Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Mini-Review Article

Self-Assembly of Short Amphiphilic Peptides and Their Biomedical Applications

Author(s): Xiaosong Le, Tianwen Gao, Li Wang, Feng Wei, Cuixia Chen* and Yurong Zhao*

Volume 28, Issue 44, 2022

Published on: 13 December, 2022

Page: [3546 - 3562] Pages: 17

DOI: 10.2174/1381612829666221124103526

Price: $65

Open Access Journals Promotions 2
Abstract

A series of functional biomaterials with different sizes and morphologies can be constructed through self-assembly, among which amphiphilic peptide-based materials have received intense attention. One main possible reason is that the short amphiphilic peptides can facilitate the formation of versatile materials and promote their further applications in different fields. Another reason is that the simple structure of amphiphilic peptides can help establish the structure-function relationship. This review highlights the recent advances in the self-assembly of two typical peptide species, surfactant-like peptides (SLPs) and peptides amphiphiles (PAs). These peptides can self-assemble into diverse nanostructures. The formation of these different nanostructures resulted from the delicate balance of varied non-covalent interactions. This review embraced each non-covalent interaction and then listed the typical routes for regulating these non-covalent interactions, then realized the morphologies modulation of the self-assemblies. Finally, their applications in some biomedical fields, such as the stabilization of membrane proteins, templating for nanofabrication and biomineralization, acting as the antibacterial and antitumor agents, hemostasis, and synthesis of melanin have been summarized. Further advances in the self-assembly of SLPs and PAs may focus on the design of functional materials with targeted properties and exploring their improved properties.

Keywords: Self-assembly, surfactant-like peptides, peptides amphiphiles, non-covalent interactions, morphology regulation, applications.

[1]
Whitesides GM, Grzybowski B. Self-assembly at all scales. Science 2002; 295(5564): 2418-21.
[http://dx.doi.org/10.1126/science.1070821] [PMID: 11923529]
[2]
Gaspar D, Veiga AS, Castanho MARB. From antimicrobial to anticancer peptides: A review. Front Microbiol 2013; 4(1): 294-310.
[http://dx.doi.org/10.3389/fmicb.2013.00294] [PMID: 24101917]
[3]
Dobson CM. Protein folding and misfolding. Nature 2003; 426(6968): 884-90.
[http://dx.doi.org/10.1038/nature02261] [PMID: 14685248]
[4]
Knowles TPJ, Vendruscolo M, Dobson CM. The amyloid state and its association with protein misfolding diseases. Nat Rev Mol Cell Biol 2014; 15(6): 384-96.
[http://dx.doi.org/10.1038/nrm3810] [PMID: 24854788]
[5]
Zhang S, Holmes T, Lockshin C, Rich A. Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane. Proc Natl Acad Sci USA 1993; 90(8): 3334-8.
[http://dx.doi.org/10.1073/pnas.90.8.3334] [PMID: 7682699]
[6]
Sun Z, Li Z, He Y, et al. Ferrocenoyl phenylalanine: A new strategy toward supramolecular hydrogels with multistimuli responsive properties. J Am Chem Soc 2013; 135(36): 13379-86.
[http://dx.doi.org/10.1021/ja403345p] [PMID: 23984683]
[7]
Ozbas B, Kretsinger J, Rajagopal K, Schneider JP, Pochan DJ. Salt-triggered peptide folding and consequent self-assembly into hydrogels with tunable modulus. Macromolecules 2004; 37(19): 7331-7.
[http://dx.doi.org/10.1021/ma0491762]
[8]
Castelletto V, Hamley IW, Cenker Ç, et al. Influence of end-capping on the self-assembly of model amyloid peptide fragments. J Phys Chem B 2011; 115(9): 2107-16.
[http://dx.doi.org/10.1021/jp111168s] [PMID: 21309578]
[9]
Ke PC, Sani MA, Ding F, et al. Implications of peptide assemblies in amyloid diseases. Chem Soc Rev 2017; 46(21): 6492-531.
[http://dx.doi.org/10.1039/C7CS00372B] [PMID: 28702523]
[10]
Yanlian Y, Ulung K, Xiumei W, Horii A, Yokoi H, Shuguang Z. Designer self-assembling peptide nanomaterials. Nano Today 2009; 4(2): 193-210.
[http://dx.doi.org/10.1016/j.nantod.2009.02.009]
[11]
Santoso S, Hwang W, Hartman H, Zhang S. Self-assembly of surfactant-like peptides with variable glycine tails to form nanotubes and nanovesicles. Nano Lett 2002; 2(7): 687-91.
[http://dx.doi.org/10.1021/nl025563i]
[12]
Zhao X, Zhang S. Fabrication of molecular materials using peptide construction motifs. Trends Biotechnol 2004; 22(9): 470-6.
[http://dx.doi.org/10.1016/j.tibtech.2004.07.011] [PMID: 15331228]
[13]
Vauthey S, Santoso S, Gong H, Watson N, Zhang S. Molecular self-assembly of surfactant-like peptides to form nanotubes and nanovesicles. Proc Natl Acad Sci USA 2002; 99(8): 5355-60.
[http://dx.doi.org/10.1073/pnas.072089599] [PMID: 11929973]
[14]
von Maltzahn G, Vauthey S, Santoso S, Zhang S. Positively charged surfactant-like peptides self-assemble into nanostructures. Langmuir 2003; 19(10): 4332-7.
[http://dx.doi.org/10.1021/la026526+]
[15]
Cui H, Cheetham AG, Pashuck ET, Stupp SI. Amino acid sequence in constitutionally isomeric tetrapeptide amphiphiles dictates architecture of one-dimensional nanostructures. J Am Chem Soc 2014; 136(35): 12461-8.
[http://dx.doi.org/10.1021/ja507051w] [PMID: 25144245]
[16]
Xing H, Chin SM, Udumula VR, et al. Control of peptide amphiphile supramolecular nanostructures by isosteric replacements. Biomacromolecules 2021; 22(8): 3274-83.
[http://dx.doi.org/10.1021/acs.biomac.1c00379] [PMID: 34291897]
[17]
Behanna HA, Donners JJJM, Gordon AC, Stupp SI. Coassembly of amphiphiles with opposite peptide polarities into nanofibers. J Am Chem Soc 2005; 127(4): 1193-200.
[http://dx.doi.org/10.1021/ja044863u] [PMID: 15669858]
[18]
Tsonchev S, Niece KL, Schatz GC, Ratner MA, Stupp SI. Phase diagram for assembly of biologically-active peptide amphiphiles. J Phys Chem B 2008; 112(2): 441-7.
[http://dx.doi.org/10.1021/jp076273z] [PMID: 18088110]
[19]
Hartgerink JD, Beniash E, Stupp SI. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 2001; 294(5547): 1684-8.
[http://dx.doi.org/10.1126/science.1063187] [PMID: 11721046]
[20]
Niece KL, Hartgerink JD, Donners JJJM, Stupp SI. Self-assembly combining two bioactive peptide-amphiphile molecules into nanofibers by electrostatic attraction. J Am Chem Soc 2003; 125(24): 7146-7.
[http://dx.doi.org/10.1021/ja028215r] [PMID: 12797766]
[21]
Xu H, Wang Y, Ge X, et al. Twisted nanotubes formed from ultrashort amphiphilic peptide I3K and their templating for the fabrication of silica nanotubes. Chem Mater 2010; 22(18): 5165-73.
[http://dx.doi.org/10.1021/cm101019p]
[22]
Khoe U, Yang Y, Zhang S. Self-assembly of nanodonut structure from a cone-shaped designer lipid-like peptide surfactant. Langmuir 2009; 25(7): 4111-4.
[http://dx.doi.org/10.1021/la8025232] [PMID: 19007256]
[23]
Zhang S, Holmes TC, DiPersio CM, Hynes RO, Su X, Rich A. Self-complementary oligopeptide matrices support mammalian cell attachment. Biomaterials 1995; 16(18): 1385-93.
[http://dx.doi.org/10.1016/0142-9612(95)96874-Y] [PMID: 8590765]
[24]
Ghadiri MR, Granja JR, Milligan RA, McRee DE, Khazanovich N. Self-assembling organic nanotubes based on a cyclic peptide architecture. Nature 1993; 366(6453): 324-7.
[http://dx.doi.org/10.1038/366324a0] [PMID: 8247126]
[25]
Fernandez-Lopez S, Kim HS, Choi EC, et al. Antibacterial agents based on the cyclic D,L-α-peptide architecture. Nature 2001; 412(6845): 452-5.
[http://dx.doi.org/10.1038/35086601] [PMID: 11473322]
[26]
Nyrkova IA, Semenov AN, Aggeli A, Bell M, Boden N, McLeish TCB. Self-assembly and structure transformations in living polymers forming fibrils. Eur Phys J B 2000; 17(3): 499-513.
[http://dx.doi.org/10.1007/s100510070128]
[27]
Aggeli A, Nyrkova IA, Bell M, et al. Hierarchical self-assembly of chiral rod-like molecules as a model for peptide β-sheet tapes, ribbons, fibrils, and fibers. Proc Natl Acad Sci USA 2001; 98(21): 11857-62.
[http://dx.doi.org/10.1073/pnas.191250198] [PMID: 11592996]
[28]
Li J, Zhao Y, Zhou p, et al. Ordered nanofibers fabricated from hierarchical self-assembling processes of designed α-helical peptides Small 2020; 16: 203945.
[http://dx.doi.org/10.1002/smll.202003945]
[29]
Utterström J, Naeimipour S, Selegård R, Aili D. Coiled coil-based therapeutics and drug delivery systems. Adv Drug Deliv Rev 2021; 170: 26-43.
[http://dx.doi.org/10.1016/j.addr.2020.12.012] [PMID: 33378707]
[30]
Clover TM, O’Neill CL, Appavu R, et al. Self-assembly of block heterochiral peptides into helical tapes. J Am Chem Soc 2020; 142(47): 19809-13.
[http://dx.doi.org/10.1021/jacs.9b09755] [PMID: 32338879]
[31]
Liu J, Tian Y, Ai L, et al. Self-assembly of Au nanoclusters into helical ribbons by manipulating the flexibility of capping ligands. Langmuir 2020; 36(48): 14614-22.
[http://dx.doi.org/10.1021/acs.langmuir.0c02418] [PMID: 33232160]
[32]
Vacogne CD, Wei C, Tauer K, Schlaad H. Self-assembly of α-helical polypeptides into microscopic and enantiomorphic spirals. J Am Chem Soc 2018; 140(36): 11387-94.
[http://dx.doi.org/10.1021/jacs.8b06503] [PMID: 30096226]
[33]
Xu P, Gao L, Cai C, Lin J, Wang L, Tian X. Helical toroids self-assembled from a binary system of polypeptide homopolymer and its block copolymer. Angew Chem Int Ed 2020; 59(34): 14281-5.
[http://dx.doi.org/10.1002/anie.202004102] [PMID: 32424946]
[34]
Zhang H, Lou S, Yu Z. Polar-π interactions promote self-assembly of dipeptides into laminated nanofibers. Langmuir 2019; 35(13): 4710-7.
[http://dx.doi.org/10.1021/acs.langmuir.9b00077] [PMID: 30836752]
[35]
Yin Z, Wu F, Xing T, Yadavalli VK, Kundu SC, Lu S. A silk fibroin hydrogel with reversible sol–gel transition. RSC Advances 2017; 7(39): 24085-96.
[http://dx.doi.org/10.1039/C7RA02682J]
[36]
Huang J, Chen C, Huang Z, Yao D, Wu C, Cheng Y. Self-assembly pore-forming mechanism of foam boundary templates and the preparation of porous strontium hydroxyapatite microspheres by homogeneous precipitation. Cryst Eng Comm 2019; 21(37): 5658-64.
[http://dx.doi.org/10.1039/C9CE00704K]
[37]
Christiansen EM, Yang SJ, Ando DM, et al. In silico labeling: predicting fluorescent labels in unlabeled images. Cell 2018; 173(3): 792-803.e19.
[http://dx.doi.org/10.1016/j.cell.2018.03.040] [PMID: 29656897]
[38]
Zhao X, Nagai Y, Reeves PJ, Kiley P, Khorana HG, Zhang S. Designer short peptide surfactants stabilize G protein-coupled receptor bovine rhodopsin. Proc Natl Acad Sci USA 2006; 103(47): 17707-12.
[http://dx.doi.org/10.1073/pnas.0607167103] [PMID: 17098868]
[39]
Paramonov SE, Jun HW, Hartgerink JD. Self-assembly of peptide-amphiphile nanofibers: the roles of hydrogen bonding and amphiphilic packing. J Am Chem Soc 2006; 128(22): 7291-8.
[http://dx.doi.org/10.1021/ja060573x] [PMID: 16734483]
[40]
Bose PP, Das AK, Hegde RP, Shamala N, Banerjee A. pH-sensitive nanostructural transformation of a synthetic self-assembling water-soluble tripeptide: nanotube to nanovesicle. Chem Mater 2007; 19(25): 6150-7.
[http://dx.doi.org/10.1021/cm0716147]
[41]
Dong H, Paramonov SE, Aulisa L, Bakota EL, Hartgerink JD. Self-assembly of multidomain peptides: Balancing molecular frustration controls conformation and nanostructure. J Am Chem Soc 2007; 129(41): 12468-72.
[http://dx.doi.org/10.1021/ja072536r] [PMID: 17894489]
[42]
Mishra A, Loo Y, Deng R, et al. Ultrasmall natural peptides self-assemble to strong temperature-resistant helical fibers in scaffolds suitable for tissue engineering. Nano Today 2011; 6(3): 232-9.
[http://dx.doi.org/10.1016/j.nantod.2011.05.001]
[43]
Hauser CAE, Deng R, Mishra A, et al. Natural tri- to hexapeptides self-assemble in water to amyloid β-type fiber aggregates by unexpected α-helical intermediate structures. Proc Natl Acad Sci USA 2011; 108(4): 1361-6.
[http://dx.doi.org/10.1073/pnas.1014796108] [PMID: 21205900]
[44]
Minor DL Jr, Kim PS. Measurement of the β-sheet-forming propensities of amino acids. Nature 1994; 367(6464): 660-3.
[http://dx.doi.org/10.1038/367660a0] [PMID: 8107853]
[45]
Han S, Cao S, Wang Y, et al. Self-assembly of short peptide amphiphiles: the cooperative effect of hydrophobic interaction and hydrogen bonding. Chemistry 2011; 17(46): 13095-102.
[http://dx.doi.org/10.1002/chem.201101970] [PMID: 21956759]
[46]
Wang M, Wang J, Zhou P, et al. Nanoribbons self-assembled from short peptides demonstrate the formation of polar zippers between β-sheets. Nat Commun 2018; 9(1): 5118-29.
[http://dx.doi.org/10.1038/s41467-018-07583-2] [PMID: 30504813]
[47]
Whitesides GM, Mathias JP, Seto CT. Molecular self-assembly and nanochemistry: A chemical strategy for the synthesis of nanostructures. Science 1991; 254(5036): 1312-9.
[http://dx.doi.org/10.1126/science.1962191] [PMID: 1962191]
[48]
Löwik DWPM, Garcia-Hartjes J, Meijer JT, van Hest JCM. Tuning secondary structure and self-assembly of amphiphilic peptides. Langmuir 2005; 21(2): 524-6.
[http://dx.doi.org/10.1021/la047578x] [PMID: 15641818]
[49]
Meyer EE, Rosenberg KJ, Israelachvili J. Recent progress in understanding hydrophobic interactions. Proc Natl Acad Sci USA 2006; 103(43): 15739-46.
[http://dx.doi.org/10.1073/pnas.0606422103] [PMID: 17023540]
[50]
Wang J, Han S, Meng G, et al. Dynamic self-assembly of surfactant-like peptides A6K and A9K. Soft Matter 2009; 5(20): 3870-8.
[http://dx.doi.org/10.1039/b901653h]
[51]
Zhao Y, Wang J, Deng L, et al. Tuning the self-assembly of short peptides via sequence variations. Langmuir 2013; 29(44): 13457-64.
[http://dx.doi.org/10.1021/la402441w] [PMID: 24090051]
[52]
Krysmann MJ, Castelletto V, McKendrick JE, et al. Self-assembly of Peptide nanotubes in an organic solvent. Langmuir 2008; 24(15): 8158-62.
[http://dx.doi.org/10.1021/la800942n] [PMID: 18572891]
[53]
Zhao Y, Deng L, Wang J, Xu H, Lu JR. Solvent controlled structural transition of KI4K self-assemblies: from nanotubes to nanofibrils. Langmuir 2015; 31(47): 12975-83.
[http://dx.doi.org/10.1021/acs.langmuir.5b02303] [PMID: 26540520]
[54]
Zhao Y, Yang W, Wang D, et al. Controlling the diameters of nanotubes self-assembled from designed peptide bolaphiles. Small 2018; 14(12): 1703216.
[http://dx.doi.org/10.1002/smll.201703216] [PMID: 29430820]
[55]
Xu H, Wang J, Han S, et al. Hydrophobic-region-induced transitions in self-assembled peptide nanostructures. Langmuir 2009; 25(7): 4115-23.
[http://dx.doi.org/10.1021/la802499n] [PMID: 19714895]
[56]
Hu Y, Lin R, Zhang P, et al. Electrostatic-driven lamination and untwisting of β-sheet assemblies. ACS Nano 2016; 10(1): 880-8.
[http://dx.doi.org/10.1021/acsnano.5b06011] [PMID: 26646791]
[57]
Cote Y, Fu IW, Dobson ET, Goldberger JE, Nguyen HD, Shen JK. Mechanism of the pH-controlled self-assembly of nanofibers from peptide amphiphiles. J Phys Chem C 2014; 118(29): 16272-8.
[http://dx.doi.org/10.1021/jp5048024] [PMID: 25089166]
[58]
Xie Y, Wang Y, Qi W, Huang R, Su R, He Z. Reconfigurable chiral self-assembly of peptides through control of terminal charges. Small 2017; 13(30): 1700999.
[http://dx.doi.org/10.1002/smll.201700999] [PMID: 28639349]
[59]
Cui H, Muraoka T, Cheetham AG, Stupp SI. Self-assembly of giant peptide nanobelts. Nano Lett 2009; 9(3): 945-51.
[http://dx.doi.org/10.1021/nl802813f] [PMID: 19193022]
[60]
Zhao Y, Yang W, Deng L, Wang D. Tuning supramolecular architectures of KI4K amphiphiles via varying terminal variations. J Mol Liq 2017; 247: 84-92.
[http://dx.doi.org/10.1016/j.molliq.2017.09.099]
[61]
Panda SS, Shmilovich K, Ferguson AL, Tovar JD. Controlling supramolecular chirality in peptide-π-peptide networks by variation of alkyl spacer length. Langmuir 2019; 35(43): 14060-73.
[http://dx.doi.org/10.1021/acs.langmuir.9b02683] [PMID: 31566986]
[62]
Reid SA, Nyambo S, Muzangwa L, Uhler B. π-Stacking, C-H/π, and halogen bonding interactions in bromobenzene and mixed bromobenzene-benzene clusters. J Phys Chem A 2013; 117(50): 13556-63.
[http://dx.doi.org/10.1021/jp407544c] [PMID: 23978255]
[63]
Gazit E. A possible role for π-stacking in the self-assembly of amyloid fibrils. FASEB J 2002; 16(1): 77-83.
[http://dx.doi.org/10.1096/fj.01-0442hyp] [PMID: 11772939]
[64]
Reches M, Gazit E. Formation of closed-cage nanostructures by self-assembly of aromatic dipeptides. Nano Lett 2004; 4(4): 581-5.
[http://dx.doi.org/10.1021/nl035159z]
[65]
Reddy SMM, Shanmugam G. Role of intramolecular aromatic π–π interactions in the self-assembly of di-L-phenylalanine dipeptide driven by intermolecular interactions: effect of alanine substitution. ChemPhysChem 2016; 17(18): 2897-907.
[http://dx.doi.org/10.1002/cphc.201600364] [PMID: 27309737]
[66]
Pashuck ET, Stupp SI. Direct observation of morphological transformation from twisted ribbons into helical ribbons. J Am Chem Soc 2010; 132(26): 8819-21.
[http://dx.doi.org/10.1021/ja100613w] [PMID: 20552966]
[67]
Xing Q, Zhang J, Xie Y, et al. Aromatic motifs dictate nanohelix handedness of tripeptides. ACS Nano 2018; 12(12): 12305-14.
[http://dx.doi.org/10.1021/acsnano.8b06173] [PMID: 30452865]
[68]
Chapman R, Danial M, Koh ML, Jolliffe KA, Perrier S. Design and properties of functional nanotubes from the self-assembly of cyclic peptide templates. Chem Soc Rev 2012; 41(18): 6023-41.
[http://dx.doi.org/10.1039/c2cs35172b] [PMID: 22875035]
[69]
Zhao Y, Hu X, Zhang L, et al. Monolayer wall nanotubes self- assembled from short peptide bolaamphiphiles. J Colloid Interface Sci 2021; 583: 553-62.
[http://dx.doi.org/10.1016/j.jcis.2020.09.023] [PMID: 33038605]
[70]
Zhao Y, Deng L, Yang W, et al. Tuning one-dimensional nanostructures of bola-like peptide amphiphiles by varying the hydrophilic amino acids. Chemistry 2016; 22(32): 11394-404.
[http://dx.doi.org/10.1002/chem.201601309] [PMID: 27362441]
[71]
Zhang J, Zhao Y, Han S, Chen C, Xu H. Self-assembly of surfactant-like peptides and their applications. Sci China Chem 2014; 57(12): 1634-45.
[http://dx.doi.org/10.1007/s11426-014-5234-4]
[72]
Breyton C, Pucci B, Popot JL. Amphipols and fluorinated surfactants: Two alternatives to detergents for studying membrane proteins in vitro. Methods Mol Biol 2010; 601: 219-45.
[http://dx.doi.org/10.1007/978-1-60761-344-2_14] [PMID: 20099149]
[73]
Chabaud E, Barthélémy P, Mora N, Popot JL, Pucci B. Stabilization of integral membrane proteins in aqueous solution using fluorinated surfactants. Biochimie 1998; 80(5-6): 515-30.
[http://dx.doi.org/10.1016/S0300-9084(00)80017-6] [PMID: 9782390]
[74]
Jones MN. Surfactants in membrane solubilisation. Int J Pharm 1999; 177(2): 137-59.
[http://dx.doi.org/10.1016/S0378-5173(98)00345-7] [PMID: 10205610]
[75]
Polidori A, Raynal S, Barret LA, et al. Sparingly fluorinated maltoside-based surfactants for membrane-protein stabilization. New J Chem 2016; 40(6): 5364-78.
[http://dx.doi.org/10.1039/C5NJ03502C]
[76]
Ge B, Yang F, Yu D, Liu S, Xu H. Designer amphiphilic short peptides enhance thermal stability of isolated photosystem-I. PLoS One 2010; 5(4): e10233.
[http://dx.doi.org/10.1371/journal.pone.0010233] [PMID: 20422003]
[77]
Kiley P, Zhao X, Vaughn M, Baldo MA, Bruce BD, Zhang S. Self- assembling peptide detergents stabilize isolated photosystem I on a dry surface for an extended time. PLoS Biol 2005; 3(7): e230.
[http://dx.doi.org/10.1371/journal.pbio.0030230] [PMID: 15954800]
[78]
Larsen AN, Sørensen KK, Johansen NT, et al. Dimeric peptides with three different linkers self-assemble with phospholipids to form peptide nanodiscs that stabilize membrane proteins. Soft Matter 2016; 12(27): 5937-49.
[http://dx.doi.org/10.1039/C6SM00495D] [PMID: 27306692]
[79]
Matsumoto K, Vaughn M, Bruce BD, Koutsopoulos S, Zhang S. Designer peptide surfactants stabilize functional photosystem-I membrane complex in aqueous solution for extended time. J Phys Chem B 2009; 113(1): 75-83.
[http://dx.doi.org/10.1021/jp8021425] [PMID: 19072167]
[80]
Chen IH, Lee TY, Tseng YC, Liou JH, Jan JS. Biomineralization of mesoporous silica and metal nanoparticle/mesoporous silica nanohybrids by chemo-enzymatically prepared peptides. Colloids Surf A Physicochem Eng Asp 2021; 610(5): 125753.
[http://dx.doi.org/10.1016/j.colsurfa.2020.125753]
[81]
Wang S, Liu F, Ma N, et al. Mechanistic process understanding of the self-assembling behaviour of asymmetric bolaamphiphilic short-peptides and their templating for silica and titania nanomaterials. Nanoscale 2021; 13(31): 13318-27.
[http://dx.doi.org/10.1039/D1NR01661J] [PMID: 34477738]
[82]
Tao K, Wang J, Li Y, et al. Short peptide-directed synthesis of one-dimensional platinum nanostructures with controllable morphologies. Sci Rep 2013; 3(1): 2565.
[http://dx.doi.org/10.1038/srep02565] [PMID: 23995118]
[83]
Chen C, Pan F, Zhang S, et al. Antibacterial activities of short designer peptides: a link between propensity for nanostructuring and capacity for membrane destabilization. Biomacromolecules 2010; 11(2): 402-11.
[http://dx.doi.org/10.1021/bm901130u] [PMID: 20078032]
[84]
Chen C, Hu J, Zhang S, et al. Molecular mechanisms of antibacterial and antitumor actions of designed surfactant-like peptides. Biomaterials 2012; 33(2): 592-603.
[http://dx.doi.org/10.1016/j.biomaterials.2011.09.059] [PMID: 21986402]
[85]
Zhao X, Pan F, Xu H, et al. Molecular self-assembly and applications of designer peptide amphiphiles. Chem Soc Rev 2010; 39(9): 3480-98.
[http://dx.doi.org/10.1039/b915923c] [PMID: 20498896]
[86]
Lombardi L, Shi Y, Falanga A, et al. Enhancing the potency of antimi-crobial peptides through molecular engineering and self-assembly. Biomacromolecules 2019; 20(3): 1362-74.
[http://dx.doi.org/10.1021/acs.biomac.8b01740] [PMID: 30735368]
[87]
Cai Y, Shen H, Zhan J, et al. Supramolecular “Trojan Horse” for nuclear delivery of dual anticancer drugs. J Am Chem Soc 2017; 139(8): 2876-9.
[http://dx.doi.org/10.1021/jacs.6b12322] [PMID: 28191948]
[88]
Zhang XH, Cheng DB, Ji L, et al. Photothermal-promoted morphology transformation in vivo monitored by photoacoustic imaging. Nano Lett 2020; 20(2): 1286-95.
[http://dx.doi.org/10.1021/acs.nanolett.9b04752] [PMID: 31940203]
[89]
Zhang L, Xu J, Wang F, et al. Histidine-rich cell-penetrating peptide for cancer drug delivery and its uptake mechanism. Langmuir 2019; 35: 3513-23.
[http://dx.doi.org/10.1021/acs.langmuir.8b03175 ] [PMID: 30673275]
[90]
Zhang L, Sheng Y, Yazdi AZ, et al. Surface-assisted assembly of a histidine-rich lipidated peptide for simultaneous exfoliation of graphite and functionalization of graphene nanosheets. Nanoscale 2019; 11: 2999-3012.
[http://dx.doi.org/10.1039/C8NR08397E] [PMID: 30698183]
[91]
Ellis-Behnke RG, Liang YX, Tay DK, et al. Nano hemostat solution: Immediate hemostasis at the nanoscale. Nanomedicine (Lond) 2006; 2(4): 207-15.
[http://dx.doi.org/10.1016/j.nano.2006.08.001] [PMID: 17292144]
[92]
Morgan CE, Dombrowski AW, Rubert Perez CM, Bahnson ESM. Tsihlis NiD, Jiang W, Jiang Q, Vercammen JM, Prakash VS, Pritts TA, Stupp SI, Kibbe MR. Tissue-factor targeted peptide amphiphile nanofibers as an injectable therapy to control hemorrhage. ACS Nano 2016; 10(1): 899-909.
[http://dx.doi.org/10.1021/acsnano.5b06025] [PMID: 26700464]
[93]
Chen C, Zhang Y, Fei R, et al. Hydrogelation of the short self-assembling peptide I3QGK regulated by transglutaminase and use for rapid hemostasis. ACS Appl Mater Interfaces 2016; 8(28): 17833-41.
[http://dx.doi.org/10.1021/acsami.6b04939] [PMID: 27337106]
[94]
Hao R, Peng X, Zhang Y, et al. Rapid hemostasis resulting from the synergism of self-assembling short peptide and o-carboxymethyl chitosan. ACS Appl Mater Interfaces 2020; 12(50): 55574-83.
[http://dx.doi.org/10.1021/acsami.0c15480] [PMID: 33284021]
[95]
Murphy R, Walsh DP, Hamilton CA, Cryan SA, Panhuis M, Heise A. Degradable 3D-printed hydrogels based on star-shaped copolypep-tides. Biomacromolecules 2018; 19: 2691-9.
[http://dx.doi.org/10.1021/acs.biomac.8b00299] [PMID: 29665336]
[96]
Lampel A, McPhee SA, Park HA, et al. Frederix PWJM, Li TD, Abzalimov RR, Greenbaum SG, Tuttle T, Hu C, Bettinger CJ, Ulijn RV. Polymeric peptide pigments with sequence-encoded properties. Science 2017; 356(6342): 1064-8.
[http://dx.doi.org/10.1126/science.aal5005] [PMID: 28596363]
[97]
Reddy SMM, Rasslenberg E, Sloan-Dennison S, et al. Proton-conductive melanin-like fibers through enzymatic oxidation of a self-assembling peptide. Adv Mater 2020; 32(46): e2003511.
[http://dx.doi.org/10.1002/adma.202003511] [PMID: 33058283]
[98]
Hutchinson JA, Hamley IW, Edwards-Gayle CJC, et al. Melanin production by tyrosinase activity on a tyrosine-rich peptide fragment and pH-dependent self-assembly of its lipidated analogue 2019; 17(18): 4543-53.
[http://dx.doi.org/10.1039/C9OB00550A] [PMID: 30994696]
[99]
Osipova O, Zakharova N, Pyankov I, et al. Amphiphilic pH-sensitive polypeptides for siRNA delivery. J Drug Deliv Sci Tec, 2022, 69, 103135.
[100]
Seow WY, Yang YY, George AJT. Oligopeptide-mediated gene transfer into mouse corneal endothelial cells: expression, design optimiza-tion, uptake mechanism and nuclear localization. Nucleic Acids Res 2009; 37(18): 6276-89.
[http://dx.doi.org/10.1093/nar/gkp651] [PMID: 19692581]
[101]
Li M, Ehlers M, Schlesiger S, Zellermann E, Knauer SK, Schmuck C. Incorporation of a non-natural arginine analogue into a cyclic peptide leads to formation of positively charged nanofibers capable of gene transfection. Angew Chem Int Ed 2016; 55(2): 598-601.
[http://dx.doi.org/10.1002/anie.201508714] [PMID: 26612780]
[102]
Wang Y, Nie Y, Ding Z, et al. An amphiphilic peptide with cell penetrating sequence for highly efficient gene transfection. Colloids Surf A Physicochem Eng Asp 2020; 590: 124529.
[http://dx.doi.org/10.1016/j.colsurfa.2020.124529]
[103]
Cao M, Zhang Z, Zhang X, et al. Peptide Self-assembly into stable Capsid-Like nanospheres and Co-assembly with DNA to produce smart artificial viruses. J Colloid Interface Sci 2022; 615: 395-407.
[http://dx.doi.org/10.1016/j.jcis.2022.01.181] [PMID: 35150952]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy