Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Nanoparticle and Stem Cell Combination Therapy for the Management of Stroke

Author(s): Mehdi Farhoudi, Saeed Sadigh-Eteghad, Afsaneh Farjami and Sara Salatin*

Volume 29, Issue 1, 2023

Published on: 27 December, 2022

Page: [15 - 29] Pages: 15

DOI: 10.2174/1381612829666221213113119

Price: $65

Abstract

Stroke is currently one of the primary causes of morbidity and mortality worldwide. Unfortunately, the available treatments for stroke are still extremely limited. Indeed, stem cell (SC) therapy is a new option for the treatment of stroke that could significantly expand the therapeutic time window of stroke. Some proposed mechanisms for stroke-based SC therapy are the incorporation of SCs into the host brain to replace dead or damaged cells/tissues. Moreover, acute cell delivery can inhibit apoptosis and decrease lesion size, providing immunomudolatory and neuroprotection effects. However, several major SC problems related to SCs such as homing, viability, uncontrolled differentiation, and possible immune response, have limited SC therapy. A combination of SC therapy with nanoparticles (NPs) can be a solution to address these challenges. NPs have received considerable attention in regulating and controlling the behavior of SCs because of their unique physicochemical properties. By reviewing the pathophysiology of stroke and the therapeutic benefits of SCs and NPs, we hypothesize that combined therapy will offer a promising future in the field of stroke management. In this work, we discuss recent literature in SC research combined with NP-based strategies that may have a synergistic outcome after stroke incidence.

Keywords: Stroke, brain, central nervous system, blood-brain barrier, stem cell therapy, nanoparticle.

[1]
Krishnamurthi RV, Ikeda T, Feigin VL. Global, regional and country-specific burden of ischaemic stroke, intracerebral haemorrhage and subarachnoid haemorrhage: A systematic analysis of the global burden of disease study 2017. Neuroepidemiology 2020; 54(2): 171-9.
[http://dx.doi.org/10.1159/000506396] [PMID: 32079017]
[2]
Rossi R, Molina S, Mereuta OM, et al. Does prior administration of rtPA influence acute ischemic stroke clot composition? Findings from the analysis of clots retrieved with mechanical thrombectomy from the RESTORE registry. J Neurol 2022; 269(4): 1913-20.
[http://dx.doi.org/10.1007/s00415-021-10758-5] [PMID: 34415423]
[3]
Pucciarelli G, Lyons KS, Petrizzo A, et al. Protective role of caregiver preparedness on the relationship between depression and quality of life in stroke dyads. Stroke 2022; 53(1): 145-53.
[http://dx.doi.org/10.1161/STROKEAHA.120.034029] [PMID: 34496626]
[4]
Liew SL, Zavaliangos-Petropulu A, Jahanshad N, et al. The ENIGMA stroke recovery working group: Big data neuroimaging to study brain–behavior relationships after stroke. Hum Brain Mapp 2022; 43(1): 129-48.
[http://dx.doi.org/10.1002/hbm.25015] [PMID: 32310331]
[5]
Berekashvili K, Soomro J, Shen L, et al. Safety and feasibility of argatroban, recombinant tissue plasminogen activator, and intra-arterial therapy in stroke (ARTSS-IA Study). J Stroke Cerebrovasc Dis 2018; 27(12): 3647-51.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2018.08.036] [PMID: 30249518]
[6]
Cai X, Bandla A, Wang C, et al. Photothermal-activatable liposome carrying tissue plasminogen activator for photoacoustic image-guided ischemic stroke treatment. Small Struct 2022; 3(2): 2100118.
[http://dx.doi.org/10.1002/sstr.202100118]
[7]
Aroor SR, Asif KS, Potter-Vig J, et al. Mechanical thrombectomy access for all? challenges in increasing endovascular treatment for acute ischemic stroke in the united states. J Stroke 2022; 24(1): 41-8.
[http://dx.doi.org/10.5853/jos.2021.03909] [PMID: 35135058]
[8]
Lin CH, Saver JL, Ovbiagele B, Huang WY, Lee M. Endovascular thrombectomy without versus with intravenous thrombolysis in acute ischemic stroke: A non-inferiority meta-analysis of randomized clinical trials. J Neurointerv Surg 2022; 14(3): 227-32.
[http://dx.doi.org/10.1136/neurintsurg-2021-017667] [PMID: 34266909]
[9]
Yeh HJ, Chen TA, Cheng HC, Chou YJ, Huang N. Long-term rehabilitation utilization pattern among stroke patients under the national health insurance program. Am J Phys Med Rehabil 2022; 101(2): 129-34.
[http://dx.doi.org/10.1097/PHM.0000000000001747] [PMID: 33782272]
[10]
Lee J, Chang WH, Chung JW, et al. Efficacy of intravenous mesenchymal stem cells for motor recovery after ischemic stroke: A neuroimaging study. Stroke 2022; 53(1): 20-8.
[http://dx.doi.org/10.1161/STROKEAHA.121.034505] [PMID: 34583525]
[11]
Bao Q, Hu P, Xu Y, et al. Simultaneous blood–brain barrier crossing and protection for stroke treatment based on edaravone-loaded ceria nanoparticles. ACS Nano 2018; 12(7): 6794-805.
[http://dx.doi.org/10.1021/acsnano.8b01994] [PMID: 29932327]
[12]
Sarmah D, Datta A, Kaur H, et al. Sirtuin-1-mediated NF-κB pathway modulation to mitigate inflammasome signaling and cellular apoptosis is one of the neuroprotective effects of intra-arterial mesenchymal stem cell therapy following ischemic stroke. Stem Cell Rev Rep 2022; 18(2): 821-38.
[http://dx.doi.org/10.1007/s12015-021-10315-7] [PMID: 35112234]
[13]
Hu J, Chang Y, Peng C, Huang S, Li G, Li H. Umbilical cord mesenchymal stem cells derived neurospheres promote long-term functional recovery but aggravate acute phase inflammation in experimental stroke. Neuroscience 2022; 480: 217-28.
[http://dx.doi.org/10.1016/j.neuroscience.2021.10.032] [PMID: 34762983]
[14]
Chiu TL, Baskaran R, Tsai ST, et al. Intracerebral transplantation of autologous adipose-derived stem cells for chronic ischemic stroke: A phase I study. J Tissue Eng Regen Med 2022; 16(1): 3-13.
[http://dx.doi.org/10.1002/term.3256] [PMID: 34644444]
[15]
Yang Y, Lee EH, Yang Z. Hypoxia-Conditioned Mesenchymal Stem Cells in Tissue Regeneration Application. Tissue Eng Part B Rev 2022; 28(5): 966-77.
[http://dx.doi.org/10.1089/ten.teb.2021.0145] [PMID: 34569290]
[16]
Karam A, Bricout N, Khyeng M, et al. Safety and outcome of mechanical thrombectomy in ischaemic stroke related to carotid artery dissection. J Neurol 2022; 269(2): 772-9.
[http://dx.doi.org/10.1007/s00415-021-10656-w] [PMID: 34184125]
[17]
Huang HY, Lee CS, Chiu TH, et al. Clinical outcomes and prognostic factors for prolonged mechanical ventilation in patients with acute stroke and brain trauma. J Formos Med Assoc 2022; 121(1): 162-9.
[http://dx.doi.org/10.1016/j.jfma.2021.02.011] [PMID: 33750622]
[18]
Jaberinezhad M, Farhoudi M, Nejadghaderi SA, et al. The burden of stroke and its attributable risk factors in the Middle East and North Africa region, 1990-2019. Sci Rep 2022; 12(1): 2700.
[http://dx.doi.org/10.1038/s41598-022-06418-x] [PMID: 35177688]
[19]
Yang Q, Enríquez Á, Devathasan D, et al. Application of magnetically actuated self-clearing catheter for rapid in situ blood clot clearance in hemorrhagic stroke treatment. Nat Commun 2022; 13(1): 520.
[http://dx.doi.org/10.1038/s41467-022-28101-5] [PMID: 35082280]
[20]
Tian DS, Qin C, Zhou LQ, et al. FSAP aggravated endothelial dysfunction and neurological deficits in acute ischemic stroke due to large vessel occlusion. Signal Transduct Target Ther 2022; 7(1): 6.
[http://dx.doi.org/10.1038/s41392-021-00802-1] [PMID: 34992208]
[21]
Gong Y, Wang Y, Qu Q, et al. Nanoparticle encapsulated core-shell hydrogel for on-site BMSCs delivery protects from iron overload and enhances functional recovery. J Control Release 2020; 320: 381-91.
[http://dx.doi.org/10.1016/j.jconrel.2020.01.029] [PMID: 31972243]
[22]
Kondziolka D. Stem cell treatment for ischemic stroke recovery. Semin Neurol 2021; 41(1): 101-6.
[http://dx.doi.org/10.1055/s-0040-1722640] [PMID: 33506475]
[23]
Sadeghpour Y, Taheraghdam A, Khalili M, et al. Whey protein plus lipoic acid supplementation improves inflammatory and antioxidant markers of patients with acute ischemic stroke. Nutr Food Sci 2020; 50(6): 1053-62.
[http://dx.doi.org/10.1108/NFS-07-2019-0237]
[24]
Bonnard T, Gauberti M, Martinez de Lizarrondo S, Campos F, Vivien D. Recent advances in nanomedicine for ischemic and hemorrhagic stroke. Stroke 2019; 50(5): 1318-24.
[http://dx.doi.org/10.1161/STROKEAHA.118.022744] [PMID: 30932782]
[25]
Wang Y, Wang Y, Li S, et al. Functionalized nanoparticles with monocyte membranes and rapamycin achieve synergistic chemoimmunotherapy for reperfusion-induced injury in ischemic stroke. J Nanobiotech 2021; 19(1): 331.
[http://dx.doi.org/10.1186/s12951-021-01067-0] [PMID: 34674712]
[26]
Qiu Y, Zhang C, Chen A, et al. Immune cells in the BBB disruption after acute ischemic stroke: Targets for immune therapy? Front Immunol 2021; 12: 678744.
[http://dx.doi.org/10.3389/fimmu.2021.678744] [PMID: 34248961]
[27]
Lin R, Cai J, Nathan C, et al. Neurogenesis is enhanced by stroke in multiple new stem cell niches along the ventricular system at sites of high BBB permeability. Neurobiol Dis 2015; 74: 229-39.
[http://dx.doi.org/10.1016/j.nbd.2014.11.016] [PMID: 25484283]
[28]
Andrzejewska A, Dabrowska S, Lukomska B, Janowski M. Mesenchymal stem cells for neurological disorders. Adv Sci 2021; 8(7): 2002944.
[http://dx.doi.org/10.1002/advs.202002944] [PMID: 33854883]
[29]
Alqarni AJ, Rambely AS, Hashim I. Dynamical simulation of effective stem cell transplantation for modulation of microglia responses in stroke treatment. Symmetry 2021; 13(3): 404.
[http://dx.doi.org/10.3390/sym13030404]
[30]
Friedrich MAG, Martins MP, Araújo MD, et al. Intra-arterial infusion of autologous bone marrow mononuclear cells in patients with moderate to severe middle cerebral artery acute ischemic stroke. Cell Transplant 2012; 21(Suppl. 1): 13-21.
[http://dx.doi.org/10.3727/096368912X612512] [PMID: 22507676]
[31]
Savitz SI, Misra V, Kasam M, et al. Intravenous autologous bone marrow mononuclear cells for ischemic stroke. Ann Neurol 2011; 70(1): 59-69.
[http://dx.doi.org/10.1002/ana.22458] [PMID: 21786299]
[32]
Jaillard A, Hommel M, Moisan A, et al. Autologous mesenchymal stem cells improve motor recovery in subacute ischemic stroke: A randomized clinical trial. Transl Stroke Res 2020; 11(5): 910-23.
[http://dx.doi.org/10.1007/s12975-020-00787-z] [PMID: 32462427]
[33]
Taguchi A, Sakai C, Soma T, et al. Intravenous autologous bone marrow mononuclear cell transplantation for stroke: Phase1/2a clinical trial in a homogeneous group of stroke patients. Stem Cells Dev 2015; 24(19): 2207-18.
[http://dx.doi.org/10.1089/scd.2015.0160] [PMID: 26176265]
[34]
Muir KW, Bulters D, Willmot M, et al. Intracerebral implantation of human neural stem cells and motor recovery after stroke: multicentre prospective single-arm study (PISCES-2). J Neurol Neurosurg Psychiatry 2020; 91(4): 396-401.
[http://dx.doi.org/10.1136/jnnp-2019-322515] [PMID: 32041820]
[35]
Kalladka D, Sinden J, Pollock K, et al. Human neural stem cells in patients with chronic ischaemic stroke (PISCES): A phase 1, first-in-man study. Lancet 2016; 388(10046): 787-96.
[http://dx.doi.org/10.1016/S0140-6736(16)30513-X] [PMID: 27497862]
[36]
Qiao LY, Huang FJ, Zhao M, et al. A two-year follow-up study of cotransplantation with neural stem/progenitor cells and mesenchymal stromal cells in ischemic stroke patients. Cell Transplant 2014; 23(Suppl. 1): 65-72.
[http://dx.doi.org/10.3727/096368914X684961] [PMID: 25333752]
[37]
Hess DC, Wechsler LR, Clark WM, et al. Safety and efficacy of multipotent adult progenitor cells in acute ischaemic stroke (MASTERS): A randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Neurol 2017; 16(5): 360-8.
[http://dx.doi.org/10.1016/S1474-4422(17)30046-7] [PMID: 28320635]
[38]
Chen L, Xi H, Huang H, et al. Multiple cell transplantation based on an intraparenchymal approach for patients with chronic phase stroke. Cell Transplant 2013; 22(1_suppl) (Suppl. 1): 83-91.
[http://dx.doi.org/10.3727/096368913X672154] [PMID: 23992950]
[39]
Banerjee S, Bentley P, Hamady M, et al. Intra-arterial immunoselected CD34+ stem cells for acute ischemic stroke. Stem Cells Transl Med 2014; 3(11): 1322-30.
[http://dx.doi.org/10.5966/sctm.2013-0178] [PMID: 25107583]
[40]
Saft M, Gonzales-Portillo B, Park YJ, et al. Stem cell repair of the microvascular damage in stroke. Cells 2020; 9(9): 2075.
[http://dx.doi.org/10.3390/cells9092075] [PMID: 32932814]
[41]
Meamar R, Dehghani L, Ghasemi M, Khorvash F, Shaygannejad V. Stem cell therapy in stroke: A review literature. Int J Prev Med 2013; 4 (Suppl. 2): S139-46.
[PMID: 23776716]
[42]
Li J, Zhang Q, Wang W, Lin F, Wang S, Zhao J. Mesenchymal stem cell therapy for ischemic stroke: A look into treatment mechanism and therapeutic potential. J Neurol 2021; 268(11): 4095-107.
[http://dx.doi.org/10.1007/s00415-020-10138-5] [PMID: 32761505]
[43]
Li H, Li S, Ren C, et al. Hypoxic postconditioning promotes neurogenesis by modulating the metabolism of neural stem cells after cerebral ischemia. Exp Neurol 2022; 347: 113871.
[http://dx.doi.org/10.1016/j.expneurol.2021.113871] [PMID: 34563509]
[44]
Gan L, Liao S, Tong Y, Li W, Peng W, Deng S. Long noncoding RNA H19 mediates neural stem/progenitor cells proliferation, differentiation and apoptosis through the p53 signaling pathway after ischemic stroke. Biochem Biophys Res Commun 2022; 597: 8-15.
[http://dx.doi.org/10.1016/j.bbrc.2022.01.095] [PMID: 35121179]
[45]
Rolfe A, Sun D. Stem cell therapy in brain trauma: Implications for repair and regeneration of injured brain in experimental TBI models. Brain Neurotrauma: Molecular, Neuropsychological, and Rehabilitation Aspects. Boca Raton: CRC Press/Taylor & Francis 2015.
[46]
Zhou Y, Shao A, Xu W, Wu H, Deng Y. Advance of stem cell treatment for traumatic brain injury. Front Cell Neurosci 2019; 13: 301-12.
[http://dx.doi.org/10.3389/fncel.2019.00301] [PMID: 31456663]
[47]
Gao L, Xu W, Li T, et al. Stem cell therapy: A promising therapeutic method for intracerebral hemorrhage. Cell Transplant 2018; 27(12): 1809-24.
[http://dx.doi.org/10.1177/0963689718773363] [PMID: 29871521]
[48]
Wei L, Wang J, Cao Y, et al. Hyperbaric oxygenation promotes neural stem cell proliferation and protects the learning and memory ability in neonatal hypoxic-ischemic brain damage. Int J Clin Exp Pathol 2015; 8(2): 1752-9.
[PMID: 25973064]
[49]
Fuentealba LC, Rompani SB, Parraguez JI, et al. Embryonic origin of postnatal neural stem cells. Cell 2015; 161(7): 1644-55.
[http://dx.doi.org/10.1016/j.cell.2015.05.041] [PMID: 26091041]
[50]
Hayashi Y, Lin HT, Lee CC, Tsai KJ. Effects of neural stem cell transplantation in Alzheimer’s disease models. J Biomed Sci 2020; 27(1): 29.
[http://dx.doi.org/10.1186/s12929-020-0622-x] [PMID: 31987051]
[51]
Ring KL, An MC, Zhang N, et al. Genomic analysis reveals disruption of striatal neuronal development and therapeutic targets in human Huntington’s disease neural stem cells. Stem Cell Reports 2015; 5(6): 1023-38.
[http://dx.doi.org/10.1016/j.stemcr.2015.11.005] [PMID: 26651603]
[52]
Baker EW, Kinder HA, West FD. Neural stem cell therapy for stroke: A multimechanistic approach to restoring neurological function. Brain Behav 2019; 9(3): e01214.
[http://dx.doi.org/10.1002/brb3.1214] [PMID: 30747485]
[53]
Zhang GL, Zhu ZH, Wang YZ. Neural stem cell transplantation therapy for brain ischemic stroke: Review and perspectives. World J Stem Cells 2019; 11(10): 817-30.
[http://dx.doi.org/10.4252/wjsc.v11.i10.817] [PMID: 31692854]
[54]
Chrostek MR, Fellows EG, Crane AT, Grande AW, Low WC. Efficacy of stem cell-based therapies for stroke. Brain Res 2019; 1722: 146362.
[http://dx.doi.org/10.1016/j.brainres.2019.146362] [PMID: 31381876]
[55]
Steinberg GK, Kondziolka D, Wechsler LR, et al. Two-year safety and clinical outcomes in chronic ischemic stroke patients after implantation of modified bone marrow-derived mesenchymal stem cells (SB623): A phase 1/2a study. J Neurosurg 2018; 131(5): 1-11.
[PMID: 30497166]
[56]
Trivedi HL, Thakkar UG, Vanikar AV, et al. Infusion of autologous adipose tissue derived neuronal differentiated mesenchymal stem cells and hematopoietic stem cells in post-traumatic paraplegia offers a viable therapeutic approach. Adv Biomed Res 2016; 5(1): 51-65.
[http://dx.doi.org/10.4103/2277-9175.178792] [PMID: 27110548]
[57]
Sasaki Y, Sasaki M, Kataoka-Sasaki Y, et al. Synergic effects of rehabilitation and intravenous infusion of mesenchymal stem cells after stroke in rats. Phys Ther 2016; 96(11): 1791-8.
[http://dx.doi.org/10.2522/ptj.20150504] [PMID: 27174259]
[58]
Salatin S, Alami-Milani M, Daneshgar R, Jelvehgari M. Box-Behnken experimental design for preparation and optimization of the intranasal gels of selegiline hydrochloride. Drug Dev Ind Pharm 2018; 44(10): 1613-21.
[http://dx.doi.org/10.1080/03639045.2018.1483387] [PMID: 29932793]
[59]
Yanina I, Nina M, Olga A. The influence of autologous marrow mesenchymal stem cell infusion on hematopoiesis reconstitution after hematopoietic stem cells autotransplantation in children with oncological and hematological diseases. Cell Ther Transplant 2008; 1(1): 35-42.
[60]
Matsushita T, Kibayashi T, Katayama T, et al. Mesenchymal stem cells transmigrate across brain microvascular endothelial cell monolayers through transiently formed inter-endothelial gaps. Neurosci Lett 2011; 502(1): 41-5.
[http://dx.doi.org/10.1016/j.neulet.2011.07.021] [PMID: 21798315]
[61]
Stavely R, Nurgali K. The emerging antioxidant paradigm of mesenchymal stem cell therapy. Stem Cells Transl Med 2020; 9(9): 985-1006.
[http://dx.doi.org/10.1002/sctm.19-0446] [PMID: 32497410]
[62]
Barzegar M, Wang Y, Eshaq RS, et al. Human placental mesenchymal stem cells improve stroke outcomes viaextracellular vesicles-mediated preservation of cerebral blood flow. EBioMedicine 2021; 63: 103161.
[http://dx.doi.org/10.1016/j.ebiom.2020.103161] [PMID: 33348090]
[63]
Camargo FD, Green R, Capetenaki Y, Jackson KA, Goodell MA. Single hematopoietic stem cells generate skeletal muscle through myeloid intermediates. Nat Med 2003; 9(12): 1520-7.
[http://dx.doi.org/10.1038/nm963] [PMID: 14625546]
[64]
Balsam LB, Wagers AJ, Christensen JL, Kofidis T, Weissman IL, Robbins RC. Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature 2004; 428(6983): 668-73.
[http://dx.doi.org/10.1038/nature02460] [PMID: 15034594]
[65]
Costa TCM, Chiari-Correia R, Salmon CEG, et al. Hematopoietic stem cell transplantation reverses white matter injury measured by diffusion-tensor imaging (DTI) in sickle cell disease patients. Bone Marrow Transplant 2021; 56(11): 2705-13.
[http://dx.doi.org/10.1038/s41409-021-01365-z] [PMID: 34234298]
[66]
Karussis D, Karageorgiou C, Vaknin-Dembinsky A, et al. Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Arch Neurol 2010; 67(10): 1187-94.
[http://dx.doi.org/10.1001/archneurol.2010.248] [PMID: 20937945]
[67]
Jendelová P, Herynek V, Urdziková L, et al. Magnetic resonance tracking of human CD34+ progenitor cells separated by means of immunomagnetic selection and transplanted into injured rat brain. Cell Transplant 2005; 14(4): 173-82.
[http://dx.doi.org/10.3727/000000005783983124] [PMID: 15929552]
[68]
Chen DC, Lin SZ, Fan JR, et al. Intracerebral implantation of autologous peripheral blood stem cells in stroke patients: A randomized phase II study. Cell Transplant 2014; 23(12): 1599-612.
[http://dx.doi.org/10.3727/096368914X678562] [PMID: 24480430]
[69]
Moniche F, Gonzalez A, Gonzalez-Marcos JR, et al. Intra-arterial bone marrow mononuclear cells in ischemic stroke: A pilot clinical trial. Stroke 2012; 43(8): 2242-4.
[http://dx.doi.org/10.1161/STROKEAHA.112.659409] [PMID: 22764211]
[70]
Chen J, Li Y, Katakowski M, et al. Intravenous bone marrow stromal cell therapy reduces apoptosis and promotes endogenous cell proliferation after stroke in female rat. J Neurosci Res 2003; 73(6): 778-86.
[http://dx.doi.org/10.1002/jnr.10691] [PMID: 12949903]
[71]
Huang H, Mu Q, Li G, et al. Bone marrow mesenchymal stem cell therapy in ischemic stroke: Mechanisms of action and treatment optimization strategies. Neural Regen Res 2016; 11(6): 1015-24.
[http://dx.doi.org/10.4103/1673-5374.184506] [PMID: 27482235]
[72]
Shen LH, Li Y, Gao Q, Savant-Bhonsale S, Chopp M. Down-regulation of neurocan expression in reactive astrocytes promotes axonal regeneration and facilitates the neurorestorative effects of bone marrow stromal cells in the ischemic rat brain. Glia 2008; 56(16): 1747-54.
[http://dx.doi.org/10.1002/glia.20722] [PMID: 18618668]
[73]
Pavlichenko N, Sokolova I, Vijde S, et al. Mesenchymal stem cells transplantation could be beneficial for treatment of experimental ischemic stroke in rats. Brain Res 2008; 1233: 203-13.
[http://dx.doi.org/10.1016/j.brainres.2008.06.123] [PMID: 18675258]
[74]
Terada N, Hamazaki T, Oka M, et al. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature 2002; 416(6880): 542-5.
[http://dx.doi.org/10.1038/nature730] [PMID: 11932747]
[75]
Bang OY, Lee JS, Lee PH, Lee G. Autologous mesenchymal stem cell transplantation in stroke patients. Ann Neurol 2005; 57(6): 874-82.
[http://dx.doi.org/10.1002/ana.20501] [PMID: 15929052]
[76]
Lalu MM, McIntyre L, Pugliese C, et al. Safety of cell therapy with mesenchymal stromal cells (SafeCell): A systematic review and meta-analysis of clinical trials. PLoS One 2012; 7(10): e47559.
[http://dx.doi.org/10.1371/journal.pone.0047559] [PMID: 23133515]
[77]
Krupinski J, Kaluza J, Kumar P, Wang M, Kumar S. Prognostic value of blood vessel density in ischaemic stroke. Lancet 1993; 342(8873): 742-50.
[http://dx.doi.org/10.1016/0140-6736(93)91734-4] [PMID: 8103843]
[78]
Bhasin A, Padma Srivastava MV, Mohanty S, Bhatia R, Kumaran SS, Bose S. Stem cell therapy: A clinical trial of stroke. Clin Neurol Neurosurg 2013; 115(7): 1003-8.
[http://dx.doi.org/10.1016/j.clineuro.2012.10.015] [PMID: 23183251]
[79]
D’Amour KA, Gage FH. Genetic and functional differences between multipotent neural and pluripotent embryonic stem cells. Proc Natl Acad Sci USA 2003; 100(Suppl. 1): 11866-72.
[http://dx.doi.org/10.1073/pnas.1834200100] [PMID: 12923297]
[80]
Benedek A, Cernica D, Mester A, et al. Modern concepts in regenerative therapy for ischemic stroke: From stem cells for promoting angiogenesis to 3D-bioprinted scaffolds customized via carotid shear stress analysis. Int J Mol Sci 2019; 20(10): 2574.
[http://dx.doi.org/10.3390/ijms20102574] [PMID: 31130624]
[81]
Roig-Merino A, Urban M, Bozza M, et al. An episomal DNA vector platform for the persistent genetic modification of pluripotent stem cells and their differentiated progeny. Stem Cell Reports 2022; 17(1): 143-58.
[http://dx.doi.org/10.1016/j.stemcr.2021.11.011] [PMID: 34942088]
[82]
Salatin S, Barar J, Barzegar-Jalali M, Adibkia K, Kiafar F, Jelvehgari M. An alternative approach for improved entrapment efficiency of hydrophilic drug substance in PLGA nanoparticles by interfacial polymer deposition following solvent displacement. Jundishapur J Nat Pharm Prod 2018; 13(4): e12873.
[http://dx.doi.org/10.5812/jjnpp.12873]
[83]
Maleki Dizaj S, Rad AA, Safaei N, et al. The application of nanomaterials in cardiovascular diseases: A review on drugs and devices. J Pharm Pharm Sci 2019; 22: 501-15.
[http://dx.doi.org/10.18433/jpps30456]
[84]
Rui Y, Wilson DR, Tzeng SY, et al. High-throughput and high- content bioassay enables tuning of polyester nanoparticles for cellular uptake, endosomal escape, and systemic in vivo delivery of mRNA. Sci Adv 2022; 8(1): eabk2855.
[http://dx.doi.org/10.1126/sciadv.abk2855] [PMID: 34985952]
[85]
Hu S, Wang X, Li Z, et al. Platelet membrane and stem cell exosome hybrids enhance cellular uptake and targeting to heart injury. Nano Today 2021; 39: 101210.
[http://dx.doi.org/10.1016/j.nantod.2021.101210] [PMID: 34306170]
[86]
Lim S, Yoon HY, Jang HJ, et al. Dual-Modal imaging-guided precise tracking of bioorthogonally labeled mesenchymal stem cells in mouse brain stroke. ACS Nano 2019; 13(10): 10991-1007.
[http://dx.doi.org/10.1021/acsnano.9b02173] [PMID: 31584257]
[87]
Baker EW, Platt SR, Lau VW, et al. Induced pluripotent stem cell-derived neural stem cell therapy enhances recovery in an ischemic stroke pig model. Sci Rep 2017; 7(1): 10075.
[http://dx.doi.org/10.1038/s41598-017-10406-x] [PMID: 28855627]
[88]
Lotfipour F, Shahi S, Farjami A, Salatin S, Mahmoudian M, Dizaj SM. Safety and toxicity issues of therapeutically used nanoparticles from the oral route. BioMed Res Int 2021; 2021: 1-14.
[http://dx.doi.org/10.1155/2021/9322282] [PMID: 34746313]
[89]
Salatin S, Alami-Milani M, Jelvehgari M. Expert design and optimization of a novel buccoadhesive blend film impregnated with metformin nanoparticles. Ther Deliv 2020; 11(9): 573-90.
[http://dx.doi.org/10.4155/tde-2020-0066] [PMID: 32873189]
[90]
Salatin S, Lotfipour F, Jelvehgari M. A brief overview on nano-sized materials used in the topical treatment of skin and soft tissue bacterial infections. Expert Opin Drug Deliv 2019; 16(12): 1313-31.
[http://dx.doi.org/10.1080/17425247.2020.1693998] [PMID: 31738622]
[91]
Fernandes AR, Chari DM, Part I. Part I: Minicircle vector technology limits DNA size restrictions on ex vivo gene delivery using nanoparticle vectors: Overcoming a translational barrier in neural stem cell therapy. J Control Release 2016; 238: 289-99.
[http://dx.doi.org/10.1016/j.jconrel.2016.06.024] [PMID: 27317366]
[92]
Farjami A, Salatin S, Jafari S, Mahmoudian M, Jelvehgari M. The factors determining the skin penetration and cellular uptake of nanocarriers: New hope for clinical development. Curr Pharm Des 2021; 27(42): 4315-29.
[http://dx.doi.org/10.2174/1381612827666210810091745] [PMID: 34779364]
[93]
Yuan T, Gao L, Zhan W, Dini D. Effect of particle size and surface charge on nanoparticles diffusion in the brain white matter. Pharm Res 2022; 39(4): 767-81.
[http://dx.doi.org/10.1007/s11095-022-03222-0] [PMID: 35314997]
[94]
Beck M, Mandal T, Buske C, Lindén M. Serum protein adsorption enhances active leukemia stem cell targeting of mesoporous silica nanoparticles. ACS Appl Mater Interfaces 2017; 9(22): 18566-74.
[http://dx.doi.org/10.1021/acsami.7b04742] [PMID: 28525262]
[95]
Yang W, Wang L, Fang M, et al. Nanoparticle surface engineering with heparosan polysaccharide reduces serum protein adsorption and enhances cellular uptake. Nano Lett 2022; 22(5): 2103-11.
[http://dx.doi.org/10.1021/acs.nanolett.2c00349] [PMID: 35166110]
[96]
Lu S, Zhang W, Zhang R, et al. Comparison of cellular toxicity caused by ambient ultrafine particles and engineered metal oxide nanoparticles. Part Fibre Toxicol 2015; 12(1): 5.
[http://dx.doi.org/10.1186/s12989-015-0082-8] [PMID: 25888760]
[97]
Im GB, Jung E, Kim YH, et al. Endosome-triggered ion-releasing nanoparticles as therapeutics to enhance the angiogenic efficacy of human mesenchymal stem cells. J Control Release 2020; 324: 586-97.
[http://dx.doi.org/10.1016/j.jconrel.2020.05.038] [PMID: 32454119]
[98]
Sharifi S, Samani A, Ahmadian E, et al. Oral delivery of proteins and peptides by mucoadhesive nanoparticles. Biointerface Res Appl Chem 2019; 9(2): 3849-52.
[http://dx.doi.org/10.33263/BRIAC92.849852]
[99]
Yang L, Zang G, Li J, Li X, Li Y, Zhao Y. Cell-derived biomimetic nanoparticles as a novel drug delivery system for atherosclerosis: predecessors and perspectives. Regen Biomater 2020; 7(4): 349-58.
[http://dx.doi.org/10.1093/rb/rbaa019] [PMID: 32793380]
[100]
Salatin S, Jelvehgari M. Desirability function approach for development of a thermosensitive and bioadhesive nanotransfersome–hydrogel hybrid system for enhanced skin bioavailability and antibacterial activity of cephalexin. Drug Dev Ind Pharm 2020; 46(8): 1318-33.
[http://dx.doi.org/10.1080/03639045.2020.1788068] [PMID: 32598186]
[101]
Cayero-Otero MD, Gomes MJ, Martins C, et al. In vivo biodistribution of venlafaxine-PLGA nanoparticles for brain delivery: Plain vs. functionalized nanoparticles. Expert Opin Drug Deliv 2019; 16(12): 1413-27.
[http://dx.doi.org/10.1080/17425247.2019.1690452] [PMID: 31694417]
[102]
Zhao Y, Li D, Zhu Z, Sun Y. Improved neuroprotective effects of gallic acid-loaded chitosan nanoparticles against ischemic stroke. Rejuv Res 2020; 23(4): 284-92.
[http://dx.doi.org/10.1089/rej.2019.2230] [PMID: 31680647]
[103]
Bhattamisra SK, Shak AT, Xi LW, et al. Nose to brain delivery of rotigotine loaded chitosan nanoparticles in human SH-SY5Y neuroblastoma cells and animal model of Parkinson’s disease. Int J Pharm 2020; 579: 119148.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119148] [PMID: 32084576]
[104]
Maghsoodi M, Rahmani M, Ghavimi H, et al. Fast dissolving sublingual films containing sumatriptan alone and combined with methoclopramide: Evaluation in vitro drug release and mucosal permeation. 2016; 22: 153-63.
[http://dx.doi.org/10.15171/PS.2016.25]
[105]
Chen F, Zhao ER, Hableel G, et al. Increasing the efficacy of stem cell therapy viatriple-function inorganic nanoparticles. ACS Nano 2019; 13(6): 6605-17.
[http://dx.doi.org/10.1021/acsnano.9b00653] [PMID: 31188564]
[106]
Salatin S. Nanoparticles as potential tools for improved antioxidant enzyme delivery. J Adv Chem Pharm Mater 2018; 1(3): 65-6.
[107]
Toyoshima A, Yasuhara T, Date I. Mesenchymal stem cell therapy for ischemic stroke. Acta Med Okayama 2017; 71(4): 263-8.
[PMID: 28824181]
[108]
Korshunova I, Rhein S, García-González D, et al. Genetic modification increases the survival and the neuroregenerative properties of transplanted neural stem cells. JCI Insight 2020; 5(4): e126268.
[http://dx.doi.org/10.1172/jci.insight.126268] [PMID: 31999645]
[109]
Hu XM, Zhang Q, Zhou RX, et al. Programmed cell death in stem cell-based therapy: Mechanisms and clinical applications. World J Stem Cells 2021; 13(5): 386-415.
[http://dx.doi.org/10.4252/wjsc.v13.i5.386] [PMID: 34136072]
[110]
Jackson JS, Golding JP, Chapon C, Jones WA, Bhakoo KK. Homing of stem cells to sites of inflammatory brain injury after intracerebral and intravenous administration: A longitudinal imaging study. Stem Cell Res Ther 2010; 1(2): 17.
[http://dx.doi.org/10.1186/scrt17] [PMID: 20550687]
[111]
Shear DA, Tate CC, Tate MC, et al. Stem cell survival and functional outcome after traumatic brain injury is dependent on transplant timing and location. Restor Neurol Neurosci 2011; 29(4): 215-25.
[http://dx.doi.org/10.3233/RNN-2011-0593] [PMID: 21697596]
[112]
Ohnishi K, Semi K, Yamamoto T, et al. Premature termination of reprogramming in vivo leads to cancer development through altered epigenetic regulation. Cell 2014; 156(4): 663-77.
[http://dx.doi.org/10.1016/j.cell.2014.01.005] [PMID: 24529372]
[113]
Hansen C, Angot E, Bergström AL, et al. α-Synuclein propagates from mouse brain to grafted dopaminergic neurons and seeds aggregation in cultured human cells. J Clin Invest 2011; 121(2): 715-25.
[http://dx.doi.org/10.1172/JCI43366] [PMID: 21245577]
[114]
Wang H, Agarwal P, Xiao Y, et al. A nano-in-micro system for enhanced stem cell therapy of ischemic diseases. ACS Cent Sci 2017; 3(8): 875-85.
[http://dx.doi.org/10.1021/acscentsci.7b00213] [PMID: 28852702]
[115]
Kang MK, Kim TJ, Kim YJ, et al. Targeted delivery of iron oxide nanoparticle-loaded human embryonic stem cell-derived spherical neural masses for treating intracerebral hemorrhage. Int J Mol Sci 2020; 21(10): 3658.
[http://dx.doi.org/10.3390/ijms21103658] [PMID: 32455909]
[116]
Chen PJ, Kang YD, Lin CH, et al. Multitheragnostic multi-GNRs crystal-seeded magnetic nanoseaurchin for enhanced in vivo mesenchymal-stem-cell homing, multimodal imaging, and stroke therapy. Adv Mater 2015; 27(41): 6488-95.
[http://dx.doi.org/10.1002/adma.201502784] [PMID: 26403165]
[117]
Gowing G, Shelley B, Staggenborg K, et al. Glial cell line-derived neurotrophic factor-secreting human neural progenitors show long-term survival, maturation into astrocytes, and no tumor formation following transplantation into the spinal cord of immunocompromised rats. Neuroreport 2014; 25(6): 367-72.
[http://dx.doi.org/10.1097/WNR.0000000000000092] [PMID: 24284956]
[118]
Alkaff SA, Radhakrishnan K, Nedumaran AM, Liao P, Czarny B. Nanocarriers for stroke therapy: Advances and obstacles in translating animal studies. Int J Nanomedicine 2020; 15: 445-64.
[http://dx.doi.org/10.2147/IJN.S231853] [PMID: 32021190]
[119]
Shabani Z, Rahbarghazi R, Karimipour M, et al. Transplantation of bioengineered reelin-loaded PLGA/PEG micelles can accelerate neural tissue regeneration in photothrombotic stroke model of mouse. Bioeng Transl Med 2021; 7(1): e10264.
[PMID: 35111956]
[120]
Ahmad A, Fauzia E, Kumar M, et al. Gelatin-coated polycaprolactone nanoparticle-mediated naringenin delivery rescue human mesenchymal stem cells from oxygen glucose deprivation-induced inflammatory stress. ACS Biomater Sci Eng 2019; 5(2): 683-95.
[http://dx.doi.org/10.1021/acsbiomaterials.8b01081] [PMID: 33405831]
[121]
Shin S, Kinder H, Kumar A, et al. Tanshinone IIA-loaded nanoparticle and neural stem cell therapy enhances recovery in a pig ischemic stroke model. Stem Cells Transl Med 2022; 11(10): 214-20.
[PMID: 36069837]
[122]
Ferreira R, Fonseca MC, Santos T, et al. Retinoic acid-loaded polymeric nanoparticles enhance vascular regulation of neural stem cell survival and differentiation after ischaemia. Nanoscale 2016; 8(15): 8126-37.
[http://dx.doi.org/10.1039/C5NR09077F] [PMID: 27025400]
[123]
Nazarian S, Abdolmaleki Z, Torfeh A, Shirazi Beheshtiha SH. Mesenchymal stem cells with modafinil (gold nanoparticles) significantly improves neurological deficits in rats after middle cerebral artery occlusion. Exp Brain Res 2020; 238(11): 2589-601.
[http://dx.doi.org/10.1007/s00221-020-05913-9] [PMID: 32886135]
[124]
Zuo L, Feng Q, Han Y, et al. Therapeutic effect on experimental acute cerebral infarction is enhanced after nanoceria labeling of human umbilical cord mesenchymal stem cells. Ther Adv Neurol Disord 2019; 12.
[http://dx.doi.org/10.1177/1756286419859725] [PMID: 31431809]
[125]
Huang Y, Wang J, Cai J, et al. Targeted homing of CCR2-overexpressing mesenchymal stromal cells to ischemic brain enhances post-stroke recovery partially through PRDX4-mediated blood-brain barrier preservation. Theranostics 2018; 8(21): 5929-44.
[http://dx.doi.org/10.7150/thno.28029] [PMID: 30613272]
[126]
Ryu S, Lee JM, Bae CA, Moon CE, Cho KO. Therapeutic efficacy of neuregulin 1-expressing human adipose-derived mesenchymal stem cells for ischemic stroke. PLoS One 2019; 14(9): e0222587.
[http://dx.doi.org/10.1371/journal.pone.0222587] [PMID: 31560696]
[127]
Chen J, Guo Z, Tian H, Chen X. Production and clinical development of nanoparticles for gene delivery. Mol Ther Methods Clin Dev 2016; 3: 16023.
[http://dx.doi.org/10.1038/mtm.2016.23] [PMID: 27088105]
[128]
Chen X, Gu S, Chen BF, et al. Nanoparticle delivery of stable miR-199a-5p agomir improves the osteogenesis of human mesenchymal stem cells via the HIF1a pathway. Biomaterials 2015; 53: 239-50.
[http://dx.doi.org/10.1016/j.biomaterials.2015.02.071] [PMID: 25890723]
[129]
Peng LH, Huang YF, Zhang CZ, et al. Integration of antimicrobial peptides with gold nanoparticles as unique non-viral vectors for gene delivery to mesenchymal stem cells with antibacterial activity. Biomaterials 2016; 103: 137-49.
[http://dx.doi.org/10.1016/j.biomaterials.2016.06.057] [PMID: 27376562]
[130]
Tao J, Ding WF, Che XH, et al. Optimization of a cationic liposome-based gene delivery system for the application of miR-145 in anticancer therapeutics. Int J Mol Med 2016; 37(5): 1345-54.
[http://dx.doi.org/10.3892/ijmm.2016.2530] [PMID: 26986502]
[131]
Malina J, Kostrhunova H, Novohradsky V, Scott P, Brabec V. Metallohelix vectors for efficient gene delivery via cationic DNA nanoparticles. Nucleic Acids Res 2022; 50(2): 674-83.
[http://dx.doi.org/10.1093/nar/gkab1277] [PMID: 35018455]
[132]
Barile CJ, Tse ECM, Li Y, et al. The flip-flop diffusion mechanism across lipids in a hybrid bilayer membrane. Biophys J 2016; 110(11): 2451-62.
[http://dx.doi.org/10.1016/j.bpj.2016.04.041] [PMID: 27276263]
[133]
Liufu C, Li Y, Lin Y, et al. Synergistic ultrasonic biophysical effect-responsive nanoparticles for enhanced gene delivery to ovarian cancer stem cells. Drug Deliv 2020; 27(1): 1018-33.
[http://dx.doi.org/10.1080/10717544.2020.1785583] [PMID: 32627597]
[134]
Saraiva C, Talhada D, Rai A, et al. MicroRNA-124-loaded nanoparticles increase survival and neuronal differentiation of neural stem cells in vitro but do not contribute to stroke outcome in vivo. PLoS One 2018; 13(3): e0193609.
[http://dx.doi.org/10.1371/journal.pone.0193609] [PMID: 29494665]
[135]
Lu L, Wang Y, Zhang F, et al. MRI-visible siRNA nanomedicine directing neuronal differentiation of neural stem cells in stroke. Adv Funct Mater 2018; 28(14): 1706769.
[http://dx.doi.org/10.1002/adfm.201706769]
[136]
Cheng HY, Wang YS, Hsu PY, Chen CY, Liao YC, Juo SHH. miR-195 has a potential to treat ischemic and hemorrhagic stroke through neurovascular protection and neurogenesis. Mol Ther Methods Clin Dev 2019; 13: 121-32.
[http://dx.doi.org/10.1016/j.omtm.2018.11.011] [PMID: 30775405]
[137]
Zhang T, Li F, Xu Q, et al. Ferrimagnetic nanochains-based mesenchymal stem cell engineering for highly efficient post-stroke recovery. Adv Funct Mater 2019; 29(24): 1900603.
[http://dx.doi.org/10.1002/adfm.201900603]
[138]
Elkhenany H, Abd Elkodous M, Ghoneim NI, et al. Comparison of different uncoated and starch-coated superparamagnetic iron oxide nanoparticles: Implications for stem cell tracking. Int J Biol Macromol 2020; 143: 763-74.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.10.031] [PMID: 31626822]
[139]
Hua S, Zhong S, Arami H, et al. Simultaneous deep tracking of stem cells by surface enhanced raman imaging combined with single-cell tracking by NIR-II imaging in myocardial infarction. Adv Funct Mater 2021; 31(24): 2100468.
[http://dx.doi.org/10.1002/adfm.202100468]
[140]
Gu L, Li X, Jiang J, et al. Stem cell tracking using effective self- assembled peptide-modified superparamagnetic nanoparticles. Nanoscale 2018; 10(34): 15967-79.
[http://dx.doi.org/10.1039/C7NR07618E] [PMID: 29916501]
[141]
Wang Q, Ma X, Liao H, et al. Artificially engineered cubic iron oxide nanoparticle as a high-performance magnetic particle imaging tracer for stem cell tracking. ACS Nano 2020; 14(2): 2053-62.
[http://dx.doi.org/10.1021/acsnano.9b08660] [PMID: 31999433]
[142]
Zheng Y, Huang J, Zhu T, et al. Stem cell tracking technologies for neurological regenerative medicine purposes. Stem Cells Int 2017; 2017: 1-9.
[http://dx.doi.org/10.1155/2017/2934149] [PMID: 29138636]
[143]
Shah BS, Clark PA, Moioli EK, Stroscio MA, Mao JJ. Labeling of mesenchymal stem cells by bioconjugated quantum dots. Nano Lett 2007; 7(10): 3071-9.
[http://dx.doi.org/10.1021/nl071547f] [PMID: 17887799]
[144]
Lu L, Wang Y, Cao M, et al. A novel polymeric micelle used for in vivo MR imaging tracking of neural stem cells in acute ischemic stroke. RSC Advances 2017; 7(25): 15041-52.
[http://dx.doi.org/10.1039/C7RA00345E]
[145]
Frank JA, Zywicke H, Jordan EK, et al. Magnetic intracellular labeling of mammalian cells by combining (FDA-approved) superparamagnetic iron oxide MR contrast agents and commonly used transfection agents. Acad Radiol 2002; 9(2) (Suppl. 2): S484-7.
[http://dx.doi.org/10.1016/S1076-6332(03)80271-4] [PMID: 12188316]
[146]
Nucci LP, Silva HR, Giampaoli V, Mamani JB, Nucci MP, Gamarra LF. Stem cells labeled with superparamagnetic iron oxide nanoparticles in a preclinical model of cerebral ischemia: A systematic review with meta-analysis. Stem Cell Res Ther 2015; 6(1): 27.
[http://dx.doi.org/10.1186/s13287-015-0015-3] [PMID: 25889904]
[147]
Kraitchman DL, Kedziorek DA, Bulte JW. MR imaging of transplanted stem cells in myocardial infarction. Molecular Imaging. Springer 2011; pp. 141-52.
[148]
García-Belda P, Prima-García H, Aliena-Valero A, et al. Intravenous SPION-labeled adipocyte-derived stem cells targeted to the brain by magnetic attraction in a rat stroke model: An ultrastructural insight into cell fate within the brain. Nanomedicine 2022; 39: 102464.
[http://dx.doi.org/10.1016/j.nano.2021.102464] [PMID: 34583057]
[149]
Lee ESM, Chan J, Shuter B, et al. Microgel iron oxide nanoparticles for tracking human fetal mesenchymal stem cells through magnetic resonance imaging. Stem Cells 2009; 27(8): 1921-31.
[http://dx.doi.org/10.1002/stem.112] [PMID: 19544438]
[150]
Ali AAA, Shahror RA, Chen KY. Efficient labeling of mesenchymal stem cells for high sensitivity long-term MRI monitoring in live mice brains. Int J Nanomedicine 2020; 15: 97-114.
[http://dx.doi.org/10.2147/IJN.S211205] [PMID: 32021167]
[151]
Silva HR, Mamani JB, Nucci MP, et al. Triple-modal imaging of stem-cells labeled with multimodal nanoparticles, applied in a stroke model. World J Stem Cells 2019; 11(2): 100-23.
[http://dx.doi.org/10.4252/wjsc.v11.i2.100] [PMID: 30842808]
[152]
Chen F, Ma M, Wang J, et al. Exosome-like silica nanoparticles: A novel ultrasound contrast agent for stem cell imaging. Nanoscale 2017; 9(1): 402-11.
[http://dx.doi.org/10.1039/C6NR08177K] [PMID: 27924340]
[153]
Yao M, Shi X, Zuo C, et al. Engineering of SPECT/photoacoustic imaging/antioxidative stress triple-function nanoprobe for advanced mesenchymal stem cell therapy of cerebral ischemia. ACS Appl Mater Interfaces 2020; 12(34): 37885-95.
[http://dx.doi.org/10.1021/acsami.0c10500] [PMID: 32806884]
[154]
Cai X, Zhang CJ, Ting Wei Lim F, et al. Organic nanoparticles with aggregation-induced emission for bone marrow stromal cell tracking in a rat PTI model. Small (Weinheim an der Bergstrasse, Germany) 2016; 12(47): 6576-85.
[http://dx.doi.org/10.1002/smll.201601630]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy