Generic placeholder image

Letters in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-1786
ISSN (Online): 1875-6255

Research Article

Organocatalyzed-Aerobic Oxidation of Arylboronic Acids toward the Synthesis of Phenolic Derivatives

Author(s): Laimujam Sidartha Singh, Sourav Banerjee, Indranil Saha and Chandi Charan Malakar*

Volume 20, Issue 6, 2023

Published on: 30 December, 2022

Page: [533 - 540] Pages: 8

DOI: 10.2174/1570178620666221128121925

Price: $65

Abstract

An effective organocatalyzed ipso-hydroxylation of arylboronic acids for the preparation of phenol derivatives has been demonstrated. The elucidated phenomenon relies on the catalytic performance of 3-nitropyridine under the influence of sub-stoichiometric quantities of KOtBu employing aerobic conditions in DMSO solvent. This method excludes the excess usage of oxidizing agents and bases by providing a user-friendly synthetic tool for the preparation of phenols. It was acclaimed that the 3-nitropyridine acts as an oxygen transferring agent from in situ generated hydrogen peroxide to boronic acid derivatives to furnish the desired molecules. The required hydrogen peroxide was in situ generated from aerial oxygen by the KOtBu-mediated single electron transfer process. The described process is applicable to a variety of arylboronic acids for the preparation of phenols in good yields with considerable resistance of functional moiety.

Keywords: 3-nitropyridine, ipso-hydroxylation, organoborons, organocatalysis, potassium tert-butoxide, arylboronic acids.

Graphical Abstract
[1]
(a) Zhou, Q-L. Angew. Chem. Int. Ed., 2016, 55, 5352-5353.;
(b) Borie, C.; Ackermann, L.; Nechab, M. Chem. Soc. Rev., 2016, 45(5), 1368-1386.
[http://dx.doi.org/10.1039/C5CS00622H] [PMID: 26728953];
(c) Yang, L.; Huang, Z.; Li, G.; Zhang, W.; Cao, R.; Wang, C.; Xiao, J.; Xue, D. Angew. Chem. Int. Ed., 2018, 57(7), 1968-1972.
[http://dx.doi.org/10.1002/anie.201710698]
[2]
Monsigny, L.; Thuéry, P.; Berthet, J-C.; Cantat, T. Chem. Commun. (Camb.), 2017, 53, 11278-11297.
[3]
Voutyritsa, E.; Triandafillidi, I.; Kokotos, C.G. Synthesis, 2017, 49, 917-924.
[4]
(a) Zhan, G.; Du, W. Chem. Soc. Rev., 2017, 46, 1675-1692.
[http://dx.doi.org/10.1039/C6CS00247A] [PMID: 28221384];
(b) Qin, Y.; Zhu, L.; Luo, S. Chem. Rev., 2017, 117(13), 9433-9520.
[http://dx.doi.org/10.1021/acs.chemrev.6b00657] [PMID: 28697602];
(c) Vetica, F.; Chauhan, P.; Dochain, S.; Enders, D. Chem. Soc. Rev., 2017, 46(6), 1661-1674.
[http://dx.doi.org/10.1039/C6CS00757K] [PMID: 28262863]
[5]
(a) Balasundram, N.; Sundram, K.; Samman, S. Food Chem., 2006, 99(1), 191-203.
[http://dx.doi.org/10.1016/j.foodchem.2005.07.042];
(b) Williams, P.; Sorribas, A.; Howes, M.J.R. Nat. Prod. Rep., 2011, 28(1), 48-77.
[http://dx.doi.org/10.1039/C0NP00027B] [PMID: 21072430]
[6]
Pilato, L. React. Funct. Polym., 2013, 73(2), 270-277.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2012.07.008]
[7]
(a) Nandi, S.; Vracko, M.; Bagchi, M.C. Chem. Biol. Drug Des., 2007, 70(5), 424-436.
[http://dx.doi.org/10.1111/j.1747-0285.2007.00575.x] [PMID: 17949360];
(b) Badhani, B.; Sharma, N.; Kakkar, R. RSC Advances, 2015, 5(35), 27540-27557.
[http://dx.doi.org/10.1039/C5RA01911G]
[8]
Tyman, J.H.P. Synthetic and Natural Phenols; Elsevier: Amsterdam, 1996, Vol. 52, pp. 1-699.
[http://dx.doi.org/10.1016/S0165-3253(96)80028-9]
[9]
Lambooy, J.P. J. Am. Chem. Soc., 1950, 72(11), 5327-5328.
[http://dx.doi.org/10.1021/ja01167a523]
[10]
Pallegrini, F. Cliffs Quick Review Organic Chemistry II; Houghton Mifflin Harcourt, 2011, pp. 1-272.
[11]
(a) Sarma, B.B.; Carmieli, R.; Collauto, A.; Efremenko, I.; Martin, J.M.L.; Neumann, R. ACS Catal., 2016, 6(10), 6403-6407.
[http://dx.doi.org/10.1021/acscatal.6b02083];
(b) Han, J.W.; Jung, J.; Lee, Y.M.; Nam, W.; Fukuzumi, S. Chem. Sci. (Camb.), 2017, 8(10), 7119-7125.
[http://dx.doi.org/10.1039/C7SC02495A]
[12]
(a) Wang, D.; Kuang, D.; Zhang, F.; Tang, S.; Jiang, W. Eur. J. Org. Chem., 2014, 2014(2), 315-318.
[http://dx.doi.org/10.1002/ejoc.201301370];
(b) Xia, S.; Gan, L.; Wang, K.; Li, Z.; Ma, D. J. Am. Chem. Soc., 2016, 138(41), 13493-13496.
[http://dx.doi.org/10.1021/jacs.6b08114] [PMID: 27682010]
[13]
(a) Hanson, P.; Jones, J.R.; Taylor, A.B.; Walton, P.H.; Timms, A.W. J. Chem. Soc., Perkin Trans. 2, 2002, (6), 1135-1150.
[http://dx.doi.org/10.1039/b200748g];
(b) Zhang, Y.H.; Yu, J.Q. J. Am. Chem. Soc., 2009, 131(41), 14654-14655.
[http://dx.doi.org/10.1021/ja907198n] [PMID: 19788192]
[14]
(a) Dhakshinamoorthy, A.; Asiri, A.M.; Garcia, H. Tetrahedron, 2016, 72, 2895-2899.;
(b) Borah, R.; Saikia, E.; Bora, S.J.; Chetia, B. Tetrahedron Lett., 2017, 58, 1211-1215.
[15]
(a) Zheng, J.; Lin, S.; Zhu, X.; Jiang, B.; Yang, Z. Pan. Z. Chem. Commun. (Camb.), 2012, 48(50), 6235-6237.
[http://dx.doi.org/10.1039/c2cc31948a] [PMID: 22595867];
(b) Wang, L.; Zhang, W.; Sheng Su, D.; Meng, X.; Xiao, F-S. Chem. Commun. (Camb.), 2012, 48(44), 5476-5478.
[PMID: 22543590]
[16]
Zhaoa, X.; Yanga, B.; Weia, A.; Shenga, J.; Tiana, M.; Lib, Q.; Lub, K. Tetrahedron Lett., 2017, 58, 4255-4259.
[17]
Chowdhury, A.D.; Mobin, S.M.; Mukherjee, S.; Bhaduri, S.; Lahiri, G.K. Eur. J. Inorg. Chem., 2011, 2011(21), 3232-3239.
[http://dx.doi.org/10.1002/ejic.201100240]
[18]
Gogoi, N.; Gogoi, P.K.; Borah, G.; Bora, U. Tetrahedron Lett., 2016, 57(36), 4050-4052.
[http://dx.doi.org/10.1016/j.tetlet.2016.07.070]
[19]
Beyene, H.D.; Werkneh, A.A.; Bezabh, H.K.; Ambayec, T.G. New J. Chem., 2016, 40, 2501-2513.
[20]
(a) Gogoi, A.; Bora, U. Synlett, 2012, 23, 1079-1081.
[http://dx.doi.org/10.1055/s-0031-1290654];
(b) Kianmehr, E.; Yahyaee, M.; Tabatabai, K. Tetrahedron Lett., 2007, 48(15), 2713-2715.
[http://dx.doi.org/10.1016/j.tetlet.2007.02.069];
(c) Mulakayala, N. Tetrahedron Lett., 2012, 53, 6004-6007.
[http://dx.doi.org/10.1016/j.tetlet.2012.08.087];
(d) Muhammad, I.; Balakrishnan, M.H.; Sasidharan, M.; Mannathan, S. New J. Chem., 2019, 43(28), 11065-11068.
[http://dx.doi.org/10.1039/C9NJ02121C];
(e) Castro-Godoy, W.D.; Schmidt, L.C.; Argüello, J.E. 2019, 3035-3039.
[21]
(a) Das, S.K.; Bhattacharjee, P.; Bora, U. ChemistrySelect, 2018, 3, 2131-2134.;
(b) Weng, W-Z.; Liang, H.; Zhang, B. Org. Lett., 2018, 20, 4979-4983.;
(c) Gujjarappa, R.; Vodnala, N.; Garg, A.; Hazra, C.K.; Gupta, S.; Malakar, C.C. ChemistrySelect, 2020, 5(8), 2419-2423.
[http://dx.doi.org/10.1002/slct.201904059]
[22]
(a) Jiang, H.; Lykke, L.; Uttrup Pedersen, S.; Xiao, W.J.; Anker Jørgensen, K. Chem. Commun. (Camb.), 2012, 48(57), 7203-7205.
[http://dx.doi.org/10.1039/c2cc32711b] [PMID: 22692548];
(b) Zou, Y.Q.; Chen, J.R.; Liu, X.P.; Lu, L.Q.; Davis, R.L.; Jørgensen, K.A.; Xiao, W.J. Angew. Chem. Int. Ed., 2012, 51(3), 784-788.
[http://dx.doi.org/10.1002/anie.201107028];
(c) Xie, H.Y.; Han, L.S.; Huang, S.; Lei, X.; Cheng, Y.; Zhao, W.; Sun, H.; Wen, X.; Xu, Q.L. J. Org. Chem., 2017, 82(10), 5236-5241.
[http://dx.doi.org/10.1021/acs.joc.7b00487] [PMID: 28441486];
(d) Sideri, I.K.; Voutyritsa, E.; Kokotos, C.G. Synlett, 2018, 10, 1324-1328.;
(e) Luo, J.; Hu, B.; Sam, A.; Liu, T.L. Org. Lett., 2018, 20(2), 361-364.
[http://dx.doi.org/10.1021/acs.orglett.7b02483] [PMID: 29319321];
(f) Kumar, I.; Sharma, R.; Kumar, R.; Kumar, R.; Sharma, U. 2018, 360, 2013-2019.
[23]
Gujjarappa, R.; Vodnala, N.; Malakar, C.C. ChemistrySelect, 2020, 5, 8745-8758.
[24]
Copéret, C.; Adolfsson, H.; Khuong, T.A.V.; Yudin, A.K.; Sharpless, K.B. J. Org. Chem., 1998, 63(5), 1740-1741.
[http://dx.doi.org/10.1021/jo9723467]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy