Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Systematic Review Article

Effects of Coffee Supplementation on Homocysteine and Leptin Levels: A Systematic Review and Meta-analysis of Clinical Trials

Author(s): Luis E. Simental-Mendía*, Mario Simental-Mendía and Mayela Ríos-Mier

Volume 29, Issue 1, 2023

Published on: 27 December, 2022

Page: [30 - 36] Pages: 7

DOI: 10.2174/1381612829666221213101827

Price: $65

Open Access Journals Promotions 2
Abstract

Background: It has been reported that the consumption of antioxidant foods and beverages may benefit the development of cardiovascular risk factors. However, the impact of coffee consumption on some of these factors, such as homocysteine and leptin is controversial. Some clinical trials have suggested that coffee administration increases plasma total homocysteine levels, while others have found no significant changes in leptin concentrations.

Objective: This study aimed to assess the effects of coffee supplementation on homocysteine and leptin concentrations in a meta-analysis of clinical trials.

Methods: PubMed, Web of Science, Scopus, ClinicalTrials.gov, and Google Scholar databases were searched from inception to September 29, 2021. A fixed-effects model and the generic inverse variance weighting method were used for meta-analysis.

Results: The meta-analysis demonstrated that coffee administration significantly increases homocysteine levels (WMD: 0.55 μmol/L, 95% CI: 0.17, 0.93, p = 0.005, I2 = 0%) but has no significant changes in leptin concentrations (WMD: 1.34 ng/mL, 95% CI: -0.78, 3.45, p = 0.21, I2 = 0%). Additionally, the sensitivity analysis was robust for both homocysteine and leptin levels.

Conclusion: The results of the present meta-analysis revealed that coffee supplementation raises serum homocysteine concentrations but has no effect on circulating leptin levels.

Keywords: Coffee, homocysteine, leptin, meta-analysis, antioxidant foods, beverages, cardiovascular risk factors.

[1]
Yusuf S, Hawken S, Ôunpuu S, et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): Case-control study. Lancet 2004; 364(9438): 937-52.
[http://dx.doi.org/10.1016/S0140-6736(04)17018-9] [PMID: 15364185]
[2]
Perk J, De Backer G, Gohlke H, et al. European guidelines on cardiovascular disease prevention in clinical practice (version 2012): The fifth joint task force of the european society of cardiology and other societies on cardiovascular disease prevention in clinical practice (constituted by representatives of nine societies and by invited experts). Developed with the special contribution of the european association for cardiovascular prevention & rehabilitation (EACPR). Eur Heart J 2012; 33(13): 1635-701.
[http://dx.doi.org/10.1093/eurheartj/ehs092] [PMID: 22555213]
[3]
Basati G, Razavi AE, Abdi S, Sarrafzedegan N. Association of plasma leptin, homocysteine and nitric oxide levels with the presence and unstability of coronary artery disease. Biomarkers Med 2014; 8(3): 405-12.
[http://dx.doi.org/10.2217/bmm.13.131] [PMID: 24712432]
[4]
Stanger O, Herrmann W, Pietrzik K, Fowler B, Geisel J, Dierkes J, et al. Clinical use and rational management of homocysteine, folic acid, and B vitamins in cardiovascular and thrombotic diseases. Zeitschrift Kardiol 2004; 93: 439-53.
[http://dx.doi.org/10.1007/s00392-004-0075-3]
[5]
Shenoy V, Mehendale V, Prabhu K, Shetty R, Rao P. Correlation of serum homocysteine levels with the severity of coronary artery disease. Indian J Clin Biochem 2014; 29(3): 339-44.
[http://dx.doi.org/10.1007/s12291-013-0373-5] [PMID: 24966483]
[6]
Huo Y, Li J, Qin X, et al. Efficacy of folic acid therapy in primary prevention of stroke among adults with hypertension in China: The CSPPT randomized clinical trial. JAMA 2015; 313(13): 1325-35.
[http://dx.doi.org/10.1001/jama.2015.2274] [PMID: 25771069]
[7]
Moon HS, Dalamaga M, Kim SY, et al. Leptin’s role in lipodystrophic and nonlipodystrophic insulin-resistant and diabetic individuals. Endocr Rev 2013; 34(3): 377-412.
[http://dx.doi.org/10.1210/er.2012-1053] [PMID: 23475416]
[8]
Dalamaga M, Chou SH, Shields K, Papageorgiou P, Polyzos SA, Mantzoros CS. Leptin at the intersection of neuroendocrinology and metabolism: Current evidence and therapeutic perspectives. Cell Metab 2013; 18(1): 29-42.
[http://dx.doi.org/10.1016/j.cmet.2013.05.010] [PMID: 23770129]
[9]
Bełtowski J. Role of leptin in blood pressure regulation and arterial hypertension. J Hypertens 2006; 24(5): 789-801.
[http://dx.doi.org/10.1097/01.hjh.0000222743.06584.66] [PMID: 16612235]
[10]
Beltowski J. Leptin and atherosclerosis. Atherosclerosis 2006; 189(1): 47-60.
[http://dx.doi.org/10.1016/j.atherosclerosis.2006.03.003] [PMID: 16580676]
[11]
Seufert J. Leptin effects on pancreatic β-cell gene expression and function. Diabetes 2004; 53 (Suppl. 1): S152-8.
[http://dx.doi.org/10.2337/diabetes.53.2007.S152] [PMID: 14749281]
[12]
Kaliora AC, Dedoussis GVZ, Schmidt H. Dietary antioxidants in preventing atherogenesis. Atherosclerosis 2006; 187(1): 1-17.
[http://dx.doi.org/10.1016/j.atherosclerosis.2005.11.001] [PMID: 16313912]
[13]
Scalbert A, Williamson G. Dietary intake and bioavailability of polyphenols. J Nutr 2000; 130(8) (Suppl.): 2073S-85S.
[http://dx.doi.org/10.1093/jn/130.8.2073S] [PMID: 10917926]
[14]
Lee C. Antioxidant ability of caffeine and its metabolites based on the study of oxygen radical absorbing capacity and inhibition of LDL peroxidation. Clin Chim Acta 2000; 295(1-2): 141-54.
[http://dx.doi.org/10.1016/S0009-8981(00)00201-1] [PMID: 10767400]
[15]
Verhoef P, Pasman WJ, van Vliet T, Urgert R, Katan MB. Contribution of caffeine to the homocysteine-raising effect of coffee: a randomized controlled trial in humans. Am J Clin Nutr 2002; 76(6): 1244-8.
[http://dx.doi.org/10.1093/ajcn/76.6.1244] [PMID: 12450889]
[16]
Urgert R, van Vliet T, Zock PL, Katan MB. Heavy coffee consumption and plasma homocysteine: a randomized controlled trial in healthy volunteers. Am J Clin Nutr 2000; 72(5): 1107-10.
[http://dx.doi.org/10.1093/ajcn/72.5.1107] [PMID: 11063436]
[17]
Olthof MR, Hollman PC, Zock PL, Katan MB. Consumption of high doses of chlorogenic acid, present in coffee, or of black tea increases plasma total homocysteine concentrations in humans. Am J Clin Nutr 2001; 73(3): 532-8.
[http://dx.doi.org/10.1093/ajcn/73.3.532] [PMID: 11237928]
[18]
Pham NM, Nanri A, Yasuda K, et al. Habitual consumption of coffee and green tea in relation to serum adipokines: a cross-sectional study. Eur J Nutr 2015; 54(2): 205-14.
[http://dx.doi.org/10.1007/s00394-014-0701-4] [PMID: 24752775]
[19]
Kempf K, Herder C, Erlund I, et al. Effects of coffee consumption on subclinical inflammation and other risk factors for type 2 diabetes: a clinical trial. Am J Clin Nutr 2010; 91(4): 950-7.
[http://dx.doi.org/10.3945/ajcn.2009.28548] [PMID: 20181814]
[20]
Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol 2009; 62(10): 1006-12.
[http://dx.doi.org/10.1016/j.jclinepi.2009.06.005] [PMID: 19631508]
[21]
Higgins JPT, Altman DG, Gøtzsche PC, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011; 343(oct18 2): d5928-8.
[http://dx.doi.org/10.1136/bmj.d5928] [PMID: 22008217]
[22]
Sutton AJ, Abrams KR, Jones DRST. In: Methods for meta-analysis in medical research; Wiley: New York, 2000, 348.
[23]
Clarke R, Halsey J, Lewington S, et al. Effects of lowering homocysteine levels with b vitamins on cardiovascular disease, cancer, and cause-specific mortality: Meta-analysis of 8 randomized trials involving 37 485 individuals effects of lowering homocysteine levels. Arch Intern Med 2010; 170(18): 1622-31.
[http://dx.doi.org/10.1001/archinternmed.2010.348] [PMID: 20937919]
[24]
Hozo SP, Djulbegovic B, Hozo I. Estimating the mean and variance from the median, range, and the size of a sample. BMC Med Res Methodol 2005; 5(1): 13.
[http://dx.doi.org/10.1186/1471-2288-5-13] [PMID: 15840177]
[25]
Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol 2014; 14(1): 135.
[http://dx.doi.org/10.1186/1471-2288-14-135] [PMID: 25524443]
[26]
Simental-Mendía LE, Sánchez-García A, Linden-Torres E, Simental-Mendía M. Effect of glucagon-like peptide-1 receptor agonists on circulating levels of leptin and resistin: A meta-analysis of randomized controlled trials. Diabetes Res Clin Pract 2021; 177: 108899.
[http://dx.doi.org/10.1016/j.diabres.2021.108899] [PMID: 34098057]
[27]
Deeks JJ, Higgins JPT. Analysing data and undertaking meta-analyses. In: Julian PT, James T, Jacqueline C, Eds. Cochrane Handb Syst Rev Interv. (2nd Edition..), Wiley Online 2022.
[28]
Agudelo OGM, Duque RM, Velásquez RCM, et al. Effect of consumption of different doses of filtered coffee on homocysteine plasma levels and blood pressure in a group of healthy volunteers. Rev Col Cardiol 2008; 15: 65-74.
[29]
Esposito F, Morisco F, Verde V, et al. Moderate coffee consumption increases plasma glutathione but not homocysteine in healthy subjects. Aliment Pharmacol Ther 2003; 17(4): 595-601.
[http://dx.doi.org/10.1046/j.1365-2036.2003.01429.x] [PMID: 12622769]
[30]
Mursu J, Voutilainen S, Nurmi T, et al. The effects of coffee consumption on lipid peroxidation and plasma total homocysteine concentrations: A clinical trial. Free Radic Biol Med 2005; 38(4): 527-34.
[http://dx.doi.org/10.1016/j.freeradbiomed.2004.11.025] [PMID: 15649655]
[31]
Ochiai R, Jokura H, Suzuki A, et al. Green coffee bean extract improves human vasoreactivity. Hypertens Res 2004; 27(10): 731-7.
[http://dx.doi.org/10.1291/hypres.27.731] [PMID: 15785008]
[32]
Haidari F, Samadi M, Mohammadshahi M, Jalali MT, Engali KA. Energy restriction combined with green coffee bean extract affects serum adipocytokines and the body composition in obese women. Asia Pac J Clin Nutr 2017; 26(6): 1048-54.
[http://dx.doi.org/10.6133/APJCN.022017.03] [PMID: 28917230]
[33]
Hosseinabadi S, Rafraf M, Mahmoodzadeh A, Asghari-Jafarabadi M, Asghari S. Effects of green coffee extract supplementation on glycemic indexes, leptin, and obesity values in patients with non-alcoholic fatty liver disease. J Herb Med 2020; 22: 100340.
[http://dx.doi.org/10.1016/j.hermed.2020.100340]
[34]
Shirali S, Daneghian S, Hosseini SA, Ashtary-Larky D, Daneghian M, Mirlohi MS. Effect of caffeine co-ingested with carnitine on weight, body-fat percent, serum leptin and lipid profile changes in male teen soccer players: A randomized clinical trial. Int J Pediatr 2016; 4: 3685-98.
[http://dx.doi.org/10.22038/IJP.2016.7532]
[35]
Sarriá B, Martínez-López S, Sierra-Cinos JL, García-Diz L, Mateos R, Bravo-Clemente L. Regularly consuming a green/roasted coffee blend reduces the risk of metabolic syndrome. Eur J Nutr 2018; 57(1): 269-78.
[http://dx.doi.org/10.1007/s00394-016-1316-8] [PMID: 27738812]
[36]
Homocysteine Studies Collaboration. Homocysteine and risk of ischemic heart disease and stroke: A meta-analysis. JAMA 2002; 288(16): 2015-22.
[http://dx.doi.org/10.1001/jama.288.16.2015] [PMID: 12387654]
[37]
Grubben MJ, Boers GH, Blom HJ, et al. Unfiltered coffee increases plasma homocysteine concentrations in healthy volunteers: A randomized trial. Am J Clin Nutr 2000; 71(2): 480-4.
[http://dx.doi.org/10.1093/ajcn/71.2.480] [PMID: 10648261]
[38]
Saeed M, Naveed M, BiBi J, Ali Kamboh A, Phil L, Chao S. Potential nutraceutical and food additive properties and risks of coffee: A comprehensive overview. Crit Rev Food Sci Nutr 2019; 59(20): 3293-319.
[http://dx.doi.org/10.1080/10408398.2018.1489368] [PMID: 30614268]
[39]
Splaver A, Lamas GA, Hennekens CH. Homocysteine and cardiovascular disease: Biological mechanisms, observational epidemiology, and the need for randomized trials. Am Heart J 2004; 148(1): 34-40.
[http://dx.doi.org/10.1016/j.ahj.2004.02.004] [PMID: 15215789]
[40]
Zhang Y, Zhang DZ. Associations of coffee consumption with circulating level of adiponectin and leptin. A meta-analysis of observational studies. Int J Food Sci Nutr 2018; 69(8): 1003-12.
[http://dx.doi.org/10.1080/09637486.2018.1445202] [PMID: 29513118]
[41]
Zheng G, Qiu Y, Zhang QF, Li D. Chlorogenic acid and caffeine in combination inhibit fat accumulation by regulating hepatic lipid metabolism-related enzymes in mice. Br J Nutr 2014; 112(6): 1034-40.
[http://dx.doi.org/10.1017/S0007114514001652] [PMID: 25201308]
[42]
Cho AS, Jeon SM, Kim MJ, et al. Chlorogenic acid exhibits anti-obesity property and improves lipid metabolism in high-fat diet-induced-obese mice. Food Chem Toxicol 2010; 48(3): 937-43.
[http://dx.doi.org/10.1016/j.fct.2010.01.003] [PMID: 20064576]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy