Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Nanocarriers and Diabetes: New Vistas and the Way Ahead

Author(s): Pankaj V. Dixit, Dinesh K. Mishra*, Sanjay Sharma and Rupesh K. Gautam*

Volume 24, Issue 11, 2023

Published on: 20 January, 2023

Page: [1420 - 1429] Pages: 10

DOI: 10.2174/1389201024666221227140728

Price: $65

Abstract

World Health Organization has reported an estimated 1.5 million deaths directly due to diabetes in 2019. Center for Disease Control and Prevention, in its National Diabetes Statistics Report, 2020, says that 1 in 10 United States residents has diabetes. This rapid progression of diabetes is noteworthy despite significant advances in the field of antidiabetic medicine. The critical challenges in treatment are dyslipidemia, hyperinsulinemia, and hyperglycemia. The latest research has also linked diabetes to carcinogenesis. The diabetic condition accelerates cell growth, proliferation, migration, inflammation, angiogenesis, metastasis, and inhibition of apoptosis in cancer cells. In addition, diabetic complications of nephropathy, retinopathy, neuropathy, cardiomyopathy, peripheral arterial disease, coronary artery disease, and stroke increase morbidity. Amidst all these challenges, a ray of hope is the advent of nanocarriers. The nano size helps in the targeted and controlled delivery of drugs. In addition, nanocarrier formulation helps in the delivery of acid-labile and enzyme- labile molecules and plant-based macromolecules via the oral route. Its use in the form of dendrimers, ethosomes, niosomes, transfersomes, and polymeric nanoparticles is established. In addition, different polymers used to formulate nanocarriers are also established for targeting diabetes. Thus, this review aims to compile approaches involving the use of nanocarriers for the betterment of pharmacotherapy of diabetes and to provide a way ahead for researchers in the field.

Keywords: Hypoglycemic agents, liposomes, ethosomes, niosomes, transfersomes, dendrimers, cancer, diabetic complications.

Graphical Abstract
[1]
Rai, V.K.; Mishra, N.; Agrawal, A.K.; Jain, S.; Yadav, N.P. Novel drug delivery system: An immense hope for diabetics. Drug Deliv., 2016, 23(7), 2371-2390.
[http://dx.doi.org/10.3109/10717544.2014.991001] [PMID: 25544604]
[2]
Veiseh, O.; Tang, B.C.; Whitehead, K.A.; Anderson, D.G.; Langer, R. Managing diabetes with nanomedicine: Challenges and opportuni-ties. Nat. Rev. Drug Discov., 2015, 14(1), 45-57.
[http://dx.doi.org/10.1038/nrd4477] [PMID: 25430866]
[3]
Moghassemi, S.; Hadjizadeh, A. Nano-niosomes as nanoscale drug delivery systems: An illustrated review. J. Control. Release, 2014, 185, 22-36.
[http://dx.doi.org/10.1016/j.jconrel.2014.04.015] [PMID: 24747765]
[4]
Poudwal, S.; Misra, A.; Shende, P. Role of lipid nanocarriers for enhancing oral absorption and bioavailability of insulin and GLP-1 re-ceptor agonists. J. Drug Target., 2021, 29(8), 834-847.
[http://dx.doi.org/10.1080/1061186X.2021.1894434] [PMID: 33620269]
[5]
Lee, J.S.; Han, P.; Chaudhury, R.; Khan, S.; Bickerton, S.; McHugh, M.D.; Park, H.B.; Siefert, A.L.; Rea, G.; Carballido, J.M.; Horwitz, D.A.; Criscione, J.; Perica, K.; Samstein, R.; Ragheb, R.; Kim, D.; Fahmy, T.M. Metabolic and immunomodulatory control of type 1 diabe-tes via orally delivered bile-acid-polymer nanocarriers of insulin or rapamycin. Nat. Biomed. Eng., 2021, 5(9), 983-997.
[http://dx.doi.org/10.1038/s41551-021-00791-0] [PMID: 34616050]
[6]
Misra, P.; Upadhyay, R.P.; Misra, A.; Anand, K. A review of the epidemiology of diabetes in rural India. Diabetes Res. Clin. Pract., 2011, 92(3), 303-311.
[http://dx.doi.org/10.1016/j.diabres.2011.02.032] [PMID: 21458875]
[7]
Ensign, L.M.; Cone, R.; Hanes, J. Oral drug delivery with polymeric nanoparticles: The gastrointestinal mucus barriers. Adv. Drug Deliv. Rev., 2012, 64(6), 557-570.
[http://dx.doi.org/10.1016/j.addr.2011.12.009] [PMID: 22212900]
[8]
Tuomilehto, J.; Lindström, J.; Eriksson, J.G.; Valle, T.T.; Hämäläinen, H.; Ilanne-Parikka, P.; Keinänen-Kiukaanniemi, S.; Laakso, M.; Louheranta, A.; Rastas, M.; Salminen, V.; Aunola, S.; Cepaitis, Z.; Moltchanov, V.; Hakumäki, M.; Mannelin, M.; Martikkala, V.; Sundvall, J.; Uusitupa, M. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N. Engl. J. Med., 2001, 344(18), 1343-1350.
[http://dx.doi.org/10.1056/NEJM200105033441801] [PMID: 11333990]
[9]
Padhi, S.; Nayak, A.K.; Behera, A. Type II diabetes mellitus: A review on recent drug based therapeutics. Biomed. Pharmacother., 2020, 131110708
[http://dx.doi.org/10.1016/j.biopha.2020.110708] [PMID: 32927252]
[10]
Shoaib, A.; Azmi, L.; Pal, S.; Alqahtani, S.S.; Rahamathulla, M.; Hani, U.; Alshehri, S.; Ghoneim, M.M.; Shakeel, F. Integrating nanotech-nology with naturally occurring phytochemicals in neuropathy induced by diabetes. J. Mol. Liq., 2021, 350118189
[11]
Yu, B.; Li, C.; Sun, Y.; Wang, D.W. Insulin treatment is associated with increased mortality in patients with COVID-19 and type 2 diabe-tes. Cell Metab., 2021, 33(1), 65-77.
[http://dx.doi.org/10.1016/j.cmet.2020.11.014] [PMID: 33248471]
[12]
Muneer, M. Hypoglycaemia. Adv. Exp. Med. Biol., 2021, 1307, 43-69.
[13]
Singh, A.P.; Biswas, A.; Shukla, A.; Maiti, P. Targeted therapy in chronic diseases using nanomaterial-based drug delivery vehicles. Signal Transduct. Target. Ther., 2019, 4(1), 33.
[http://dx.doi.org/10.1038/s41392-019-0068-3] [PMID: 31637012]
[14]
Dewanjee, S.; Chakraborty, P.; Mukherjee, B.; De Feo, V. Plant-based antidiabetic nanoformulations: The emerging paradigm for effective therapy. Int. J. Mol. Sci., 2020, 21(6), 2217.
[http://dx.doi.org/10.3390/ijms21062217] [PMID: 32210082]
[15]
Nie, X., Jnr; Chen, Z.; Pang, L.; Wang, L.; Jiang, H.; Chen, Y.; Zhang, Z.; Fu, C.; Ren, B.; Zhang, J. Oral nano drug delivery systems for the treatment of type 2 Diabetes mellitus: An available administration strategy for antidiabetic phytocompounds. Int. J. Nanomedicine, 2020, 15, 10215-10240.
[http://dx.doi.org/10.2147/IJN.S285134] [PMID: 33364755]
[16]
Karabasz, A.; Bzowska, M.; Szczepanowicz, K. Biomedical applications of multifunctional polymeric nanocarriers: A review of current literature. Int. J. Nanomedicine, 2020, 15, 8673-8696.
[http://dx.doi.org/10.2147/IJN.S231477] [PMID: 33192061]
[17]
Lemmerman, L.R.; Das, D.; Higuita-Castro, N.; Mirmira, R.G.; Gallego-Perez, D. Nanomedicine-based strategies for diabetes: Diagnostics, monitoring, and treatment. Trends Endocrinol. Metab., 2020, 31(6), 448-458.
[http://dx.doi.org/10.1016/j.tem.2020.02.001] [PMID: 32396845]
[18]
Maikawa, C.L.; d’Aquino, A.I.; Lal, R.A.; Buckingham, B.A.; Appel, E.A. Engineering biopharmaceutical formulations to improve diabe-tes management. Sci. Transl. Med., 2021, 13(578)eabd6726
[http://dx.doi.org/10.1126/scitranslmed.abd6726] [PMID: 33504649]
[19]
Chariou, P.L.; Ortega-Rivera, O.A.; Steinmetz, N.F. Nanocarriers for the delivery of medical, veterinary, and agricultural active ingredi-ents. ACS Nano, 2020, 14(3), 2678-2701.
[http://dx.doi.org/10.1021/acsnano.0c00173] [PMID: 32125825]
[20]
Kankala, R.K.; Lin, X.F.; Song, H.F.; Wang, S.B.; Yang, D.Y.; Zhang, Y.S.; Chen, A.Z. Supercritical fluid-assisted decoration of nanopar-ticles on porous microcontainers for codelivery of therapeutics and inhalation therapy of diabetes. ACS Biomater. Sci. Eng., 2018, 4(12), 4225-4235.
[http://dx.doi.org/10.1021/acsbiomaterials.8b00992] [PMID: 33418821]
[21]
Souto, E.B.; Souto, S.B.; Campos, J.R.; Severino, P.; Pashirova, T.N.; Zakharova, L.Y.; Silva, A.M.; Durazzo, A.; Lucarini, M.; Izzo, A.A.; Santini, A. Nanoparticle delivery systems in the treatment of diabetes complications. Molecules, 2019, 24(23), 4209.
[http://dx.doi.org/10.3390/molecules24234209] [PMID: 31756981]
[22]
Sutradhar, K.B.; Sumi, C.D. Implantable microchip: The futuristic controlled drug delivery system. Drug Deliv., 2016, 23(1), 1-11.
[http://dx.doi.org/10.3109/10717544.2014.903579] [PMID: 24758139]
[23]
Pradhan, S.K. Microsponges as the versatile tool for drug delivery system. Int. J. Res. Pharm. Chem., 2011, 1(2), 243-258.
[24]
Kalra, S. Glucagon-like peptide-1 receptors agonists (GLP1 RA). J. Pak. Med. Assoc., 2013, 63(10), 1312-1315.
[PMID: 24392570]
[25]
Rathore, B.; Yadav, A.; Nayak, G.; Saraogi, G.K.; Singhai, A.K. A review on microspheres as drug delivery carriers for management of diabetes mellitus. Int J of Pharm & Life Sci, 2012, 3, 2064-2070.
[26]
Lopes, M.; Simões, S.; Veiga, F.; Seiça, R.; Ribeiro, A. Why most oral insulin formulations do not reach clinical trials. Ther. Deliv., 2015, 6(8), 973-987.
[http://dx.doi.org/10.4155/TDE.15.47] [PMID: 26272222]
[27]
Singh, M.N.; Hemant, K.S.Y.; Ram, M.; Shivakumar, H.G. Microencapsulation: A promising technique for controlled drug delivery. Res. Pharm. Sci., 2010, 5(2), 65-77.
[PMID: 21589795]
[28]
Buder, B.; Alexander, M.; Krishnan, R.; Chapman, D.W.; Lakey, J.R.T. Encapsulated islet transplantation: Strategies and clinical trials. Immune Netw., 2013, 13(6), 235-239.
[http://dx.doi.org/10.4110/in.2013.13.6.235] [PMID: 24385941]
[29]
Devadasu, V.R.; Alshammari, T.M.; Aljofan, M. Current advances in the utilization of nanotechnology for the diagnosis and treatment of diabetes. Int. J. Diabetes Dev. Ctries., 2018, 38(1), 11-19.
[http://dx.doi.org/10.1007/s13410-017-0558-1]
[30]
DiSanto, R.M.; Subramanian, V.; Gu, Z. Recent advances in nanotechnology for diabetes treatment. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2015, 7(4), 548-564.
[http://dx.doi.org/10.1002/wnan.1329] [PMID: 25641955]
[31]
Krol, S.; Ellis-Behnke, R.; Marchetti, P. Nanomedicine for treatment of diabetes in an aging population: State-of-the-art and future devel-opments. Nanomedicine, 2012, 8(Suppl. 1), S69-S76.
[http://dx.doi.org/10.1016/j.nano.2012.05.005] [PMID: 22640905]
[32]
Furtado, S.; Abramson, D.; Burrill, R.; Olivier, G.; Gourd, C.; Bubbers, E.; Mathiowitz, E. Oral delivery of insulin loaded poly(fumaric-co-sebacic) anhydride microspheres. Int. J. Pharm., 2008, 347(1-2), 149-155.
[http://dx.doi.org/10.1016/j.ijpharm.2007.06.039] [PMID: 17707601]
[33]
Wong, C.Y.; Al-Salami, H.; Dass, C.R. Microparticles, microcapsules and microspheres: A review of recent developments and prospects for oral delivery of insulin. Int. J. Pharm., 2018, 537(1-2), 223-244.
[http://dx.doi.org/10.1016/j.ijpharm.2017.12.036] [PMID: 29288095]
[34]
Wu, J.Z.; Williams, G.R.; Li, H.Y.; Wang, D.X.; Li, S.D.; Zhu, L.M. Insulin-loaded PLGA microspheres for glucose-responsive release. Drug Deliv., 2017, 24(1), 1513-1525.
[http://dx.doi.org/10.1080/10717544.2017.1381200] [PMID: 28975813]
[35]
Xing, X.; Zhao, X.; Ding, J.; Liu, D.; Qi, G. Enteric-coated insulin microparticles delivered by lipopeptides of iturin and surfactin. Drug Deliv., 2018, 25(1), 23-34.
[http://dx.doi.org/10.1080/10717544.2017.1413443] [PMID: 29226733]
[36]
Zhang, H.; Wang, W.; Li, H.; Peng, Y.; Zhang, Z. Microspheres for the oral delivery of insulin: Preparation, evaluation and hypoglycaemic effect in streptozotocin-induced diabetic rats. Drug Dev. Ind. Pharm., 2018, 44(1), 109-115.
[http://dx.doi.org/10.1080/03639045.2017.1386197] [PMID: 28956663]
[37]
Wang, J.; Tabata, Y.; Morimoto, K. Aminated gelatin microspheres as a nasal delivery system for peptide drugs: Evaluation of in vitro release and in vivo insulin absorption in rats. J. Control. Release, 2006, 113(1), 31-37.
[http://dx.doi.org/10.1016/j.jconrel.2006.03.011] [PMID: 16707188]
[38]
Zheng, J.; Yue, X.; Dai, Z.; Wang, Y.; Liu, S.; Yan, X. Novel iron-polysaccharide multilayered microcapsules for controlled insulin re-lease. Acta Biomater., 2009, 5(5), 1499-1507.
[http://dx.doi.org/10.1016/j.actbio.2009.01.017] [PMID: 19231303]
[39]
Llacua, L.A.; Hoek, A.; de Haan, B.J.; de Vos, P. Collagen type VI interaction improves human islet survival in immunoisolating micro-capsules for treatment of diabetes. Islets, 2018, 10(2), 60-68.
[http://dx.doi.org/10.1080/19382014.2017.1420449] [PMID: 29521546]
[40]
Dufrane, D.; Gianello, P. Macro- or microencapsulation of pig islets to cure type 1 diabetes. World J. Gastroenterol., 2012, 18(47), 6885-6893.
[http://dx.doi.org/10.3748/wjg.v18.i47.6885] [PMID: 23322985]
[41]
Mooranian, A.; Negrulj, R.; Al-Salami, H.; Morahan, G.; Jamieson, E. Designing anti-diabetic β-cells microcapsules using polystyrenic sulfonate, polyallylamine, and a tertiary bile acid: Morphology, bioenergetics, and cytokine analysis. Biotechnol. Prog., 2016, 32(2), 501-509.
[http://dx.doi.org/10.1002/btpr.2223] [PMID: 26748789]
[42]
Agrawal, A.K.; Harde, H.; Thanki, K.; Jain, S. Improved stability and antidiabetic potential of insulin containing folic acid functionalized polymer stabilized multilayered liposomes following oral administration. Biomacromolecules, 2014, 15(1), 350-360.
[http://dx.doi.org/10.1021/bm401580k] [PMID: 24283460]
[43]
Bi, R.; Shao, W.; Wang, Q.; Zhang, N. Spray-freeze-dried dry powder inhalation of insulin-loaded liposomes for enhanced pulmonary delivery. J. Drug Target., 2008, 16(9), 639-648.
[http://dx.doi.org/10.1080/10611860802201134] [PMID: 18982512]
[44]
Bashyal, S.; Seo, J.E.; Keum, T.; Noh, G.; Lamichhane, S.; Lee, S. Development, characterization, and ex vivo assessment of elastic lipo-somes for enhancing the buccal delivery of insulin. Pharmaceutics, 2021, 13(4), 565.
[http://dx.doi.org/10.3390/pharmaceutics13040565] [PMID: 33923670]
[45]
Chen, Y.; Chen, L.; Yang, T. Silymarin nanoliposomes attenuate renal injury on diabetic nephropathy rats via co-suppressing TGF-β/Smad and JAK2/STAT3/SOCS1 pathway. Life Sci., 2021, 271119197
[http://dx.doi.org/10.1016/j.lfs.2021.119197] [PMID: 33577847]
[46]
Mishra, D.; Mishra, P.K.; Dabadghao, S.; Dubey, V.; Nahar, M.; Jain, N.K. Comparative evaluation of hepatitis B surface antigen-loaded elastic liposomes and ethosomes for human dendritic cell uptake and immune response. Nanomedicine, 2010, 6(1), 110-118.
[http://dx.doi.org/10.1016/j.nano.2009.04.003] [PMID: 19446655]
[47]
Dubey, V.; Mishra, D.; Jain, N.K. Melatonin loaded ethanolic liposomes: Physicochemical characterization and enhanced transdermal delivery. Eur. J. Pharm. Biopharm., 2007, 67(2), 398-405.
[http://dx.doi.org/10.1016/j.ejpb.2007.03.007] [PMID: 17452098]
[48]
Dubey, V.; Mishra, D.; Dutta, T.; Nahar, M.; Saraf, D.K.; Jain, N.K. Dermal and transdermal delivery of an anti-psoriatic agent via etha-nolic liposomes. J. Control. Release, 2007, 123(2), 148-154.
[http://dx.doi.org/10.1016/j.jconrel.2007.08.005] [PMID: 17884226]
[49]
Bodade, S.S.; Shaikh, K.S.; Kamble, M.S.; Chaudhari, P.D. A study on ethosomes as mode for transdermal delivery of an antidiabetic drug. Drug Deliv., 2013, 20(1), 40-46.
[http://dx.doi.org/10.3109/10717544.2012.752420] [PMID: 23311652]
[50]
Touitou, E.; Godin, B.; Weiss, C. Enhanced delivery of drugs into and across the skin by ethosomal carriers. Drug Dev. Res., 2000, 50(3-4), 406-415.
[http://dx.doi.org/10.1002/1098-2299(200007/08)50:3/4<406:AID-DDR23>3.0.CO;2-M]
[51]
Ahmed, T.A.; El-Say, K.M.; Aljaeid, B.M.; Fahmy, U.A.; Abd-Allah, F.I. Transdermal glimepiride delivery system based on optimized ethosomal nano-vesicles: Preparation, characterization, in vitro, ex vivo and clinical evaluation. Int. J. Pharm., 2016, 500(1-2), 245-254.
[http://dx.doi.org/10.1016/j.ijpharm.2016.01.017] [PMID: 26775063]
[52]
M. Abdulbaqi, I.; Darwis, Y.; Abdul Karim Khan, N.; Abou Assi, R.; Ali Khan, A. Ethosomal nanocarriers: The impact of constituents and formulation techniques on ethosomal properties, in vivo studies, and clinical trials. Int. J. Nanomedicine, 2016, 2279.
[http://dx.doi.org/10.2147/IJN.S105016]
[53]
Ning, M.; Guo, Y.; Pan, H.; Yu, H.; Gu, Z. Niosomes with sorbitan monoester as a carrier for vaginal delivery of insulin: Studies in rats. Drug Deliv., 2005, 12(6), 399-407.
[http://dx.doi.org/10.1080/10717540590968891] [PMID: 16253956]
[54]
Sankhyan, A.; Pawar, P.K. Metformin loaded non-ionic surfactant vesicles: Optimization of formulation, effect of process variables and characterization. Daru, 2013, 21(1), 7.
[http://dx.doi.org/10.1186/2008-2231-21-7] [PMID: 23351604]
[55]
Leyva-Gómez, G.; Del Prado-Audelo, M.L.; Ortega-Peña, S.; Mendoza-Muñoz, N.; Urbán-Morlán, Z.; González-Torres, M.; González-Del Carmen, M.; Figueroa-González, G.; Reyes-Hernández, O.D.; Cortés, H. Modifications in vaginal microbiota and their influence on drug release: Challenges and opportunities. Pharmaceutics, 2019, 11(5), 217.
[http://dx.doi.org/10.3390/pharmaceutics11050217] [PMID: 31064154]
[56]
Pardakhty, A.; Varshosaz, J.; Rouholamini, A. In vitro study of polyoxyethylene alkyl ether niosomes for delivery of insulin. Int. J. Pharm., 2007, 328(2), 130-141.
[http://dx.doi.org/10.1016/j.ijpharm.2006.08.002] [PMID: 16997517]
[57]
Hasan, A.A.; Madkor, H.; Wageh, S. Formulation and evaluation of metformin hydrochloride-loaded niosomes as controlled release drug delivery system. Drug Deliv., 2013, 20(3-4), 120-126.
[http://dx.doi.org/10.3109/10717544.2013.779332] [PMID: 23651102]
[58]
Mishra, D.K.; Dhote, V.; Mishra, P.K. Transdermal immunization: Biological framework and translational perspectives. Expert Opin. Drug Deliv., 2013, 10(2), 183-200.
[http://dx.doi.org/10.1517/17425247.2013.746660] [PMID: 23256860]
[59]
Dubey, V.; Mishra, D.; Nahar, M.; Jain, N.K. Vesicles as tools for the modulation of skin permeability. Expert Opin. Drug Deliv., 2007, 4(6), 579-593.
[http://dx.doi.org/10.1517/17425247.4.6.579] [PMID: 17970662]
[60]
Mishra, D.; Garg, M.; Dubey, V.; Jain, S.; Jain, N.K. Elastic liposomes mediated transdermal delivery of an anti-hypertensive agent: Propranolol hydrochloride. J. Pharm. Sci., 2007, 96(1), 145-155.
[http://dx.doi.org/10.1002/jps.20737] [PMID: 16960826]
[61]
Malakar, J.; Sen, S.O.; Nayak, A.K.; Sen, K.K. Formulation, optimization and evaluation of transferosomal gel for transdermal insulin delivery. Saudi Pharm. J., 2012, 20(4), 355-363.
[http://dx.doi.org/10.1016/j.jsps.2012.02.001] [PMID: 23960810]
[62]
Kanchan Kohli, V.M. Nano-carrier for accentuated transdermal drug delivery. J. Dev. Drugs, 2013, 3(2)
[http://dx.doi.org/10.4172/2329-6631.1000121]
[63]
Choi, J.H.; Cho, S.H.; Yun, J.J.; Yu, Y.B.; Cho, C.W. Ethosomes and transfersomes for topical delivery of ginsenoside Rh1 from red gin-seng: Characterization and in vitro evaluation. J. Nanosci. Nanotechnol., 2015, 15(8), 5660-5662.
[http://dx.doi.org/10.1166/jnn.2015.10462] [PMID: 26369134]
[64]
Ramkanth, S.; Anitha, P.; Gayathri, R.; Mohan, S.; Babu, D. Formulation and design optimization of nano-transferosomes using pioglita-zone and eprosartan mesylate for concomitant therapy against diabetes and hypertension. Eur. J. Pharm. Sci., 2021, 162105811
[http://dx.doi.org/10.1016/j.ejps.2021.105811] [PMID: 33757828]
[65]
Lin, W.; Ma, G.; Yuan, Z.; Qian, H.; Xu, L.; Sidransky, E.; Chen, S. Development of zwitterionic polypeptide nanoformulation with high doxorubicin loading content for targeted drug delivery. Langmuir, 2019, 35(5), 1273-1283.
[http://dx.doi.org/10.1021/acs.langmuir.8b00851] [PMID: 29933695]
[66]
Malhotra, S.; Dumoga, S.; Joshi, A.; Mohanty, S.; Singh, N. Polymeric micelles coated with hybrid nanovesicles enhance the therapeutic potential of the reversible topoisomerase inhibitor camptothecin in a mouse model. Acta Biomater., 2021, 121, 579-591.
[http://dx.doi.org/10.1016/j.actbio.2020.11.049] [PMID: 33285325]
[67]
Hedge, O.J.; Höök, F.; Joyce, P.; Bergström, C.A.S. Investigation of self-emulsifying drug-delivery system interaction with a biomimetic membrane under conditions relevant to the small intestine. Langmuir, 2021, 37(33), 10200-10213.
[http://dx.doi.org/10.1021/acs.langmuir.1c01689] [PMID: 34379976]
[68]
Rezaei-kelishadi, M.; Nuri, M.; Erfani, Z.; Palizban, A.; Parandin, R. Control, management and treatment of diabetes using modern drug delivery systems and special properties of nanoparticles. J. Biol. Todays World, 2014, 3(9)
[http://dx.doi.org/10.15412/J.JBTW.01030905]
[69]
Nahar, M.; Mishra, D.; Dubey, V.; Jain, N.K. Development, characterization, and toxicity evaluation of amphotericin B–loaded gelatin nanoparticles. Nanomedicine, 2008, 4(3), 252-261.
[http://dx.doi.org/10.1016/j.nano.2008.03.007] [PMID: 18502187]
[70]
Bayat, A.; Dorkoosh, F.A.; Dehpour, A.R.; Moezi, L.; Larijani, B.; Junginger, H.E.; Rafiee-Tehrani, M. Nanoparticles of quaternized chi-tosan derivatives as a carrier for colon delivery of insulin: Ex vivo and in vivo studies. Int. J. Pharm., 2008, 356(1-2), 259-266.
[http://dx.doi.org/10.1016/j.ijpharm.2007.12.037] [PMID: 18289808]
[71]
Cetin, M.; Atila, A.; Sahin, S.; Vural, I. Preparation and characterization of metformin hydrochloride loaded-Eudragit® RSPO and Eu-dragit® RSPO/PLGA nanoparticles. Pharm. Dev. Technol., 2013, 18(3), 570-576.
[http://dx.doi.org/10.3109/10837450.2011.604783] [PMID: 21864098]
[72]
Sarmento, B.; Martins, S.; Ferreira, D.; Souto, E.B. Oral insulin delivery by means of solid lipid nanoparticles. Int. J. Nanomedicine, 2007, 2(4), 743-749.
[PMID: 18203440]
[73]
Ansari, M.J.; Anwer, M.K.; Jamil, S.; Al-Shdefat, R.; Ali, B.E.; Ahmad, M.M.; Ansari, M.N. Enhanced oral bioavailability of insulin-loaded solid lipid nanoparticles: Pharmacokinetic bioavailability of insulin-loaded solid lipid nanoparticles in diabetic rats. Drug Deliv., 2016, 23(6), 1972-1979.
[http://dx.doi.org/10.3109/10717544.2015.1039666] [PMID: 26017100]
[74]
Mishra, D.K.; Shandilya, R.; Mishra, P.K. Lipid based nanocarriers: A translational perspective. Nanomedicine, 2018, 14(7), 2023-2050.
[http://dx.doi.org/10.1016/j.nano.2018.05.021] [PMID: 29944981]
[75]
Piazzini, V.; Micheli, L.; Luceri, C.; D’Ambrosio, M.; Cinci, L.; Ghelardini, C.; Bilia, A.R.; Di Cesare Mannelli, L.; Bergonzi, M.C. Nanostructured lipid carriers for oral delivery of silymarin: Improving its absorption and in vivo efficacy in type 2 diabetes and metabolic syndrome model. Int. J. Pharm., 2019, 572118838
[http://dx.doi.org/10.1016/j.ijpharm.2019.118838] [PMID: 31715362]
[76]
Puglia, C.; Santonocito, D.; Ostacolo, C.; Maria Sommella, E.; Campiglia, P.; Carbone, C.; Drago, F.; Pignatello, R.; Bucolo, C. Ocular for-mulation based on palmitoylethanolamide-loaded nanostructured lipid carriers: Technological and pharmacological profile. Nanomaterials, 2020, 10(2), 287.
[http://dx.doi.org/10.3390/nano10020287] [PMID: 32046269]
[77]
Akhtar, J.; Siddiqui, H.H.; Fareed, S. Badruddeen; Khalid, M.; Aqil, M. Nanoemulsion: For improved oral delivery of repaglinide. Drug Deliv., 2016, 23(6), 2026-2034.
[http://dx.doi.org/10.3109/10717544.2015.1077290] [PMID: 27187792]
[78]
Karolczak, K.; Rozalska, S.; Wieczorek, M.; Labieniec-Watala, M.; Watala, C. Poly(amido)amine dendrimers generation 4.0 (PAMAM G4) reduce blood hyperglycaemia and restore impaired blood–brain barrier permeability in streptozotocin diabetes in rats. Int. J. Pharm., 2012, 436(1-2), 508-518.
[http://dx.doi.org/10.1016/j.ijpharm.2012.06.033] [PMID: 22721855]
[79]
Labieniec, M.; Watala, C. PAMAM dendrimers - diverse biomedical applications. Facts and unresolved questions. Open Life Sci., 2009, 4(4), 434-451.
[http://dx.doi.org/10.2478/s11535-009-0056-7]
[80]
Zhao, R.; Lu, Z.; Yang, J.; Zhang, L.; Li, Y.; Zhang, X. Drug delivery system in the treatment of diabetes mellitus. Front. Bioeng. Biotechnol., 2020, 8, 880.
[http://dx.doi.org/10.3389/fbioe.2020.00880] [PMID: 32850735]
[81]
Dash, T.K.; Konkimalla, V.B. Poly-є-caprolactone based formulations for drug delivery and tissue engineering: A review. J. Control. Release, 2012, 158(1), 15-33.
[http://dx.doi.org/10.1016/j.jconrel.2011.09.064] [PMID: 21963774]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy