Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Systematic Review Article

New Strategies in the Treatment of Plasmodium berghei Based on Nanoparticles: A Systematic Review

Author(s): Pegah Shakib, Abdolrazagh Marzban, Omid Mardanshah, Shirzad Fallahi, Israr Ali Khan, Mohammad Azarhazin and Kourosh Cheraghipour*

Volume 24, Issue 11, 2023

Published on: 17 January, 2023

Page: [1376 - 1382] Pages: 7

DOI: 10.2174/1389201024666230103111833

Price: $65

Abstract

Background: Drug resistance is a current issue affecting parasites caused by Plasmodium. Therefore, researchers have expanded their studies on nanoparticles to find new and effective drugs that can treat drug-resistant strains. The present study systematically investigates the effect of different nanoparticles, including metal, polymer, and lipid nanoparticles, on Plasmodium berghei.

Methods: In this study, English-language online literature was obtained from the databases Science Direct, PubMed, Scopus, Ovid, and Cochrane to conduct a systematic review. In the search, we used the keywords: (Plasmodium Berghei) AND (Malaria) AND (Parasitemia) AND (antimalarial activity) AND (nanoparticles) AND (Solid lipid NPS) AND (Nano lipid carriers) AND (Artemether) AND (Chloroquine) AND (intraperitoneal) AND (in vivo). Initially, a total of 160 studies were retrieved from the search. After removing duplicates, 80 studies remained. After reviewing the title and abstract of each study, 45 unrelated studies were eliminated.

Results: The remaining 35 studies were thoroughly reviewed using the full texts. The final result was 21 studies that met the inclusion/exclusion criteria.

Conclusion: Using these findings, we can conclude that various nanoparticles possess antiparasitic effects that may be applied to emerging and drug-resistant parasites. Together, these findings suggest that nanostructures may be used to design antiparasitic drugs that are effective against Plasmodium berghei.

Keywords: Plasmodium berghei, nanoparticles, systematic review, parasitemia, malaria, drug-resistant strains, antimalarial activity, nano lipid carriers, intraperitoneal, chloroquine.

Graphical Abstract
[1]
Organization, WH World malaria reportWorld Health Organization, 2016.
[2]
Karamati, S. A.; Hassanzadazar, H.; Bahmani, M. Herbal and chemical drugs effective on malaria. MJAPJoTD, 2014, 4(S2), S599-S601.
[3]
Achan, J.; Mwesigwa, J.; Edwin, C.P.; D’alessandro, U. Malaria medicines to address drug resistance and support malaria elimination efforts. Expert Rev. Clin. Pharmacol., 2018, 11(1), 61-70.
[http://dx.doi.org/10.1080/17512433.2018.1387773] [PMID: 28965427]
[4]
Amelo, W; Makonnen, EJBRI Efforts made to eliminate drugresistant malaria and its challenges. BioMed Research International, 2021, 2021
[http://dx.doi.org/10.1155/2021/5539544]
[5]
Pelgrift, R.Y.; Friedman, A.J. Nanotechnology as a therapeutic tool to combat microbial resistance. Adv. Drug Deliv. Rev., 2013, 65(13-14), 1803-1815.
[http://dx.doi.org/10.1016/j.addr.2013.07.011] [PMID: 23892192]
[6]
Lee, M.; Kim, S.W. Polyethylene glycol-conjugated copolymers for plasmid DNA delivery. Pharm. Res., 2005, 22(1), 1-10.
[http://dx.doi.org/10.1007/s11095-004-9003-5] [PMID: 15771224]
[7]
Mandal, D.; Bolander, M.E.; Mukhopadhyay, D.; Sarkar, G.; Mukherjee, P. The use of microorganisms for the formation of metal nano-particles and their application. Appl. Microbiol. Biotechnol., 2006, 69(5), 485-492.
[http://dx.doi.org/10.1007/s00253-005-0179-3] [PMID: 16317546]
[8]
Mohammadi, L.; Pal, K.; Bilal, M.; Rahdar, A.; Fytianos, G.; Kyzas, G.Z. Green nanoparticles to treat patients with Malaria disease: An overview. J. Mol. Struct., 2021, 1229129857
[http://dx.doi.org/10.1016/j.molstruc.2020.129857]
[9]
Patra, S.; Singh, M.; Wasnik, K.; Pareek, D.; Gupta, P.S.; Mukherjee, S.; Paik, P. Polymeric nanoparticle based diagnosis and nanomedi-cine for treatment and development of vaccines for cerebral malaria: A review on recent advancement. ACS Appl. Bio Mater., 2021, 4(10), 7342-7365.
[http://dx.doi.org/10.1021/acsabm.1c00635] [PMID: 35006689]
[10]
Ghosh, A.; Banerjee, T. Nanotized curcumin-benzothiophene conjugate: A potential combination for treatment of cerebral malaria. IUBMB Life, 2020, 72(12), 2637-2650.
[http://dx.doi.org/10.1002/iub.2394] [PMID: 33037778]
[11]
Kannan, D.; Yadav, N.; Ahmad, S.; Namdev, P.; Bhattacharjee, S.; Lochab, B.; Singh, S. Pre-clinical study of iron oxide nanoparticles fortified artesunate for efficient targeting of malarial parasite. EBioMedicine, 2019, 45, 261-277.
[http://dx.doi.org/10.1016/j.ebiom.2019.06.026] [PMID: 31255656]
[12]
Amolegbe, S.A.; Hirano, Y.; Adebayo, J.O.; Ademowo, O.G.; Balogun, E.A.; Obaleye, J.A.; Krettli, A.U.; Yu, C.; Hayami, S. Mesoporous silica nanocarriers encapsulated antimalarials with high therapeutic performance. Sci. Rep., 2018, 8(1), 3078.
[http://dx.doi.org/10.1038/s41598-018-21351-8] [PMID: 29449583]
[13]
Murugan, K.; Wei, J.; Alsalhi, M.S.; Nicoletti, M.; Paulpandi, M.; Samidoss, C.M.; Dinesh, D.; Chandramohan, B.; Paneerselvam, C.; Subramaniam, J.; Vadivalagan, C.; Wei, H.; Amuthavalli, P.; Jaganathan, A.; Devanesan, S.; Higuchi, A.; Kumar, S.; Aziz, A.T.; Nataraj, D.; Vaseeharan, B.; Canale, A.; Benelli, G. Magnetic nanoparticles are highly toxic to chloroquine-resistant Plasmodium falciparum, den-gue virus (DEN-2), and their mosquito vectors. Parasitol. Res., 2017, 116(2), 495-502.
[http://dx.doi.org/10.1007/s00436-016-5310-0] [PMID: 27815736]
[14]
Murugan, K.; Panneerselvam, C.; Samidoss, C.M.; Madhiyazhagan, P.; Suresh, U.; Roni, M.; Chandramohan, B.; Subramaniam, J.; Dinesh, D.; Rajaganesh, R.; Paulpandi, M.; Wei, H.; Aziz, A.T.; Alsalhi, M.S.; Devanesan, S.; Nicoletti, M.; Pavela, R.; Canale, A.; Benelli, G. In vivo and in vitro effectiveness of Azadirachta indica-synthesized silver nanocrystals against Plasmodium berghei and Plasmodium falciparum, and their potential against malaria mosquitoes. Res. Vet. Sci., 2016, 106, 14-22.
[http://dx.doi.org/10.1016/j.rvsc.2016.03.001] [PMID: 27234530]
[15]
Pestehchian, N.; Vafaei, M.R.; Nematolahy, P.; Varshosaz, J.; Yousefi, H.A.; Bide, V.Z.; Kalani, H. A new effective antiplasmodial com-pound: Nanoformulated pyrimethamine. J. Glob. Antimicrob. Resist., 2020, 20, 309-315.
[http://dx.doi.org/10.1016/j.jgar.2019.08.002] [PMID: 31404680]
[16]
Michels, L.R.; Maciel, T.R.; Nakama, K.A.; Teixeira, F.E.G.; Carvalho, F.B.; Gundel, A.; Araújo, B.V.; Haas, S.E. Effects of surface char-acteristics of polymeric nanocapsules on the pharmacokinetics and efficacy of antimalarial quinine. Int. J. Nanomedicine, 2019, 14, 10165-10178.
[http://dx.doi.org/10.2147/IJN.S227914] [PMID: 32021159]
[17]
Bakshi, R.P.; Tatham, L.M.; Savage, A.C.; Tripathi, A.K.; Mlambo, G.; Ippolito, M.M.; Nenortas, E.; Rannard, S.P.; Owen, A.; Shapiro, T.A. Long-acting injectable atovaquone nanomedicines for malaria prophylaxis. Nat. Commun., 2018, 9(1), 315.
[http://dx.doi.org/10.1038/s41467-017-02603-z] [PMID: 29358624]
[18]
Thakkar, M.; Brijesh, S. Physicochemical investigation and in vivo activity of anti-malarial drugs co-loaded in Tween 80 niosomes. J. Liposome Res., 2018, 28(4), 315-321.
[http://dx.doi.org/10.1080/08982104.2017.1376684] [PMID: 28874081]
[19]
Tripathi, C.B.; Beg, S.; Kaur, R.; Shukla, G.; Bandopadhyay, S.; Singh, B. Systematic development of optimized SNEDDS of artemether with improved biopharmaceutical and antimalarial potential. Drug Deliv., 2016, 23(9), 3209-3223.
[http://dx.doi.org/10.3109/10717544.2016.1162876] [PMID: 27022886]
[20]
Parashar, D.; Aditya, N.P.; Murthy, R.S. Development of artemether and lumefantrine co-loaded nanostructured lipid carriers: Physico-chemical characterization and in vivo antimalarial activity. Drug Deliv., 2016, 23(1), 123-129.
[http://dx.doi.org/10.3109/10717544.2014.905883] [PMID: 24786480]
[21]
Ramazani, A.; Keramati, M.; Malvandi, H.; Danafar, H.; Kheiri Manjili, H. Preparation and in vivo evaluation of anti-plasmodial properties of artemisinin-loaded PCL–PEG–PCL nanoparticles. Pharm. Dev. Technol., 2018, 23(9), 911-920.
[http://dx.doi.org/10.1080/10837450.2017.1372781] [PMID: 28851256]
[22]
Oyeyemi, O.; Morenkeji, O.; Afolayan, F.; Dauda, K.; Busari, Z.; Meena, J.; Panda, A. Curcumin-artesunate based polymeric nanoparticle; antiplasmodial and toxicological evaluation in murine model. Front. Pharmacol., 2018, 9, 562.
[http://dx.doi.org/10.3389/fphar.2018.00562] [PMID: 29899700]
[23]
Ismail, M.; Ling, L.; Du, Y.; Yao, C.; Li, X. Liposomes of dimeric artesunate phospholipid: A combination of dimerization and self-assembly to combat malaria. Biomaterials, 2018, 163, 76-87.
[http://dx.doi.org/10.1016/j.biomaterials.2018.02.026] [PMID: 29454237]
[24]
Gomes, G.S.; Maciel, T.R.; Piegas, E.M.; Michels, L.R.; Colomé, L.M.; Freddo, R.J.; Ávila, D.S.; Gundel, A.; Haas, S.E. Optimization of curcuma oil/quinine-loaded nanocapsules for malaria treatment. AAPS PharmSciTech, 2018, 19(2), 551-564.
[http://dx.doi.org/10.1208/s12249-017-0854-6] [PMID: 28875471]
[25]
Matsabisa, M.G.; Roy, S.; Tripathy, S.; Chattopadhyay, S.; Dash, S.K. Nano chloroquine delivery against Plasmodium berghei NK65 in-duced programmed cell death in spleen. Asian Pac. J. Trop. Med., 2018, 11(9), 540.
[http://dx.doi.org/10.4103/1995-7645.242312]
[26]
Dauda, K.; Busari, Z.; Morenikeji, O.; Afolayan, F.; Oyeyemi, O.; Meena, J.; Sahu, D.; Panda, A. Poly(D,L-lactic-co-glycolic acid)-based artesunate nanoparticles: Formulation, antimalarial and toxicity assessments. J. Zhejiang Univ. Sci. B, 2017, 18(11), 977-985.
[http://dx.doi.org/10.1631/jzus.B1600389] [PMID: 29119735]
[27]
Charlie-Silva, I.; Feitosa, N.M.; Fukushima, H.C.S.; Borra, R.C.; Foglio, M.A.; Xavier, R.M.P.; de Melo Hoyos, D.C.; de Oliveira, S.I.M.; de Souza, G.G.; Bailone, R.L.; de Andrade, B.M.A.; Correia, S.A.M.; Junior, J.D.C.; Pierezan, F.; Malafaia, G. Effects of nanocapsules of poly-ε-caprolactone containing artemisinin on zebrafish early-life stages and adults. Sci. Total Environ., 2021, 756143851
[http://dx.doi.org/10.1016/j.scitotenv.2020.143851] [PMID: 33257061]
[28]
Elmi, T.; Ardestani, M.S.; Motevalian, M.; Hesari, A.K. hamzeh, M.S.; Zamani, Z.; Tabatabaie, F. Antiplasmodial effect of nano den-drimer G2 loaded with chloroquine in mice infected with Plasmodium berghei. Acta Parasitol., 2022, 67(1), 298-308.
[http://dx.doi.org/10.1007/s11686-021-00459-4] [PMID: 34398379]
[29]
Sari, R.; Widyawaruyanti, A.; Anindita, F.B.T.; Astuti, S.K.; Setyawan, D. Setyawan DJTJoPS. Development of andrographolide-carboxymethyl chitosan nanoparticles: Characterization, in vitro release and in vivo antimalarial activity study. Turkish J. Pharm. Sci., 2018, 15(2), 136-141.
[http://dx.doi.org/10.4274/tjps.53825] [PMID: 32454652]
[30]
Murugan, K.; Nataraj, D.; Jaganathan, A.; Dinesh, D.; Jayashanthini, S.; Samidoss, C.M.; Paulpandi, M.; Panneerselvam, C.; Subramaniam, J.; Aziz, A.T.; Nicoletti, M.; Kumar, S.; Higuchi, A.; Benelli, G. Nanofabrication of graphene quantum dots with high toxicity against ma-laria mosquitoes, Plasmodium falciparum and MCF-7 cancer cells: Impact on predation of non-target tadpoles, odonate nymphs and mos-quito fishes. J. Cluster Sci., 2017, 28(1), 393-411.
[http://dx.doi.org/10.1007/s10876-016-1107-7]
[31]
Bae, Y.H.; Park, K. Advanced drug delivery 2020 and beyond: Perspectives on the future. Adv. Drug Deliv. Rev., 2020, 158, 4-16.
[http://dx.doi.org/10.1016/j.addr.2020.06.018] [PMID: 32592727]
[32]
Varma, D.M.; Redding, E.A.; Bachelder, E.M.; Ainslie, K.M. Nano and microformulations to advance therapies for visceral leishmaniasis. ACS Biomater. Sci. Eng., 2021, 7(5), 1725-1741.
[http://dx.doi.org/10.1021/acsbiomaterials.0c01132] [PMID: 33966377]
[33]
Park, H.; Otte, A.; Park, K. Evolution of drug delivery systems: From 1950 to 2020 and beyond. J. Control. Release, 2022, 342, 53-65.
[http://dx.doi.org/10.1016/j.jconrel.2021.12.030] [PMID: 34971694]
[34]
Mittal, A.K.; Chisti, Y.; Banerjee, U.C. Synthesis of metallic nanoparticles using plant extracts. Biotechnol. Adv., 2013, 31(2), 346-356.
[http://dx.doi.org/10.1016/j.biotechadv.2013.01.003] [PMID: 23318667]
[35]
Santos-Magalhães, N.S.; Mosqueira, V.C.F. Nanotechnology applied to the treatment of malaria. Adv. Drug Deliv. Rev., 2010, 62(4-5), 560-575.
[http://dx.doi.org/10.1016/j.addr.2009.11.024] [PMID: 19914313]
[36]
Cirri, M.; Mennini, N.; Maestrelli, F.; Mura, P.; Ghelardini, C.; Di Cesare Mannelli, L. Development and in vivo evaluation of an innova-tive “hydrochlorothiazide-in cyclodextrins-in solid lipid nanoparticles” formulation with sustained release and enhanced oral bioavailabil-ity for potential hypertension treatment in pediatrics. Int. J. Pharm., 2017, 521(1-2), 73-83.
[http://dx.doi.org/10.1016/j.ijpharm.2017.02.022] [PMID: 28229944]
[37]
Li, S.; Zhao, B.; Wang, F.; Wang, M.; Xie, S.; Wang, S.; Han, C.; Zhu, L.; Zhou, W. Yak interferon-alpha loaded solid lipid nanoparticles for controlled release. Res. Vet. Sci., 2010, 88(1), 148-153.
[http://dx.doi.org/10.1016/j.rvsc.2009.06.010] [PMID: 19647842]
[38]
Vijayan, V.; Mohapatra, A.; Uthaman, S.; Park, I-K.J.P. Recent advances in nanovaccines using biomimetic immunomodulatory materials. Pharmaceutics, 2019, 11(10), 534.
[http://dx.doi.org/10.3390/pharmaceutics11100534] [PMID: 31615112]
[39]
Borgheti-Cardoso, N.L.; San, A.M.; Lantero, E.; Lancelot, A.; Serrano, J.L.; Hernández-Ainsa, S.; Fernàndez-Busquets, X.; Sierra, T. Promising nanomaterials in the fight against malaria. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(41), 9428-9448.
[http://dx.doi.org/10.1039/D0TB01398F] [PMID: 32955067]
[40]
Efferth, T.; Romero, M.R.; Bilia, A.R.; Osman, A.G.; ElSohly, M.; Wink, M. Expanding the therapeutic spectrum of artemisinin: Activity against infectious diseases beyond malaria and novel pharmaceutical developments. World J. Tradit. Chin. Med., 2016, 2(2), 1.
[http://dx.doi.org/10.15806/j.issn.2311-8571.2016.0002]
[41]
Torchilin, V.P. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov., 2005, 4(2), 145-160.
[http://dx.doi.org/10.1038/nrd1632] [PMID: 15688077]
[42]
Chimanuka, B.; Gabriëls, M.; Detaevernier, M.R.; Plaizier-Vercammen, J.A. Preparation of β-artemether liposomes, their HPLC-UV evalu-ation and relevance for clearing recrudescent parasitaemia in Plasmodium chabaudi malaria-infected mice. J. Pharm. Biomed. Anal., 2002, 28(1), 13-22.
[http://dx.doi.org/10.1016/S0731-7085(01)00611-2] [PMID: 11861104]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy