo, B.F., Jr; Van Voorhees, A.S. Treatment of erythrodermic psori-asis: From the medical board of the national psoriasis foundation. J. Am. Acad. Dermatol., 2010, 62(4), 655-662.
[http://dx.doi.org/10.1016/j.jaad.2009.05.048] [PMID: 19665821]
[24]
Haneke, E. Nail psoriasis: Clinical features, pathogenesis, differential diagnoses, and management. Psoriasis, 2017, 7, 51-63.
[http://dx.doi.org/10.2147/PTT.S126281] [PMID: 29387608]
[25]
Salomon, J.; Szepietowski, J.C.; Proniewicz, A. Psoriatic nails: A prospective clinical study. J. Cutan. Med. Surg., 2003, 7(4), 317-321.
[http://dx.doi.org/10.1007/s10227-002-0143-0] [PMID: 12879333]
[26]
Sobolewski, P.; Walecka, I.; Dopytalska, K. Nail involvement in psoriatic arthritis. Reumatologia, 2017, 3(3), 131-135.
[http://dx.doi.org/10.5114/reum.2017.68912] [PMID: 28769136]
[27]
Micali, G.; Verzì, A.E.; Giuffrida, G.; Panebianco, E.; Musumeci, M.L.; Lacarrubba, F. Inverse psoriasis: From diagnosis to current treat-ment options. Clin. Cosmet. Investig. Dermatol., 2020, 12, 953-959.
[http://dx.doi.org/10.2147/CCID.S189000] [PMID: 32099435]
[28]
Reynolds, K.A.; Pithadia, D.J.; Lee, E.B.; Wu, J.J. Treatments for inverse psoriasis: A systematic review. J. Dermatolog. Treat., 2020, 31(8), 786-793.
[http://dx.doi.org/10.1080/09546634.2019.1620912] [PMID: 31100992]
[29]
Janagond, A.B.; Kanwar, A.J.; Handa, S. Efficacy and safety of systemic methotrexate vs. acitretin in psoriasis patients with significant palmoplantar involvement: A prospective, randomized study. J. Eur. Acad. Dermatol. Venereol., 2013, 27(3), e384-e389.
[http://dx.doi.org/10.1111/jdv.12004] [PMID: 23066720]
[30]
Krulig, E.; Gordon, K.B. Palmoplantar psoriasis. Mild-to-moderate psoriasis 183-195.
[http://dx.doi.org/10.3109/9781841847153.013]
[31]
Raychaudhuri, S.P.; Gross, J. A comparative study of pediatric onset psoriasis with adult onset psoriasis. Pediatr. Dermatol., 2000, 17(3), 174-178.
[http://dx.doi.org/10.1046/j.1525-1470.2000.01746.x] [PMID: 10886746]
[32]
Wang, T.S.; Tsai, T.F. Managing scalp psoriasis: An evidence-based review. Am. J. Clin. Dermatol., 2017, 18(1), 17-43.
[http://dx.doi.org/10.1007/s40257-016-0222-4] [PMID: 27650520]
[33]
de Alcantara, C.C.; Reiche, E.M.V.; Simão, A.N.C. Cytokines in psoriasis. Adv. Clin. Chem., 2021, 100, 171-204.
[http://dx.doi.org/10.1016/bs.acc.2020.04.004] [PMID: 33453865]
[34]
Cacabelos, R. Pathoepigenetics: The role of epigenetic biomarkers in disease pathogenesis. Pharmacoepigenetics; Elsevier, 2019, pp. 139-189.
[http://dx.doi.org/10.1016/B978-0-12-813939-4.00005-X]
[35]
Frank Nestle, P.O.; Kaplan, D.H.; Barker J Psoriasis, 2009, 361(5), 496-509.
[36]
Lowes, M.A.; Russell, C.B.; Martin, D.A.; Towne, J.E.; Krueger, J.G. The IL-23/T17 pathogenic axis in psoriasis is amplified by keratino-cyte responses. Trends Immunol., 2013, 34(4), 174-181.
[http://dx.doi.org/10.1016/j.it.2012.11.005] [PMID: 23291100]
[37]
Albanesi, C.; Madonna, S.; Gisondi, P.; Girolomoni, G. The interplay between keratinocytes and immune cells in the pathogenesis of psoriasis. Front. Immunol., 2018, 9(JUL), 1549.
[http://dx.doi.org/10.3389/fimmu.2018.01549] [PMID: 30034395]
[38]
Quintero-Fabián, S.; Arreola, R.; Becerril-Villanueva, E.; Torres-Romero, J.C.; Arana-Argáez, V.; Lara-Riegos, J.; Ramírez-Camacho, M.A.; Alvarez-Sánchez, M.E. Role of matrix metalloproteinases in angiogenesis and cancer. Front. Oncol., 2019, 9, 1370.
[http://dx.doi.org/10.3389/fonc.2019.01370] [PMID: 31921634]
[39]
Ortonne, J.P. Recent developments in the understanding of the pathogenesis of psoriasis. Br. J. Dermatol., 1999, 54(S140), 1-7.
[http://dx.doi.org/10.1046/j.1365-2133.1999.140S54001.x]
[40]
Zeng, J.; Zhang, Y.; Zhang, H.; Zhang, Y.; Gao, L.; Tong, X.; Xie, Y.; Hu, Q.; Chen, C.; Ding, S.; Lu, J. RPL22 overexpression promotes psoriasis-like lesion by inducing keratinocytes abnormal biological behavior. Front. Immunol., 2021, 12, 699900.
[http://dx.doi.org/10.3389/fimmu.2021.699900] [PMID: 34220863]
[41]
Liu, Y.; Krueger, J.G.; Bowcock, A.M. Psoriasis: Genetic associations and immune system changes. Genes Immun., 2007, 8(1), 1-12.
[http://dx.doi.org/10.1038/sj.gene.6364351] [PMID: 17093502]
[42]
Hodak, E.; Gottlieb, A.B.; Anzilotti, M.; Krueger, J.G. The insulin-like growth factor 1 receptor is expressed by epithelial cells with prolif-erative potential in human epidermis and skin appendages: Correlation of increased expression with epidermal hyperplasia. J. Invest. Dermatol., 1996, 106(3), 564-570.
[http://dx.doi.org/10.1111/1523-1747.ep12344044] [PMID: 8648195]
[43]
Krane, J.F.; Gottlieb, A.B.; Carter, D.M.; Krueger, J.G. The insulin-like growth factor I receptor is overexpressed in psoriatic epidermis, but is differentially regulated from the epidermal growth factor receptor. J. Exp. Med., 1992, 175(4), 1081-1090.
[http://dx.doi.org/10.1084/jem.175.4.1081] [PMID: 1313074]
[44]
Detmar, M.; Velasco, P.; Richard, L.; Claffey, K.P.; Streit, M.; Riccardi, L.; Skobe, M.; Brown, L.F. Expression of vascular endothelial growth factor induces an invasive phenotype in human squamous cell carcinomas. Am. J. Pathol., 2000, 156(1), 159-167.
[http://dx.doi.org/10.1016/S0002-9440(10)64715-3] [PMID: 10623663]
[45]
Lowes, M.A.; Bowcock, A.M.; Krueger, J.G. Pathogenesis and therapy of psoriasis. Nature, 2007, 445(7130), 866-873.
[http://dx.doi.org/10.1038/nature05663] [PMID: 17314973]
[46]
Johnson-Huang, L.M.; Lowes, M.A.; Krueger, J.G. Putting together the psoriasis puzzle: An update on developing targeted therapies. Dis. Model. Mech., 2012, 5(4), 423-433.
[http://dx.doi.org/10.1242/dmm.009092] [PMID: 22730473]
[47]
Wrone-Smith, T.; Nickoloff, B.J. Dermal injection of immunocytes induces psoriasis. J. Clin. Invest., 1996, 98(8), 1878-1887.
[http://dx.doi.org/10.1172/JCI118989] [PMID: 8878440]
[48]
Cai, Y; Fleming, C; Yan, J. New insights of T cells in the pathogenesis of psoriasis. Cell Mol Immunol 2012, 2012, 9(4), 302-309.
[http://dx.doi.org/10.1038/cmi.2012.15]
[49]
Norris, D.A.; Kotzin, B.L.; Lin, W-J.; Achziger, M.; Tomkinson, B. Oligoclonal expansion of intraepidermal T cells in psoriasis skin le-sions. J. Invest. Dermatol., 2001, 117(6), 1546-1553.
[http://dx.doi.org/10.1046/j.0022-202x.2001.01548.x] [PMID: 11886521]
[50]
Behrendt, C.; Gollnick, H.; Bonnekoh, B. Up-regulated perforin expression of CD8+ blood lymphocytes in generalized nonanaphylactic drug eruptions and exacerbated psoriasis. Eur. J. Dermatol., 10(5), 365-369. Available from: https://www.researchgate. net/publication/12436024_Upregulated_perforin_expression_of_CD8_blood_lymphocytes_in_generalized_non-anaphylactic_drug_eruptions_and_exacerbated_psoriasis [Accessed March 29, 2022].
[51]
Durán-Lobato, M.; López-Estévez, A.M.; Cordeiro, A.S.; Dacoba, T.G.; Crecente-Campo, J.; Torres, D.; Alonso, M.J. Nanotechnologies for the delivery of biologicals: Historical perspective and current landscape. Adv. Drug Deliv. Rev., 2021, 176, 113899.
[http://dx.doi.org/10.1016/j.addr.2021.113899] [PMID: 34314784]
[52]
Mitragotri, S.; Burke, P.A.; Langer, R. Overcoming the challenges in administering biopharmaceuticals: Formulation and delivery strate-gies. Nat. Rev. Drug Discov., 2014, 13(9), 655-672.
[http://dx.doi.org/10.1038/nrd4363] [PMID: 25103255]
[53]
Alonso, M.J.; Couvreur, P. In: Historical view of the design and development of nanocarriers for overcoming biological barriers; Maria, J.A.; Noemi, S.C., Eds.; Royal Society Of Chemistry, pp.3-36.
[http://dx.doi.org/10.1039/9781849735292-00003]
[54]
Mishra, D.K.; Pandey, V.; Maheshwari, R.; Ghode, P. Tekade, RK Basic Fundam. Drug Deliv., 1773, 595-650.
[http://dx.doi.org/10.1016/B978-0-12-817909-3.00015-7]
[55]
Chiang, A.; Tudela, E.; Maibach, H.I. Percutaneous absorption in diseased skin: An overview. J. Appl. Toxicol., 2012, 32(8), 537-563.
[http://dx.doi.org/10.1002/jat.1773] [PMID: 22912973]
[56]
Rahman, M.; Akhter, S.; Ahmad, J.; Ahmad, M.Z.; Beg, S.; Ahmad, F.J. Nanomedicine-based drug targeting for psoriasis: Potentials and emerging trends in nanoscale pharmacotherapy. Expert Opin. Drug Deliv., 2015, 12(4), 635-652.
[http://dx.doi.org/10.1517/17425247.2015.982088] [PMID: 25439967]
[57]
Rawat, M.; Singh, D.; Saraf, S.; Saraf, S. Nanocarriers: Promising vehicle for bioactive drugs. Biol. Pharm. Bull., 2006, 29(9), 1790-1798.
[http://dx.doi.org/10.1248/bpb.29.1790] [PMID: 16946487]
[58]
Singh, D.; Pradhan, M.; Nag, M.; Singh, M.R. Vesicular system: Versatile carrier for transdermal delivery of bioactives. Artif. Cells Nanomed. Biotechnol., 2015, 43(4), 282-290.
[http://dx.doi.org/10.3109/21691401.2014.883401] [PMID: 24564350]
[59]
Goyal, R.; Macri, L.K.; Kaplan, H.M.; Kohn, J. Nanoparticles and nanofibers for topical drug delivery. J. Control. Release, 2016, 240, 77-92.
[http://dx.doi.org/10.1016/j.jconrel.2015.10.049] [PMID: 26518723]
[60]
Wen, H.; Jung, H.; Li, X. Drug delivery approaches in addressing clinical pharmacology-related issues: Opportunities and challenges. AAPS J., 2015, 17(6), 1327-1340.
[http://dx.doi.org/10.1208/s12248-015-9814-9] [PMID: 26276218]
[61]
Rawat Singh, M.; Pradhan, K.; Singh, D. Lipid matrix systems with emphasis on lipid microspheres: Potent carriers for transcutaneous delivery of bioactives. Curr. Drug Deliv., 2012, 9(3), 243-254.
[http://dx.doi.org/10.2174/156720112800389124] [PMID: 22283658]
[62]
Touitou, E.; Junginger, H.E.; Weiner, N.D.; Nagai, T.; Mezei, M. Liposomes as carriers for topical and transdermal delivery. J. Pharm. Sci., 1994, 83(9), 1189-1203.
[http://dx.doi.org/10.1002/jps.2600830902] [PMID: 7830230]
[63]
Dacoba, T.G.; Olivera, A.; Torres, D.; Crecente-Campo, J.; Alonso, M.J. Modulating the immune system through nanotechnology. Semin. Immunol., 2017, 34, 78-102.
[http://dx.doi.org/10.1016/j.smim.2017.09.007] [PMID: 29032891]
[64]
Bakshi, H.; Nagpal, M.; Singh, M.; Dhingra, G.A.; Aggarwal, G. Treatment of psoriasis: A comprehensive review of entire therapies. Curr. Drug Saf., 2020, 15(2), 82-104.
[http://dx.doi.org/10.2174/22123911MTAziOTU84] [PMID: 31994468]
[65]
Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; Habtemariam, S.; Shin, H-S. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnology, 2018, 16(1), 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 29321058]
[66]
Tiwari, G.; Tiwari, R.; Bannerjee, S.K.; Bhati, L.; Pandey, S.; Pandey, P.; Sriwastawa, B. Drug delivery systems: An updated review. Int. J. Pharm. Investig., 2012, 2(1), 2-11.
[http://dx.doi.org/10.4103/2230-973X.96920] [PMID: 23071954]
[67]
Güngör, S.; Kahraman, E. Nanocarriers mediated cutaneous drug delivery. Eur. J. Pharm. Sci., 2021, 158, 105638.
[http://dx.doi.org/10.1016/j.ejps.2020.105638] [PMID: 33176190]
[68]
García-Pinel, B.; Porras-Alcalá, C.; Ortega-Rodríguez, A.; Sarabia, F.; Prados, J.; Melguizo, C.; López-Romero, J.M. Lipid-based nanopar-ticles: Application and recent advances in cancer treatment. Nanomaterials, 2019, 9(4), 638.
[http://dx.doi.org/10.3390/nano9040638] [PMID: 31010180]
[69]
Singh, S.; Sharma, N.; Behl, T.; Sarkar, B.C.; Saha, H.R.; Garg, K.; Singh, S.K.; Arora, S.; Amran, M.S.; Abdellatif, A.A.H.; Bilgrami, A.L.; Ashraf, G.M.; Rahman, M.S. Promising strategies of colloidal drug delivery-based approaches in psoriasis management. Pharmaceutics, 2021, 13(11), 1978.
[http://dx.doi.org/10.3390/pharmaceutics13111978] [PMID: 34834393]
[70]
Chacko, I.A.; Ghate, V.M.; Dsouza, L.; Lewis, S.A. Lipid vesicles: A versatile drug delivery platform for dermal and transdermal applica-tions. Colloids Surf. B Biointerfaces, 2020, 195, 111262.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111262] [PMID: 32736123]
[71]
Jain, S.; Patel, N.; Shah, M.K.; Khatri, P.; Vora, N. Recent advances in lipid-based vesicles and particulate carriers for topical and trans-dermal application. J. Pharm. Sci., 2017, 106(2), 423-445.
[http://dx.doi.org/10.1016/j.xphs.2016.10.001] [PMID: 27865609]
[72]
Rajpoot, K. Solid lipid nanoparticles: A promising nanomaterial in drug delivery. Curr. Pharm. Des., 2019, 25(37), 3943-3959.
[http://dx.doi.org/10.2174/1381612825666190903155321] [PMID: 31481000]
[73]
Rawat, M.; Singh, D.; Saraf, S.; Saraf, S. Lipid carriers: A versatile delivery vehicle for proteins and peptides. Yakugaku Zasshi, 2008, 128(2), 269-280.
[http://dx.doi.org/10.1248/yakushi.128.269] [PMID: 18239375]
[74]
Iqbal, M.A.; Md, S.; Sahni, J.K.; Baboota, S.; Dang, S.; Ali, J. Nanostructured lipid carriers system: Recent advances in drug delivery. J. Drug Target., 2012, 20(10), 813-830.
[http://dx.doi.org/10.3109/1061186X.2012.716845] [PMID: 22931500]
[75]
Azad, S.; Meeravali, S.N.; Babu, P.C.; Kumar, K.R.; Naik, V.; Vasu, N. Micro emulsions: An overview and pharmaceutical applications. World Journal of Current Medical and Pharmaceutical Research, 2020, 2(2), 201-205.
[http://dx.doi.org/10.37022/WJCMPR.2020.2222]
[76]
Aghabegi Moghanjoughi, A.; Khoshnevis, D.; Zarrabi, A. A concise review on smart polymers for controlled drug release. Drug Deliv. Transl. Res., 2016, 6(3), 333-340.
[http://dx.doi.org/10.1007/s13346-015-0274-7] [PMID: 26744179]
[77]
Araste, F.; Aliabadi, A.; Abnous, K.; Taghdisi, S.M.; Ramezani, M.; Alibolandi, M. Self-assembled polymeric vesicles: Focus on poly-mersomes in cancer treatment. J. Control. Release, 2021, 330, 502-528.
[http://dx.doi.org/10.1016/j.jconrel.2020.12.027] [PMID: 33358973]
[78]
Tripathi, P.K.; Gorain, B.; Choudhury, H.; Srivastava, A.; Kesharwani, P. Dendrimer entrapped microsponge gel of dithranol for effective topical treatment. Heliyon, 2019, 5(3), e01343.
[http://dx.doi.org/10.1016/j.heliyon.2019.e01343] [PMID: 30957038]
[79]
Carino, G.P.; Jacob, J.S.; Mathiowitz, E. Nanosphere based oral insulin delivery. J. Control. Release, 2000, 65(1-2), 261-269.
[http://dx.doi.org/10.1016/S0168-3659(99)00247-3] [PMID: 10699286]
[80]
Letchford, K.; Burt, H. A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes. Eur. J. Pharm. Biopharm., 2007, 65(3), 259-269.
[http://dx.doi.org/10.1016/j.ejpb.2006.11.009] [PMID: 17196803]
[81]
Erdoğar, N.; Akkın, S.; Bilensoy, E. Nanocapsules for drug delivery: An updated review of the last decade. Recent Pat. Drug Deliv. Formul., 2019, 12(4), 252-266.
[http://dx.doi.org/10.2174/1872211313666190123153711] [PMID: 30674269]
[82]
Daraee, H.; Etemadi, A.; Kouhi, M.; Alimirzalu, S.; Akbarzadeh, A. Application of liposomes in medicine and drug delivery. An. Interna-tional J., 2014, 44(1), 381-391. Available from: https://www.tandfonline.com/doi/full/10.3109/21691401.2014.953633 [Accessed April 2, 2022].
[83]
Bozzuto, G.; Molinari, A. Liposomes as nanomedical devices. Int. J. Nanomedicine, 2015, 10, 975-999.
[http://dx.doi.org/10.2147/IJN.S68861] [PMID: 25678787]
[84]
Daraee, H.; Etemadi, A.; Kouhi, M.; Alimirzalu, S.; Akbarzadeh, A. Application of liposomes in medicine and drug delivery. An. Int. J., 2014, 44(1), 381-391.
[85]
Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S.W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K. Liposome: Classification, preparation, and applications. Nanoscale Res. Lett., 2013, 8(1), 102.
[http://dx.doi.org/10.1186/1556-276X-8-102] [PMID: 23432972]
[86]
Shaw, T.K.; Khamkat, P.; Ghosh, A.; Ghosh, M.K. Nanotargeted radiopharmaceuticals for cancer theranostics.Academic Press, 2021, pp. Multifunct Theranostic Nanomedicines Cancer; 251-273.
[http://dx.doi.org/10.1016/B978-0-12-821712-2.00002-5]
[87]
Liposomes in drug-delivery. (A) Unilamellar vesicles of increasing. Download Scientific Diagram. Available from: https://www.researchgate.net/figure/Liposomes-in-drug-delivery-A-Unilamellar-vesicles-of-increasing-size-SUV-LUV-and_fig2_319530068 [Accessed April 2, 2022].
[88]
Yeh, M.K.; Hsin, I.C.; Ming, Y.C. Clinical development of liposome based drugs: Formulation, characterization, and therapeutic efficacy. Int. J. Nanomedicine, 2011, 7, 49-60.
[http://dx.doi.org/10.2147/IJN.S26766] [PMID: 22275822]
[89]
Lee, Y.; Thompson, D.H. Stimuli-responsive liposomes for drug delivery. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2017, 9(5), wnan.1450.
[http://dx.doi.org/10.1002/wnan.1450] [PMID: 28198148]
[90]
Siler-Marinkovic, S. Liposomes as drug delivery systems in dermal and transdermal drug delivery.Percutaneous Penetration Enhanc Chem Methods Penetration Enhanc Nanocarriers; Springer, Berlin, Heidelberg, pp. 15-38
[http://dx.doi.org/10.1007/978-3-662-47862-2_2]
[91]
Souto, E.B.; Macedo, A.S.; Dias-Ferreira, J.; Cano, A.; Zielińska, A.; Matos, C.M. Elastic and ultradeformable liposomes for transdermal delivery of active pharmaceutical ingredients (APIs). Int. J. Mol. Sci., 2021, 22(18), 9743.
[http://dx.doi.org/10.3390/ijms22189743] [PMID: 34575907]
[92]
Yu, Y.Q.; Yang, X.; Wu, X.F.; Fan, Y.B. Enhancing permeation of drug molecules across the skin via delivery in nanocarriers: Novel strategies for effective transdermal applications. Front. Bioeng. Biotechnol., 2021, 9, 646554.
[http://dx.doi.org/10.3389/fbioe.2021.646554] [PMID: 33855015]
[93]
Yingchoncharoen, P.; Kalinowski, D.S.; Richardson, D.R. Lipid-based drug delivery systems in cancer therapy: What is available and what is yet to come. Pharmacol. Rev., 2016, 68(3), 701-787.
[http://dx.doi.org/10.1124/pr.115.012070] [PMID: 27363439]
[94]
Knudsen, N.Ø.; Rønholt, S.; Salte, R.D.; Jorgensen, L.; Thormann, T.; Basse, L.H.; Hansen, J.; Frokjaer, S.; Foged, C. Calcipotriol delivery into the skin with PEGylated liposomes. Eur. J. Pharm. Biopharm., 2012, 81(3), 532-539.
[http://dx.doi.org/10.1016/j.ejpb.2012.04.005] [PMID: 22538098]
[95]
Bahramizadeh, M.; Bahramizadeh, M.; Kiafar, B.; Jafarian, A.H.; Nikpoor, A.R.; Hatamipour, M.; Esmaily, H.; Rezaeemehr, Z.; Golmo-hammadzadeh, S.; Moosavian, S.A.; Jafari, M.R. Development, characterization and evaluation of topical methotrexate-entrapped deform-able liposome on imiquimod-induced psoriasis in a mouse model. Int. J. Pharm., 2019, 569(5), 118623.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118623] [PMID: 31419462]
[96]
Trotta, M.; Peira, E.; Carlotti, M.E.; Gallarate, M. Deformable liposomes for dermal administration of methotrexate. Int. J. Pharm., 2004, 270(1-2), 119-125.
[http://dx.doi.org/10.1016/j.ijpharm.2003.10.006] [PMID: 14726128]
[97]
Agarwal, R; Saraswat, A; Kaur, I.A. 2002 lipossomas psoríase. 2002, 29(8), 529-532.
[98]
Mezei, M.; Gulasekharam, V. Liposomes-A selective drug delivery system for the topical route of administration: Gel dosage form. J. Pharm. Pharmacol., 2011, 34(7), 473-474.
[http://dx.doi.org/10.1111/j.2042-7158.1982.tb04767.x] [PMID: 6126554]
[99]
Wadhwa, S.; Singh, B.; Sharma, G.; Raza, K.; Katare, O.P. Liposomal fusidic acid as a potential delivery system: A new paradigm in the treatment of chronic plaque psoriasis. Drug Deliv., 2016, 23(4), 1204-1213.
[http://dx.doi.org/10.3109/10717544.2015.1110845] [PMID: 26592918]
[100]
Walunj, M.; Doppalapudi, S.; Bulbake, U.; Khan, W. Preparation, characterization, and in vivo evaluation of cyclosporine cationic lipo-somes for the treatment of psoriasis. J. Liposome Res., 2020, 30(1), 68-79.
[http://dx.doi.org/10.1080/08982104.2019.1593449] [PMID: 30897993]
[101]
Doppalapudi, S.; Jain, A.; Chopra, D.K.; Khan, W. Psoralen loaded liposomal nanocarriers for improved skin penetration and efficacy of topical PUVA in psoriasis. Eur. J. Pharm. Sci., 2017, 96, 515-529.
[http://dx.doi.org/10.1016/j.ejps.2016.10.025] [PMID: 27777066]
[102]
Cavaco-Paulo, A. Development of liposomes-in-hydrogel formulations containing betamethasone for topical therapy. Cytokines. Their Relation with Mineral Dust Induced Diseases, 2017, 1(1), 1-8.
[http://dx.doi.org/10.24966/PPP-5649/100005]
[103]
Wang, W.; Shu, G.; Lu, K.; Xu, X.; Sun, M.; Qi, J.; Huang, Q.; Tan, W.; Du, Y. Flexible liposomal gel dual-loaded with all-trans retinoic acid and betamethasone for enhanced therapeutic efficiency of psoriasis. J. Nanobiotechnology, 2020, 18(1), 80.
[http://dx.doi.org/10.1186/s12951-020-00635-0] [PMID: 32448273]
[104]
Bhatia, A.; Kumar, R.; Katare, O.P. Tamoxifen in topical liposomes: development, characterization and in-vitro evaluation. J. Pharm. Sci., 2004, 7(2), 252-259. Available from: https://pubmed.ncbi.nlm.nih.gov/15367383/ [Accessed April 3,2022].
[105]
Topical Application of Yolk Lecithin Liposomes Reinforces Skin Barrier Function Against Chemical Agents Such as Psoriasisinducing IMQ and Alleviates Disease Phenotype. Available from: https://www.gavinpublishers.com/article/view/topical-application-of-yolk-lecithin-liposomes-reinforces-skin-barrier-function-against-chemical-agents-such-as-psoriasis-inducing-imq-and-alleviates-disease-phenotype [Accessed April 3, 2022].
[106]
Jain, S.; Addan, R.; Kushwah, V.; Harde, H.; Mahajan, R.R. Comparative assessment of efficacy and safety potential of multifarious lipid based Tacrolimus loaded nanoformulations. Int. J. Pharm., 2019, 562(562), 96-104.
[http://dx.doi.org/10.1016/j.ijpharm.2019.03.042] [PMID: 30902706]
[107]
Gupta, R.; Gupta, M.; Mangal, S.; Agrawal, U.; Vyas, S.P. Capsaicin-loaded vesicular systems designed for enhancing localized delivery for psoriasis therapy. Artif. Cells Nanomed. Biotechnol., 2014, 44(3), 1-10.
[http://dx.doi.org/10.3109/21691401.2014.984301] [PMID: 25465045]
[108]
Kim, W.B.; Jerome, D.; Yeung, J. Diagnosis and management of psoriasis. Can. Fam. Physician, 2017, 63(4), 278.
[109]
Firouzi, P.T.; Krueger, G.G. Efficacy and safety of treatment modalities for psoriasis. Cutis, 1998, 61(2 suppl), 11-21. Available from: https://pubmed.ncbi.nlm.nih.gov/9787987/ [Accessed April 3, 2022].
[110]
Dopytalska, K.; Sobolewski, P.; Błaszczak, A.; Szymańska, E.; Walecka, I. Psoriasis in special localizations. Reumatologia, 2018, 56(6), 392-398.
[http://dx.doi.org/10.5114/reum.2018.80718] [PMID: 30647487]
[111]
Choi, J.W.; Kim, B.R.; Youn, S.W. Adherence to topical therapies for the treatment of psoriasis: Surveys of physicians and patients. Ann. Dermatol., 2017, 29(5), 559-564.
[http://dx.doi.org/10.5021/ad.2017.29.5.559] [PMID: 28966511]
[112]
Wong, T.; Hsu, L.; Liao, W. Phototherapy in psoriasis: A review of mechanisms of action. J. Cutan. Med. Surg., 2013, 17(1), 6-12.
[http://dx.doi.org/10.2310/7750.2012.11124] [PMID: 23364144]
[113]
Gisondi, P.; Girolomoni, G.; Girolomoni, G. Treatment approaches to moderate to severe psoriasis. Int. J. Mol. Sci., 2017, 18(11), 2427.
[http://dx.doi.org/10.3390/ijms18112427] [PMID: 29144382]
[114]
Singh, A.P.; Biswas, A.; Shukla, A.; Maiti, P. Targeted therapy in chronic diseases using nanomaterial-based drug delivery vehicles. Signal Transduct. Target. Ther., 2019, 4(1), 1-21.
[http://dx.doi.org/10.1038/s41392-019-0068-3]
[115]
Patra, J.K.; Das, G.; Fraceto, L.F. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnol, 2018, 16(1), 1-33.
[http://dx.doi.org/10.1186/s12951-018-0392-8]
[116]
Chaturvedi, S.; Garg, A.; Verma, A. Nano lipid based carriers for lymphatic voyage of anti-cancer drugs: An insight into the in-vitro, ex-vivo, in-situ and in-vivo study models. J. Drug Deliv. Sci. Technol., 2020, 59(101899), 101899.
[http://dx.doi.org/10.1016/j.jddst.2020.101899]
[117]
Garg, A.; Chaturvedi, S. A comprehensive review on chrysin: Emphasis on molecular targets, pharmacological actions and bio-pharmaceutical aspects. Curr. Drug Targets, 2022, 23(4), 420-436.
[http://dx.doi.org/10.2174/1389450122666210824141044] [PMID: 34431464]
[118]
Rizwanullah, M.; Ahmad, M.Z.; Garg, A.; Ahmad, J. Advancement in design of nanostructured lipid carriers for cancer targeting and theranostic application. Biochim. Biophys. Acta, Gen. Subj., 2021, 1865(9), 129936.
[http://dx.doi.org/10.1016/j.bbagen.2021.129936] [PMID: 34058266]
[119]
Rahman, M.A.; Shakeel, K.; Ahmad, F.J.; Harwansh, R.K. β-Artemether and lumefantrine dual drug loaded lipid nanoparticles: Physico-chemical characterization, pharmacokinetic evaluation and biodistribution study. Pharm. Nanotechnol., 2022, 10(3), 210-219.
[http://dx.doi.org/10.2174/2211738510666220428133532] [PMID: 36029070]
[120]
Pierre, M.B.R.; dos Santos Miranda Costa, I. Liposomal systems as drug delivery vehicles for dermal and transdermal applications. Arch. Dermatol. Res., 2011, 303(9), 607-621.
[http://dx.doi.org/10.1007/s00403-011-1166-4] [PMID: 21805180]
[121]
Bocheńska, K.; Smolińska, E.; Moskot, M.; Jakóbkiewicz-Banecka, J.; Gabig-Cimińska, M. Models in the research process of psoriasis. Int. J. Mol. Sci., 2017, 18(12), 2514.
[http://dx.doi.org/10.3390/ijms18122514] [PMID: 29186769]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy