Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Biological and Pharmacological Properties of Myrtenol: A Review

Author(s): Hanae Naceiri Mrabti, Imane Jaouadi, Ikrame Zeouk, Rokia Ghchime, Naoual El Menyiy, Nasreddine El Omari, Abdelaali Balahbib, Samiah H. Al-Mijalli, Emad M. Abdallah, Mohamed El-Shazly, Gokhan Zengin* and Abdelhakim Bouyahya*

Volume 29, Issue 6, 2023

Published on: 09 January, 2023

Page: [407 - 414] Pages: 8

DOI: 10.2174/1381612829666221222121041

Price: $65

Open Access Journals Promotions 2
Abstract

Myrtenol (C10H16O) is a volatile compound belonging to the terpenoid family of monocyclic monoterpenes. It is one of the essential oils constituents of several aromatic plants, including the genera Myrtus, Tanacetum, Artemisia, Hyssopus, and Rhodiola. The oxidation of α-pinene can produce it. Several reports demonstrated the pharmacological properties of myrtenol, including its antioxidant, antibacterial, antifungal, antidiabetic, anxiolytic, and gastroprotective activities. In this review, we discussed and highlighted in depth the pharmacological activities, cellular and molecular, providing insight into the mechanisms of myrtenol. In light of this finding, the interesting biological activities and abundance of myrtenol in nature suggests its potential applications in medicinal settings in the fight against various diseases.

Keywords: Myrtenol, bioactive compounds, anticancer effects, anti-inflammatory activity, antimicrobial effects, pharmacodynamic.

[1]
Bouyahya A, Guaouguaou F-E, El Omari N, El Menyiy N, Balahbib A, El-Shazly M, et al. Anti-inflammatory and analgesic properties of Moroccan medicinal plants: Phytochemistry, in vitro and in vivo investigations, mechanism insights, clinical evidences and perspectives. J Pharm Anal 2021.
[PMID: 35573886]
[2]
Bouyahya A, El Menyiy N, Oumeslakht L, et al. Preclinical and clinical antioxidant effects of natural compounds against oxidative stress-induced epigenetic instability in tumor cells. Antioxidants 2021; 10(10): 1553.
[http://dx.doi.org/10.3390/antiox10101553] [PMID: 34679688]
[3]
Bouyahya A, Dakka N, Et-Touys A, Abrini J, Bakri Y. Medicinal plant products targeting quorum sensing for combating bacterial infections. Asian Pac J Trop Med 2017; 10(8): 729-43.
[http://dx.doi.org/10.1016/j.apjtm.2017.07.021] [PMID: 28942821]
[4]
El Omari N, Bakrim S, Bakha M, et al. Natural bioactive compounds targeting epigenetic pathways in cancer: A review on alkaloids, terpenoids, quinones, and isothiocyanates. Nutrients 2021; 13(11): 3714.
[http://dx.doi.org/10.3390/nu13113714] [PMID: 34835969]
[5]
El Omari N, Bakha M, Imtara H, et al. Anticancer mechanisms of phytochemical compounds: focusing on epigenetic targets. Environ Sci Pollut Res Int 2021; 28(35): 47869-903.
[http://dx.doi.org/10.1007/s11356-021-15594-8] [PMID: 34308524]
[6]
Salehi B, Quispe C, Chamkhi I, et al. Pharmacological properties of chalcones: a review of preclinical including molecular mechanisms and clinical evidence. Front Pharmacol 2021; 11: 592654.
[http://dx.doi.org/10.3389/fphar.2020.592654] [PMID: 33536909]
[7]
Sharifi-Rad J, Ozleyen A, Boyunegmez Tumer T, et al. Natural products and synthetic analogs as a source of antitumor drugs. Biomolecules 2019; 9(11): 679.
[http://dx.doi.org/10.3390/biom9110679] [PMID: 31683894]
[8]
Balahbib A, El Omari N, Hachlafi NEL, et al. Health beneficial and pharmacological properties of p-cymene. Food Chem Toxicol 2021; 153: 112259.
[http://dx.doi.org/10.1016/j.fct.2021.112259] [PMID: 33984423]
[9]
Bouyahya A, El Allam A, Zeouk I, et al. Pharmacological effects of Grifolin: Focusing on anticancer mechanisms. Molecules 2022; 27(1): 284.
[http://dx.doi.org/10.3390/molecules27010284] [PMID: 35011516]
[10]
Bouyahya A, Mechchate H, Benali T, et al. Health benefits and pharmacological properties of carvone. Biomolecules 2021; 11(12): 1803.
[http://dx.doi.org/10.3390/biom11121803] [PMID: 34944447]
[11]
El Hachlafi N, Lakhdar F, Khouchlaa A, et al. Health benefits and pharmacological properties of hinokitiol. Processes 2021; 9(9): 1680.
[http://dx.doi.org/10.3390/pr9091680]
[12]
El Omari N, El Menyiy N, Zengin G, et al. Anticancer and anti-inflammatory effects of tomentosin: Cellular and molecular mechanisms. Separations 2021; 8(11): 207.
[http://dx.doi.org/10.3390/separations8110207]
[13]
Hachlafi NEL, Aanniz T, Menyiy NE, et al. In vitro and in vivo biological investigations of camphene and its mechanism insights: A Review. Food Rev Int 2021; 0: 1-28.
[http://dx.doi.org/10.1080/87559129.2021.1936007]
[14]
Bouyahya A, Belmehdi O, El Jemli M, et al. Chemical variability of Centaurium erythraea essential oils at three developmental stages and investigation of their in vitro antioxidant, antidiabetic, dermatoprotective and antibacterial activities. Ind Crops Prod 2019; 132: 111-7.
[http://dx.doi.org/10.1016/j.indcrop.2019.01.042]
[15]
Bouyahya A, Guaouguaou FE, Nadia Dakka N, Bakri Y. Pharmacological activities and medicinal properties of endemic Moroccan medicinal plant Origanum compactum (Benth) and their main compounds. Asian Pac J Trop Dis 2017; 7(10): 628-40.
[http://dx.doi.org/10.12980/apjtd.7.2017D7-31]
[16]
Sharifi-Rad J, Dey A, Koirala N, et al. Cinnamomum species: Bridging phytochemistry knowledge, pharmacological properties and toxicological safety for health benefits. Front Pharmacol 2021; 12: 600139.
[http://dx.doi.org/10.3389/fphar.2021.600139] [PMID: 34045956]
[17]
Foroughi M, Sarabi Jamab M, Keramat J, Foroughi M. Immobilization of Saccharomyces cerevisiae on perlite beads for the decontamination of aflatoxin M1 in milk. J Food Sci 2018; 83(7): 2008-13.
[http://dx.doi.org/10.1111/1750-3841.14100] [PMID: 29802731]
[18]
Sánchez-Velázquez OA, Cortés-Rodríguez M, Milán-Carrillo J, et al. Anti-oxidant and anti-proliferative effect of anthocyanin enriched fractions from two Mexican wild blackberries (Rubus spp.) on HepG2 and glioma cell lines. J Berry Res 2020; 10(3): 513-29.
[http://dx.doi.org/10.3233/JBR-200566]
[19]
Simas Frauches N, Montenegro J, Amaral T, et al. Antiproliferative activity on human colon adenocarcinoma cells and in vitro antioxidant effect of anthocyanin-rich extracts from peels of species of the myrtaceae family. Molecules 2021; 26(3): 564.
[http://dx.doi.org/10.3390/molecules26030564] [PMID: 33498977]
[20]
Pereira P, Cebola MJ, Bernardo-Gil M. Evolution of the yields and composition of essential oil from Portuguese myrtle (Myrtus comunis L.) through the vegetative cycle. Molecules 2009; 14(8): 3094-105.
[http://dx.doi.org/10.3390/molecules14083094] [PMID: 19701146]
[21]
Mockutè D, Judzentiene A. The myrtenol chemotype of essential oil Tanacetum vulgare L var vulgare_tansy_growing wild in the Vilnius region. Chemija 2003; 14: 103-7.
[22]
Munda S, Pandey SK, Dutta S, Baruah J, Lal M. Antioxidant activity, antibacterial activity and chemical composition of essential oil of Artemisia vulgaris L. leaves from northeast India. J Essent Oil-Bear Plants 2019; 22(2): 368-79.
[http://dx.doi.org/10.1080/0972060X.2019.1602083]
[23]
Wesolowska A, Jadczak D. Comparison of the chemical composition of essential oils isolated from hyssop ( Hyssopus officinalis L.) with blue, pink and white flowers. J Essent Oil-Bear Plants 2018; 21(4): 938-49.
[http://dx.doi.org/10.1080/0972060X.2018.1530613]
[24]
Todorova M, Antonova D, Staneva J, Evstatieva L, Staneva J. Chemical composition of the essential oils of Rhodiola rosea L. of three different origins. Pharmacogn Mag 2010; 6(24): 256-8.
[http://dx.doi.org/10.4103/0973-1296.71782] [PMID: 21120024]
[25]
Silva-Martins S, Beserra-Filho JIA, Maria-Macêdo A, et al. Myrtenol complexed with β-cyclodextrin ameliorates behavioural deficits and reduces oxidative stress in the reserpine-induced animal model of Parkinsonism. Clin Exp Pharmacol Physiol 2021; 48(11): 1488-99.
[http://dx.doi.org/10.1111/1440-1681.13563] [PMID: 34351001]
[26]
Bhatia SP, McGinty D, Letizia CS, Api AM. Fragrance material review on myrtenol. Food Chem Toxicol 2008; 46(11): S237-40.
[http://dx.doi.org/10.1016/j.fct.2008.06.091] [PMID: 18662739]
[27]
Moreira MRC, Salvadori MGSS, de Almeida AAC, et al. Anxiolytic-like effects and mechanism of (−)-myrtenol: A monoterpene alcohol. Neurosci Lett 2014; 579: 119-24.
[http://dx.doi.org/10.1016/j.neulet.2014.07.007] [PMID: 25026073]
[28]
Sepici-Dincel A, Açikgöz Ş, Çevik C, Sengelen M, Yeşilada E. Effects of in vivo antioxidant enzyme activities of myrtle oil in normoglycaemic and alloxan diabetic rabbits. J Ethnopharmacol 2007; 110(3): 498-503.
[http://dx.doi.org/10.1016/j.jep.2006.10.015]
[29]
Viana AFSC, Lopes MTP, Oliveira FTB, et al. (−)-Myrtenol accelerates healing of acetic acid-induced gastric ulcers in rats and in human gastric adenocarcinoma cells. Eur J Pharmacol 2019; 854: 139-48.
[http://dx.doi.org/10.1016/j.ejphar.2019.04.025] [PMID: 30991046]
[30]
Silva RO, Salvadori MS, Sousa FBM, et al. Evaluation of the anti-inflammatory and antinociceptive effects of myrtenol, a plant-derived monoterpene alcohol, in mice. Flavour Fragrance J 2014; 29(3): 184-92.
[http://dx.doi.org/10.1002/ffj.3195]
[31]
Cordeiro L, Figueiredo P, Souza H, et al. Antibacterial and antibiofilm activity of myrtenol against Staphylococcus aureus. Pharmaceuticals 2020; 13(6): 133.
[http://dx.doi.org/10.3390/ph13060133] [PMID: 32630561]
[32]
Zhicong. , Wengui D, Guishan L, Rui Z, Mengxiang L, Zhangqi Y. Synthesis and antibacterial activity of myrtle enylthiazole-hydrazone compounds. Forestry Science 2017; 53: 93-101.
[33]
Xuemei L, Qiu S, Chen G, Liu M. Myrtenol alleviates oxidative stress and inflammation in diabetic pregnant rats via TLR4/MyD88/NF-κB signaling pathway. J Biochem Mol Toxicol 2021; 35(11): e22904.
[http://dx.doi.org/10.1002/jbt.22904] [PMID: 34477272]
[34]
Sahebnasagh A, Saghafi F, Negintaji S, et al. Nitric oxide and immune responses in cancer: Searching for new therapeutic strategies. Curr Med Chem 2022; 29(9): 1561-95.
[http://dx.doi.org/10.2174/0929867328666210707194543] [PMID: 34238142]
[35]
Santos MRV, Moreira FV, Fraga BP, Souza DP, Bonjardim LR, Quintans-Junior LJ. Cardiovascular effects of monoterpenes: A review. Rev Bras Farmacogn 2011; 21(4): 764-71.
[http://dx.doi.org/10.1590/S0102-695X2011005000119]
[36]
Sirat HM, Hong LF, Khaw SH. Chemical compositions of the essential oil of the fruits of amomum testaceum Ridl. J Essent Oil Res 2001; 13(2): 86-7.
[http://dx.doi.org/10.1080/10412905.2001.9699621]
[37]
Senatore F, Arnold NA, Piozzi F. Chemical composition of the essential oil of Salvia multicaulis Vahl. var. simplicifolia Boiss. growing wild in Lebanon. J Chromatogr A 2004; 1052(1-2): 237-40.
[http://dx.doi.org/10.1016/j.chroma.2004.08.095] [PMID: 15527145]
[38]
Erdemir T, Erler F. Repellent effect of some plant essential oils against citrus mealybug, Planococcus citri risso (hemiptera: Pseudococcidae). International Congress on Medicinal and Aromatic Plants 2017; 124(5): 473-9.
[39]
Mohamed ME, Mohafez OM, Khalil HE, Alhaider IA. Essential oil from myrtle leaves growing in the eastern part of saudi arabia: Components, anti-inflammatory and cytotoxic activities. J Essent Oil-Bear Plants 2019; 22(4): 877-92.
[http://dx.doi.org/10.1080/0972060X.2019.1645046]
[40]
Bakhy K, Belhachmi T, Benabdelouahab T, Tomi F, Casanova J, Paoli M. Chemical variability of moroccan myrtle oil. Chem Biodivers 2021; 18(9): e2100209.
[http://dx.doi.org/10.1002/cbdv.202100209] [PMID: 34288384]
[41]
Verma RS, Padalia RC, Yadav A, Chauhan A. Essential oil composition of Aralia cachemirica from Uttarakhand, India. Rec Nat Prod 2010; 4: 163-6.
[42]
Lawal O, Oyedeji A. Chemical composition of the essential oils of Cyperus rotundus L. from South Africa. Molecules 2009; 14(8): 2909-17.
[http://dx.doi.org/10.3390/molecules14082909] [PMID: 19701133]
[43]
Tchameni SN, Mbiakeu SN, Sameza ML, Jazet PMD, Tchoumbougnang F. Using Citrus aurantifolia essential oil for the potential biocontrol of Colocasia esculenta (taro) leaf blight caused by Phytophthora colocasiae. Environ Sci Pollut Res Int 2018; 25(30): 29929-35.
[http://dx.doi.org/10.1007/s11356-017-0506-0] [PMID: 29150804]
[44]
Bayar Y, Onaran A, Yilar M, Gul F. Determination of the essential oil composition and the antifungal activities of bilberry (Vaccinium myrtillus L.) and Bay Laurel (Laurus nobilis L.). Plants 2018; 21: 548-55.
[45]
Chhikara N, Kaur R, Jaglan S, Sharma P, Gat Y, Panghal A. Bioactive compounds and pharmacological and food applications of Syzygium cumini - a review. Food Funct 2018; 9(12): 6096-115.
[http://dx.doi.org/10.1039/C8FO00654G] [PMID: 30379170]
[46]
Saeidi K, Jafari S, Hosseinzadeh Samani B, Lorigooini Z, Doodman S. Effect of some novel and conventional drying methods on quantitative and qualitative characteristics of hyssop essential oil. Plants 2020; 23: 156-67.
[47]
Su YC, Hsu KP, Ho CL. Composition, in vitro anti-mildew fungal activities of the heartwood essential oil of Chamaecyparis formosensis from Taiwan. Nat Prod Commun 2018; 13(10): 1934578X1801301.
[http://dx.doi.org/10.1177/1934578X1801301032]
[48]
Wang SY, Wu CL, Chu FH, et al. Chemical composition and antifungal activity of essential oil isolated from Chamaecyparis formosensis Matsum wood. Holzforschung 2005; 59(3): 295-9.
[http://dx.doi.org/10.1515/HF.2005.049]
[49]
Liang JY, Guo SS, You CX, et al. Chemical constituents and insecticidal activities of Ajania fruticulosa essential oil. Chem Biodivers 2016; 13(8): 1053-7.
[http://dx.doi.org/10.1002/cbdv.201500377] [PMID: 27482698]
[50]
Wilson T. Essential oils of whole tree, trunk, limbs and leaves of Juniperus osteosperma from Utah. Phytologia 2019; 101(3): 188-43.
[51]
Yang M, Li R, Wang Y, Tan J, Tang SH, Jiang ZT. Rapid screening of antioxidant bioactive components in blue ginger (Dichorisandra thyrsiflora) essential oil by GC electronic-nose and radical scavenging mechanisms. J Food Meas Charact 2020; 14(4): 2343-51.
[http://dx.doi.org/10.1007/s11694-020-00481-6]
[52]
Gao GW, Yin Z, Hou ZR, Li JP, Sun BB, Dong M. Chemical composition and insecticidal activities of the essential oil from Caryopteris incana (Thunb. ex Hout.) Miq. Aerial Parts. Plants 2020; 23: 608-15.
[53]
Schepetkin IA, Özek G, Özek T, Kirpotina LN, Khlebnikov AI, Quinn MT. Chemical composition and immunomodulatory activity of hypericum perforatum essential oils. biomolecules 2020; 1-20.
[54]
Clarke K, Porter R, Facey P, Yee T, Thoms-Rodriguez C. Chemical composition and biological activities of Pimenta richardii. Flavour Fragrance J 2021; 36(2): 272-9.
[http://dx.doi.org/10.1002/ffj.3642]
[55]
Gimenes L, Silva JCRL, Facanali R, Hantao LW, Siqueira WJ, Marques MOM. Essential oils of new lippia alba genotypes analyzed by flow-modulated comprehensive two-dimensional gas chromatography (Gc×gc) and chemometric analysis. Molecules 2021; 26(8): 2332.
[http://dx.doi.org/10.3390/molecules26082332] [PMID: 33923848]
[56]
Imen D, Soumaya HH, Imed C, Jouda MBJ, Ahmed L, Rym C. Essential oil from flowering tops of Lavandula dentata (L): Chemical composition, aantimicrobial, antioxidant and insecticidal activities. Plants 2021; 24: 632-47.
[57]
Selvaraj A, Valliammai A, Sivasankar C, Suba M, Sakthivel G, Pandian SK. Antibiofilm and antivirulence efficacy of myrtenol enhances the antibiotic susceptibility of Acinetobacter baumannii. Sci Rep 2020; 10(1): 21975.
[http://dx.doi.org/10.1038/s41598-020-79128-x] [PMID: 33319862]
[58]
Liu L, Liu B, Li L, He MX, Zhou XD, Li Q. Myrtenol inhibits biofilm formation and virulence in the drug-resistant Acinetobacter baumannii: Insights into the molecular mechanisms. Infect Drug Resist 2022; 15: 5137-48.
[http://dx.doi.org/10.2147/IDR.S379212] [PMID: 36082242]
[59]
Lin GS, Duan WG, Yang LX, Huang M, Lei FH. Synthesis and antifungal activity of novel myrtenal-based 4-methyl-1, 2, 4-triazole-thioethers. Molecules 2017; 22(2): 193.
[http://dx.doi.org/10.3390/molecules22020193] [PMID: 28125042]
[60]
Britto RM, Silva-Neto JA, Mesquita TRR, et al. Myrtenol protects against myocardial ischemia-reperfusion injury through antioxidant and anti-apoptotic dependent mechanisms. Food Chem Toxicol 2018; 111: 557-66.
[http://dx.doi.org/10.1016/j.fct.2017.12.003] [PMID: 29208507]
[61]
Huang S, Tan Z, Cai J, Wang Z, Tian Y. Myrtenol improves brain damage and promotes angiogenesis in rats with cerebral infarction by activating the ERK1/2 signalling pathway. Pharm Biol 2021; 59(1): 582-91.
[http://dx.doi.org/10.1080/13880209.2021.1917626] [PMID: 34010584]
[62]
Gomes BS, Neto BPS, Lopes EM, et al. Anti-inflammatory effect of the monoterpene myrtenol is dependent on the direct modulation of neutrophil migration and oxidative stress. Chem Biol Interact 2017; 273: 73-81.
[http://dx.doi.org/10.1016/j.cbi.2017.05.019] [PMID: 28559105]
[63]
Bejeshk MA, Samareh Fekri M, Najafipour H, et al. Anti-inflammatory and anti-remodeling effects of myrtenol in the lungs of asthmatic rats: Histopathological and biochemical findings. Allergol Immunopathol 2019; 47(2): 185-93.
[http://dx.doi.org/10.1016/j.aller.2018.09.003] [PMID: 30528469]
[64]
Rajizadeh MA, Najafipour H, Samareh Fekr M, et al. Anti-inflammatory and anti-oxidative effects of Myrtenol in the rats with allergic asthma. Iran J Pharm Res 2019; 18(3): 1488-98.
[PMID: 32641957]
[65]
Oliveira JP, Abreu FF, Bispo JMM, et al. Myrtenol reduces orofacial nociception and inflammation in mice through p38-MAPK and cytokine inhibition. Front Pharmacol 2022; 13: 910219.
[http://dx.doi.org/10.3389/fphar.2022.910219] [PMID: 35712716]
[66]
Sepici A, Gürbüz I, Çevik C, Yesilada E. Hypoglycaemic effects of myrtle oil in normal and alloxan-diabetic rabbits. J Ethnopharmacol 2004; 93(2-3): 311-8.
[http://dx.doi.org/10.1016/j.jep.2004.03.049] [PMID: 15234770]
[67]
Elfellah MS, Akhter MH, Khan MT. Anti-hyperglycaemic effect of an extract of Myrtus communis in streptozotocin-induced diabetes in mice. J Ethnopharmacol 1984; 11(3): 275-81.
[http://dx.doi.org/10.1016/0378-8741(84)90073-4] [PMID: 6482478]
[68]
Malekpour A, Dehghani S, Zahedi S, Eskandari F. Effects of the hydro-ethanol extract of Myrtus communis L. on blood glucose level and histopathologica changes in alloxan-induced diabetic rats. East J Sci Res 2012; 12: 517-22.
[69]
Hunt RH, Camilleri M, Crowe SE, et al. The stomach in health and disease. Gut 2015; 64(10): 1650-68.
[http://dx.doi.org/10.1136/gutjnl-2014-307595] [PMID: 26342014]
[70]
Laine L, Takeuchi K, Tarnawski A. Gastric mucosal defense and cytoprotection: bench to bedside. Gastroenterology 2008; 135(1): 41-60.
[http://dx.doi.org/10.1053/j.gastro.2008.05.030] [PMID: 18549814]
[71]
Alipour G, Dashti S, Hosseinzadeh H. Review of pharmacological effects of Myrtus communis L. and its active constituents. Phytother Res 2014; 28(8): 1125-36.
[http://dx.doi.org/10.1002/ptr.5122] [PMID: 24497171]
[72]
Viana AFSC, da Silva FV, Fernandes HB, et al. Gastroprotective effect of (-)-myrtenol against ethanol-induced acute gastric lesions: possible mechanisms. J Pharm Pharmacol 2016; 68(8): 1085-92.
[http://dx.doi.org/10.1111/jphp.12583] [PMID: 27291136]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy