Review Article

氘化药物的临床应用及合成方法

卷 30, 期 36, 2023

发表于: 12 January, 2023

页: [4096 - 4129] 页: 34

弟呕挨: 10.2174/0929867330666221122123201

价格: $65

conference banner
摘要

许多药物具有不良的吸收、分布、代谢和排泄(ADME)特性,这阻止了它们的广泛使用或限制了它们在某些适应症中的使用。除了制备技术和前药策略外,氘修饰是改善ADME性能的可行方法。近年来,氘化药物越来越受到制药行业的关注。到目前为止,FDA已经批准了两种氘化药物。2017年,austedo被FDA批准为美国亨廷顿病新药,这是第一个在全球上市的氘药物。近日(2021年6月9日),多纳非尼在中国上市;这一结果引起了各大制药公司和制药行业对氘技术的重新重视。此外,BMS-986165、RT001、ALK-001、HC-1119、AVP-786等药物正在进行III期临床研究,部分固体氘化合物已进入I、II期临床试验。氘策略在药学研究中得到了广泛的应用,成为近年来药学研究的热点。本文综述了氘化药物的研究与发展,重点介绍了氘修饰对药物的影响、氘策略的优点以及氘化药物的合成策略。希望为临床应用、新的氘化学实体的发现和新型氘化药物的研发提供参考。

关键词: 氘化药物,单胺氧化酶,毒性,药物代谢,药物合成,ADME性质。

[1]
Bergner, G.; Albert, C.R.; Schiller, M.; Bringmann, G.; Schirmeister, T.; Dietzek, B.; Niebling, S.; Schlücker, S.; Popp, J. Quantitative detection of C-deuterated drugs by CARS microscopy and Raman microspectroscopy. Analyst (Lond.), 2011, 136(18), 3686-3693.
[http://dx.doi.org/10.1039/c0an00956c] [PMID: 21785774]
[2]
Liu, J.F.; Uttamsingh, V.; Nguyen, S.; Gallegos, R.; Bridson, G.W.; Morgan, A.J.; Masse, C.E.; Tung, R.; Harbeson, S. Deuterium in drugs for cardiovascular disease: Design and synthesis of deuterated cilostazol and ranolazine analogs with enhanced metabolic stability. Am. Chem. Soc., 2011, 242, 339.
[3]
Timmins, G.S. Deuterated drugs: Where are we now? Expert Opin. Ther. Pat., 2014, 24(10), 1067-1075.
[http://dx.doi.org/10.1517/13543776.2014.943184] [PMID: 25069517]
[4]
Howland, R.H. Deuterated drugs. J. Psychosoc. Nurs. Ment. Health Serv., 2015, 53(9), 02793695-20150821-55.
[http://dx.doi.org/10.3928/02793695-20150821-55] [PMID: 26325169]
[5]
Radl, S. Deuterated compounds as potential drugs. Chem. Listy, 2015, 109(10), 748-754.
[6]
Mullard, A. Deuterated drugs draw heavier backing. Nat. Rev. Drug Discov., 2016, 15(4), 219-221.
[http://dx.doi.org/10.1038/nrd.2016.63] [PMID: 27032821]
[7]
Timmins, G.S. Deuterated drugs; Updates and obviousness analysis. Expert Opin. Ther. Pat., 2017, 27(12), 1353-1361.
[http://dx.doi.org/10.1080/13543776.2017.1378350] [PMID: 28885861]
[8]
Schmidt, C. First deuterated drug approved. Nat. Biotechnol., 2017, 35(6), 493-494.
[http://dx.doi.org/10.1038/nbt0617-493] [PMID: 28591114]
[9]
Harbeson, S.L.; Morgan, A.J.; Liu, J.F.; Aslanian, A.M.; Nguyen, S.; Bridson, G.W.; Brummel, C.L.; Wu, L.; Tung, R.D.; Pilja, L.; Braman, V.; Uttamsingh, V. Altering metabolic profiles of drugs by precision deuteration 2: Discovery of a deuterated analog of ivacaftor with differentiated pharmacokinetics for clinical development. J. Pharmacol. Exp. Ther., 2017, 362(2), 359-367.
[http://dx.doi.org/10.1124/jpet.117.241497] [PMID: 28611092]
[10]
Timmins, G.S. Deuterated drugs; Updates and obviousness analysis. Expert Opin. Ther. Pat., 2018, 28(8), 653-653.
[http://dx.doi.org/10.1080/13543776.2018.1502972] [PMID: 30064282]
[11]
DeWitt, S.H.; Maryanoff, B.E. Deuterated drug molecules: Focus on FDA-Approved deutetrabenazine. Biochemistry, 2018, 57(5), 472-473.
[http://dx.doi.org/10.1021/acs.biochem.7b00765] [PMID: 29160059]
[12]
Berquist, M.D.; Leth-Petersen, S.; Kristensen, J.L.; Fantegrossi, W.E. In vivo effects of 3,4-methylenedioxymethamphetamine (MDMA) and its deuterated form in rodents: Drug discrimination and thermoregulation. Drug Alcohol Depend., 2020, 208, 107850.
[http://dx.doi.org/10.1016/j.drugalcdep.2020.107850] [PMID: 31954950]
[13]
Demidov, V.V. Site-specifically deuterated essential lipids as new drugs against neuronal, retinal and vascular degeneration. Drug Discov. Today, 2020, 25(8), 1469-1476.
[http://dx.doi.org/10.1016/j.drudis.2020.03.014] [PMID: 32247036]
[14]
Samuels, E.R.; Wang, T. Quantitative 1H NMR analysis of a difficult drug substance and its exo-isomer as hydrochloride salts using alkaline deuterated methanol. J. Pharm. Biomed. Anal., 2020, 187, 113338.
[http://dx.doi.org/10.1016/j.jpba.2020.113338] [PMID: 32408063]
[15]
Makarova, M.; Barrientos, R.C.; Torres, O.B.; Matyas, G.R.; Jacobson, A.E.; Sulima, A.; Rice, K.C. Synthesis of a deuterated 6-AmHap internal standard for the determination of hapten density in a heroin vaccine drug product. J. Labelled Comp. Radiopharm., 2020, 63(13), 564-571.
[http://dx.doi.org/10.1002/jlcr.3880] [PMID: 32876947]
[16]
Foster, A.B. Deuterium isotope effects in studies of drug metabolism. Trends Pharmacol. Sci., 1984, 5, 524-527.
[http://dx.doi.org/10.1016/0165-6147(84)90534-0]
[17]
Cooper, G.J.T.; Surman, A.J.; McIver, J.; Colón-Santos, S.M.; Gromski, P.S.; Buchwald, S.; Suárez Marina, I.; Cronin, L. Miller-Urey spark-discharge experiments in the deuterium world. Angew. Chem. Int. Ed., 2017, 56(28), 8079-8082.
[http://dx.doi.org/10.1002/anie.201610837] [PMID: 28474773]
[18]
Meanwell, N.A. Synopsis of some recent tactical application of bioisosteres in drug design. J. Med. Chem., 2011, 54(8), 2529-2591.
[http://dx.doi.org/10.1021/jm1013693] [PMID: 21413808]
[19]
Bell, R.P. Liversidge Lecture. Recent advances in the study of kinetic hydrogen isotope effects. Chem. Soc. Rev., 1974, 3(4), 513-544.
[http://dx.doi.org/10.1039/cs9740300513]
[20]
Ling, K.H.J.; Hanzlik, R.P. Deuterium isotope effects on toluene metabolism. Product release as a rate-limiting step in cytochrome P-450 catalysis. Biochem. Biophys. Res. Commun., 1989, 160(2), 844-849.
[http://dx.doi.org/10.1016/0006-291X(89)92511-4] [PMID: 2719701]
[21]
Elison, C.; Rapoport, H.; Laursen, R.; Elliott, H.W. Effect of deuteration of N-CH3 group on potency and enzymatic N-demethylation of morphine. Science, 1961, 134(3485), 1078-1079.
[http://dx.doi.org/10.1126/science.134.3485.1078] [PMID: 13889855]
[22]
Westheimer, F.H. The magnitude of the primary kinetic isotope effect for compounds of hydrogen and deuterium. Chem. Rev., 1961, 61(3), 265-273.
[http://dx.doi.org/10.1021/cr60211a004]
[23]
Schneider, F.; Mattern-Dogru, E.; Hillgenberg, M.; Alken, R.G. Changed phosphodiesterase selectivity and enhanced in vitro efficacy by selective deuteration of sildenafil. Arzneimittelforschung, 2011, 57(6), 293-298.
[http://dx.doi.org/10.1055/s-0031-1296622] [PMID: 17688073]
[24]
Sipes, I.G.; Gandolfi, A.J.; Pohl, L.R.; Krishna, G.; Brown, B.R., Jr Comparison of the biotransformation and hepatotoxicity of halothane and deuterated halothane. J. Pharmacol. Exp. Ther., 1980, 214(3), 716-720.
[PMID: 7400974]
[25]
Darland, G.K.; Hajdu, R.; Kropp, H.; Kahan, F.M.; Walker, R.W.; Vandenheuvel, W.J. Oxidative and defluorinative metabolism of fludalanine, 2-2H-3-fluoro-D-alanine. Drug Metab. Dispos., 1986, 14(6), 668-673.
[PMID: 2877824]
[26]
Higashi, T.; Ogawa, S. Isotope-coded ESI-enhancing derivatization reagents for differential analysis, quantification and profiling of metabolites in biological samples by LC/MS: A review. J. Pharm. Biomed. Anal., 2016, 130, 181-193.
[http://dx.doi.org/10.1016/j.jpba.2016.04.033] [PMID: 27178301]
[27]
Shao, L.; Hewitt, M.C. The kinetic isotope effect in the search for deuterated drugs. Drug News Perspect., 2010, 23(6), 398-404.
[http://dx.doi.org/10.1358/dnp.2010.23.6.1426638] [PMID: 20697607]
[28]
Cleave, A.B.V.; Maass, O. The molecular diameter of deuterium as determined by viscosity measurements. Can. J. Res., 1935, 12(1), 57-62.
[http://dx.doi.org/10.1139/cjr35-005]
[29]
Bartell, L.S.; Roth, E.A.; Hollowell, C.D.; Kuchitsu, K.; Young, J.E., Jr Electron-diffraction study of the structures of C2H4 and C2D4. J. Chem. Phys., 1965, 42(8), 2683-2686.
[http://dx.doi.org/10.1063/1.1703223]
[30]
Kuchitsu, K. Comparison of molecular structures determined by electron diffraction and spectroscopy. Ethane and diborane. J. Chem. Phys., 1968, 49(10), 4456-4462.
[http://dx.doi.org/10.1063/1.1669897]
[31]
Mullard, A. FDA approves first deuterated drug. Nat. Rev. Drug Discov., 2017, 16(5), 305-305.
[http://dx.doi.org/10.1038/nrd.2017.89] [PMID: 28450717]
[32]
Miyagi, M.; Tanaka, K.; Watanabe, S.; Kondo, J.; Kishimoto, T. Identifying protein–drug interactions in cell lysates using histidine hydrogen deuterium exchange. Anal. Chem., 2021, 93(45), 14985-14995.
[http://dx.doi.org/10.1021/acs.analchem.1c02283] [PMID: 34735131]
[33]
Shchepinov, M.S. Do “heavy” eaters live longer? BioEssays, 2007, 29(12), 1247-1256.
[http://dx.doi.org/10.1002/bies.20681] [PMID: 18027392]
[34]
Shchepinov, M.S. Reactive oxygen species, isotope effect, essential nutrients, and enhanced longevity. Rejuvenat. Res., 2007, 10(1), 47-60.
[http://dx.doi.org/10.1089/rej.2006.0506] [PMID: 17378752]
[35]
Alfadda, A.A.; Sallam, R.M. Reactive oxygen species in health and disease. J. Biomed. Biotechnol., 2012, 2012(6), 1-14.
[http://dx.doi.org/10.1155/2012/936486] [PMID: 22927725]
[36]
Brieger, K.; Schiavone, S.; Miller, J., Jr; Krause, K.H. Reactive oxygen species: From health to disease. Swiss Med. Wkly., 2012, 142, w13659.
[http://dx.doi.org/10.4414/smw.2012.13659] [PMID: 22903797]
[37]
Sultana, R.; Perluigi, M.; Butterfield, D.A. Lipid peroxidation triggers neurodegeneration: A redox proteomics view into the Alzheimer disease brain. Free Radic. Biol. Med., 2013, 62, 157-169.
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.09.027] [PMID: 23044265]
[38]
Shichiri, M. The role of lipid peroxidation in neurological disorders. J. Clin. Biochem. Nutr., 2014, 54(3), 151-160.
[http://dx.doi.org/10.3164/jcbn.14-10] [PMID: 24895477]
[39]
Farrar, M.A.; Teoh, H.L.; Brammah, S.; Roscioli, T.; Cardamone, M. Glial mitochondropathy in infantile neuroaxonal dystrophy: Pathophysiological and therapeutic implications. Brain, 2016, 139(12), e67.
[http://dx.doi.org/10.1093/brain/aww174] [PMID: 27497490]
[40]
McCarty, L.P.; Malek, R.S.; Larsen, E.R. The effects of deuteration on the metabolism of halogenated anesthetics in the rat. Anesthesiology, 1979, 51(2), 106-110.
[http://dx.doi.org/10.1097/00000542-197908000-00003] [PMID: 453609]
[41]
Cho, E.; Mayhugh, B.M.; Srinivasan, J.M.; Sacha, G.A.; Nail, S.L.; Topp, E.M. Stability of antibody drug conjugate formulations evaluated using solid-state hydrogen-deuterium exchange mass spectrometry. J. Pharm. Sci., 2021, 110(6), 2379-2385.
[http://dx.doi.org/10.1016/j.xphs.2021.03.006] [PMID: 33711346]
[42]
Maltais, F.; Jung, Y.C.; Chen, M.; Tanoury, J.; Perni, R.B.; Mani, N.; Laitinen, L.; Huang, H.; Liao, S.; Gao, H.; Tsao, H.; Block, E.; Ma, C.; Shawgo, R.S.; Town, C.; Brummel, C.L.; Howe, D.; Pazhanisamy, S.; Raybuck, S.; Namchuk, M.; Bennani, Y.L. In vitro and in vivo isotope effects with hepatitis C protease inhibitors: Enhanced plasma exposure of deuterated telaprevir versus telaprevir in rats. J. Med. Chem., 2009, 52(24), 7993-8001.
[http://dx.doi.org/10.1021/jm901023f] [PMID: 19894743]
[43]
Chen, M.C.; Korth, C.C.; Harnett, M.D.; Elenko, E.; Lickliter, J.D. A randomized phase 1 evaluation of deupirfenidone, a novel deuterium-containing drug candidate for interstitial lung disease and other inflammatory and fibrotic diseases. Clin. Pharmacol. Drug Dev., 2022, 11(2), 220-234.
[http://dx.doi.org/10.1002/cpdd.1040] [PMID: 34779583]
[44]
Schneider, F.; Hillgenberg, M.; Koytchev, R.; Alken, R.G. Enhanced plasma concentration by selective deuteration of rofecoxib in rats. Arzneimittelforschung, 2011, 56(4), 295-300.
[http://dx.doi.org/10.1055/s-0031-1296724] [PMID: 16724516]
[45]
Kerekes, A.D.; Esposite, S.J.; Doll, R.J.; Tagat, J.R.; Yu, T.; Xiao, Y.; Zhang, Y.; Prelusky, D.B.; Tevar, S.; Gray, K.; Terracina, G.A.; Lee, S.; Jones, J.; Liu, M.; Basso, A.D.; Smith, E.B. Aurora kinase inhibitors based on the imidazo[1,2-a]pyrazine core: Fluorine and deuterium incorporation improve oral absorption and exposure. J. Med. Chem., 2011, 54(1), 201-210.
[http://dx.doi.org/10.1021/jm1010995] [PMID: 21128646]
[46]
Xu, G.; Lv, B.; Roberge, J.Y.; Xu, B.; Du, J.; Dong, J.; Chen, Y.; Peng, K.; Zhang, L.; Tang, X.; Feng, Y.; Xu, M.; Fu, W.; Zhang, W.; Zhu, L.; Deng, Z.; Sheng, Z.; Welihinda, A.; Sun, X. Design, synthesis, and biological evaluation of deuterated C-aryl glycoside as a potent and long-acting renal sodium-dependent glucose cotransporter 2 inhibitor for the treatment of type 2 diabetes. J. Med. Chem., 2014, 57(4), 1236-1251.
[http://dx.doi.org/10.1021/jm401780b] [PMID: 24456245]
[47]
Belleau, B.; Burba, J.; Pindell, M.; Reiffenstein, J. Effect of deuterium substitution in sympathumimetic amines on adrenergic responses. Science, 1961, 133(3446), 102-104.
[http://dx.doi.org/10.1126/science.133.3446.102] [PMID: 17769335]
[48]
Cargnin, S.; Serafini, M.; Pirali, T. A primer of deuterium in drug design. Future Med. Chem., 2019, 11(16), 2039-2042.
[http://dx.doi.org/10.4155/fmc-2019-0183] [PMID: 31538524]
[49]
Harbeson, S.L.; Tung, R.D. Deuterium in drug discovery and development. Annu. Rep. Med. Chem., 2011, 46, 403-417.
[http://dx.doi.org/10.1016/B978-0-12-386009-5.00003-5]
[50]
Pirali, T.; Serafini, M.; Cargnin, S.; Genazzani, A.A. Applications of deuterium in medicinal chemistry. J. Med. Chem., 2019, 62(11), 5276-5297.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01808] [PMID: 30640460]
[51]
Chang, Y.; Yesilcimen, A.; Cao, M.; Zhang, Y.; Zhang, B.; Chan, J.Z.; Wasa, M. Catalytic deuterium incorporation within metabolically stable β-Amino C–H bonds of drug molecules. J. Am. Chem. Soc., 2019, 141(37), 14570-14575.
[http://dx.doi.org/10.1021/jacs.9b08662] [PMID: 31480842]
[52]
Ahn, J.; Flamm, S.L. Hepatocellular carcinoma. Dis. Mon., 2004, 50(10), 556-573.
[http://dx.doi.org/10.1016/j.disamonth.2004.10.001] [PMID: 15616490]
[53]
Morisue, R.; Kojima, M.; Suzuki, T.; Nakatsura, T.; Ojima, H.; Watanabe, R.; Sugimoto, M.; Kobayashi, S.; Takahashi, S.; Konishi, M.; Ishii, G.; Gotohda, N.; Fujiwara, T.; Ochiai, A. Sarcomatoid hepatocellular carcinoma is distinct from ordinary hepatocellular carcinoma: Clinicopathologic, transcriptomic and immunologic analyses. Int. J. Cancer, 2021, 149(3), 546-560.
[http://dx.doi.org/10.1002/ijc.33545] [PMID: 33662146]
[54]
Iscan, E.; Ekin, U.; Yildiz, G.; Oz, O.; Keles, U.; Suner, A.; Cakan-Akdogan, G.; Ozhan, G.; Nekulova, M.; Vojtesek, B.; Uzuner, H.; Karakülah, G.; Alotaibi, H.; Ozturk, M. TAp73β can promote hepatocellular carcinoma dedifferentiation. Cancers, 2021, 13(4), 783.
[http://dx.doi.org/10.3390/cancers13040783] [PMID: 33668566]
[55]
Citrome, L. Deutetrabenazine for tardive dyskinesia: A systematic review of the efficacy and safety profile for this newly approved novel medication-What is the number needed to treat, number needed to harm and likelihood to be helped or harmed? Int. J. Clin. Pract., 2017, 71(11), e13030.
[http://dx.doi.org/10.1111/ijcp.13030]
[56]
Frank, S.; Testa, C.M. Effect of deutetrabenazine on chorea among patients with Huntington disease: A randomized clinical trial. JAMA, 2016, 316(1), 40-50.
[57]
Frank, S.; Stamler, D.; Kayson, E.; Claassen, D.O.; Colcher, A.; Davis, C.; Duker, A.; Eberly, S.; Elmer, L.; Furr-Stimming, E.; Gudesblatt, M.; Hunter, C.; Jankovic, J.; Kostyk, S.K.; Kumar, R.; Loy, C.; Mallonee, W.; Oakes, D.; Scott, B.L.; Sung, V.; Goldstein, J.; Vaughan, C.; Testa, C.M. Safety of converting from tetrabenazine to deutetrabenazine for the treatment of chorea. JAMA Neurol., 2017, 74(8), 977-982.
[http://dx.doi.org/10.1001/jamaneurol.2017.1352] [PMID: 28692723]
[58]
Jankovic, J.; Jimenez-Shahed, J.; Budman, C.; Coffey, B.; Murphy, T.; Shprecher, D.; Stamler, D. A pilot study of SD-809 (deutetrabenazine) in tics associated with Tourette syndrome. Tremor Other Hyperkinet. Mov., 2016, 6(0), 422.
[http://dx.doi.org/10.5334/tohm.287] [PMID: 27917309]
[59]
Daniel, O.C.; Michael, P.; Benjamin, C. Deutetrabenazine for tardive dyskinesia and chorea associated with Huntington’s disease: A review of clinical trial data. Expert opin pharmaco., 2019, 20(18), 2209-2221.
[http://dx.doi.org/10.1080/14656566.2019.1674281]
[60]
Patel, R.S.; Mansuri, Z.; Motiwala, F.; Saeed, H.; Jannareddy, N.; Patel, H.; Zafar, M.K. A systematic review on treatment of tardive dyskinesia with valbenazine and deutetrabenazine. Ther. Adv. Psychopharmacol., 2019, 9, 2045125319847882.
[http://dx.doi.org/10.1177/2045125319847882] [PMID: 31205680]
[61]
Dean, M.; Sung, V. Review of deutetrabenazine: A novel treatment for chorea associated with Huntington’s disease. Drug Des. Devel. Ther., 2018, 12, 313-319.
[http://dx.doi.org/10.2147/DDDT.S138828] [PMID: 29497277]
[62]
Schneider, F.; Stamler, D.; Bradbury, M.; Loupe, P.S.; Hellriegel, E.; Cox, D.S.; Savola, J.M.; Gordon, M.F.; Rabinovich-Guilatt, L. Pharmacokinetics of deutetrabenazine and tetrabenazine: Dose proportionality and food effect. Clin. Pharmacol. Drug Dev., 2021, 10(6), 647-659.
[http://dx.doi.org/10.1002/cpdd.882] [PMID: 33038289]
[63]
Dorfman, B.J.; Jimenez-Shahed, J. Deutetrabenazine for treatment of involuntary movements in patients with tardive dyskinesia. Expert Rev. Neurother., 2021, 21(1), 9-20.
[http://dx.doi.org/10.1080/14737175.2021.1848548] [PMID: 33174440]
[64]
Ferguson, M.W.; Kennedy, C.J.; Palpagama, T.H.; Waldvogel, H.J.; Faull, R.L.M.; Kwakowsky, A. Current and possible future therapeutic options for Huntington’s disease. J. Cent. Nerv. Syst. Dis., 2022, 14, 11795735221092517.
[http://dx.doi.org/10.1177/11795735221092517] [PMID: 35615642]
[65]
Bashir, H.; Jankovic, J. Deutetrabenazine for the treatment of Huntington’s chorea. Expert Rev. Neurother., 2018, 18(8), 625-631.
[http://dx.doi.org/10.1080/14737175.2018.1500178] [PMID: 29996061]
[66]
Jankovic, J. Dopamine depleters in the treatment of hyperkinetic movement disorders. Expert Opin. Pharmacother., 2016, 17(18), 2461-2470.
[http://dx.doi.org/10.1080/14656566.2016.1258063] [PMID: 27819145]
[67]
FDA. Pharmaceuticals USA Inc. AUSTEDO (deutetrabenazine): US prescribing information. 2017. Available from: http://www.fda.gov [Accessed on 14 May 2018].
[68]
Paton, D.M. Deutetrabenazine: Treatment of hyperkinetic aspects of Huntington’s disease, tardive dyskinesia and Tourette syndrome. Drugs Today (Barc), 2017, 53(2), 89-102.
[http://dx.doi.org/10.1358/dot.2017.53.2.2589164] [PMID: 28387387]
[69]
Reddy, P. Procress for preparetion of ((3R.llbR)-1,3,4,6,7,11b-hexahydro-9,10- di(methoxy-d3)-3-(2-methylpropyl)-2H-benzo[a]quinolizin-2-one. WO Patent 2,019,207,517 Al, October 31, 2019
[70]
Ray, P.C.; Pawar, Y.D.; Singare, D.T.; Deshpande, T.N.; Singh, G.P. Novel process for preparation of tetrabenazine and deutetrabenazine. Org. Process Res. Dev., 2018, 22(4), 520-526.
[http://dx.doi.org/10.1021/acs.oprd.8b00011]
[71]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2016. CA Cancer J. Clin., 2016, 66(1), 7-30.
[http://dx.doi.org/10.3322/caac.21332] [PMID: 26742998]
[72]
Chen, W.; Zheng, R.; Baade, P.D.; Zhang, S.; Zeng, H.; Bray, F.; Jemal, A.; Yu, X.Q.; He, J. Cancer statistics in China, 2015. CA Cancer J. Clin., 2016, 66(2), 115-132.
[http://dx.doi.org/10.3322/caac.21338] [PMID: 26808342]
[73]
Llovet, J.M.; Ricci, S.; Mazzaferro, V.; Hilgard, P.; Gane, E.; Blanc, J.F.; de Oliveira, A.C.; Santoro, A.; Raoul, J.L.; Forner, A.; Schwartz, M.; Porta, C.; Zeuzem, S.; Bolondi, L.; Greten, T.F.; Galle, P.R.; Seitz, J.F.; Borbath, I.; Häussinger, D.; Giannaris, T.; Shan, M.; Moscovici, M.; Voliotis, D.; Bruix, J. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med., 2008, 359(4), 378-390.
[http://dx.doi.org/10.1056/NEJMoa0708857] [PMID: 18650514]
[74]
Escudier, B.; Eisen, T.; Stadler, W.M.; Szczylik, C.; Oudard, S.; Siebels, M.; Negrier, S.; Chevreau, C.; Solska, E.; Desai, A.A.; Rolland, F.; Demkow, T.; Hutson, T.E.; Gore, M.; Freeman, S.; Schwartz, B.; Shan, M.; Simantov, R.; Bukowski, R.M. Sorafenib in advanced clear cell renal cell carcinoma. N. Engl. J. Med., 2007, 356(2), 125-134.
[http://dx.doi.org/10.1056/NEJMoa060655] [PMID: 17215530]
[75]
Liu, J.; Li, X.; Zhang, H.; Chen, G.; Chen, H.; Hu, Y.; Niu, J.; Ding, Y. Safety, pharmacokinetics and efficacy of donafenib in treating advanced hepatocellular carcinoma: report from a phase 1b trial. Pharmazie, 2019, 74(11), 688-693.
[http://dx.doi.org/10.1691/ph.2019.9626] [PMID: 31739839]
[76]
Llovet, J.; Bruix, J. Systematic review of randomized trials for unresectable hepatocellular carcinoma: Chemoembolization improves survival. Hepatology, 2003, 37(2), 429-442.
[http://dx.doi.org/10.1053/jhep.2003.50047] [PMID: 12540794]
[77]
Gant, T.G. Using deuterium in drug discovery: Leaving the label in the drug. J. Med. Chem., 2014, 57(9), 3595-3611.
[http://dx.doi.org/10.1021/jm4007998] [PMID: 24294889]
[78]
Katsnelson, A. Heavy drugs draw heavy interest from pharma backers. Nat. Med., 2013, 19(6), 656-656.
[http://dx.doi.org/10.1038/nm0613-656] [PMID: 23744136]
[79]
Li, X.; Qiu, M.; Wang, S.; Zhu, H.; Feng, B.; Zheng, L. A Phase I dose-escalation, pharmacokinetics and food-effect study of oral donafenib in patients with advanced solid tumours. Cancer Chemother. Pharmacol., 2020, 85(3), 593-604.
[http://dx.doi.org/10.1007/s00280-020-04031-1] [PMID: 32008115]
[80]
Lin, Y.S.; Yang, H.; Ding, Y.; Cheng, Y.Z.; Shi, F.; Tan, J.; Deng, Z.Y.; Chen, Z.D.; Wang, R.F.; Ji, Q.H.; Huang, R.; Li, L.F. Donafenib in progressive locally advanced or metastatic radioactive iodine-refractory differentiated thyroid cancer: results of a randomized, multicenter phase II Trial. Thyroid, 2021, 31(4), 607-615.
[http://dx.doi.org/10.1089/thy.2020.0235] [PMID: 32907500]
[81]
PubChem. National Center for Biotechnology Information. PubChem Compound Summary for CID 25191001, Donafenib Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Donafenib [Accessed on: January 25, 2021].
[82]
Li, Q.; Zhu, H. Donafenib treatment for hepatocellular carcinoma. Medicine (Baltimore), 2021, 100(25), e26373.
[http://dx.doi.org/10.1097/MD.0000000000026373] [PMID: 34160411]
[83]
Bi, F.; Qin, S.; Gu, S. Donafenib versus sorafenib as first-line therapy in advanced hepatocellular carcinoma: An open-label, randomized, multicenter phase II/III trial. J. Clin. Oncol., 2020, 38(15 Suppl.), 4506-4506.
[84]
Feng, W.D.; Gao, X.Y.; Dai, X.J. Preparation method of fluoro-substituted deuterated diphenylurea. U.S. Patent 20,150,175,545, 2015.
[85]
Wrobleski, S.T.; Moslin, R.; Lin, S.; Zhang, Y.; Spergel, S.; Kempson, J.; Tokarski, J.S.; Strnad, J.; Zupa-Fernandez, A.; Cheng, L.; Shuster, D.; Gillooly, K.; Yang, X.; Heimrich, E.; McIntyre, K.W.; Chaudhry, C.; Khan, J.; Ruzanov, M.; Tredup, J.; Mulligan, D.; Xie, D.; Sun, H.; Huang, C.; D’Arienzo, C.; Aranibar, N.; Chiney, M.; Chimalakonda, A.; Pitts, W.J.; Lombardo, L.; Carter, P.H.; Burke, J.R.; Weinstein, D.S. Highly Selective Inhibition of Tyrosine Kinase 2 (TYK2) for the treatment of autoimmune diseases: Discovery of the allosteric inhibitor BMS-986165. J. Med. Chem., 2019, 62(20), 8973-8995.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00444] [PMID: 31318208]
[86]
Chimalakonda, A.; Jones, J., III; Dockens, R.; Throup, J.; Banerjee, S.; Girgis, I. P349 Cyclosporine has no clinically meaningful effect on pharmacokinetics (PK) of BMS-986165, an oral selective tyrosine kinase 2 (TYK2) inhibitor, in healthy subjects. J. Crohn’s Colitis, 2019, 13(Suppl. 1), S277-S278.
[http://dx.doi.org/10.1093/ecco-jcc/jjy222.473]
[87]
Chimalakonda, A.; Burke, J.; Cheng, L.; Strnad, J.; Catlett, I.; Patel, A.; Shen, J.; Girgis, I.; Banerjee, S.; Throup, J. Selective inhibiton of tyrosine kinase 2 with an oral agent, BMS-986165, compared with janus kinase inhibitors. Ann. Rheum. Dis., 2020, 79(Suppl. 1), 1316.1-1316.
[http://dx.doi.org/10.1136/annrheumdis-2020-eular.4598]
[88]
Krueger, J.; Hu, S.; Banerjee, S.; Gordon, K.; Catlett, I. A selective inhibitor of TYK2, BMS-986165, improves molecular, cellular, and clinical biomarkers associated with efficacy in moderate-to-severe psoriasis. J. Am. Acad. Dermatol., 2019, 81(4), AB12-AB12.
[http://dx.doi.org/10.1016/j.jaad.2019.06.083]
[89]
Yao, M.; Gu, X.; Brailsford, J.; Cortes, J.C.; Iyer, R.; Li, W. P177 - Comparative metabolism of [14C]-BMS-986165 in mice, rats, monkey, and humans. Drug Metab. Pharmacokinet., 2020, 35(1), S77-S77.
[http://dx.doi.org/10.1016/j.dmpk.2020.04.178]
[90]
Catlett, I.; Aras, U.; Liu, Y.; Bei, D.; Girgis, I.; Murthy, B.; Honczarenko, M.; Rose, S. A first-in -human, study of BMS-986165, a selective, potent, allosteric small molecule inhibitor of tyrosine kinase 2. Ann. Rheum. Dis., 2017, 76, 859.1-859.
[http://dx.doi.org/10.1136/annrheumdis-2017-eular.3809]
[91]
Liang, Y.; Zhu, Y.; Xia, Y.; Peng, H.; Yang, X.K.; Liu, Y.Y.; Xu, W.D.; Pan, H.F.; Ye, D.Q. Therapeutic potential of tyrosine kinase 2 in autoimmunity. Expert Opin. Ther. Targets, 2014, 18(5), 571-580.
[http://dx.doi.org/10.1517/14728222.2014.892925] [PMID: 24654603]
[92]
Chimalakonda, A.; Jones, J., III; Dockens, R.; Throup, J.; Banerjee, S.; Girgis, I. P638 BMS-986165, an oral selective tyrosine kinase 2 (TYK2) inhibitor, does not affect the pharmacokinetics of methotrexate in healthy subjects. J. Crohn’s Colitis, 2019, 13(Suppl. 1), S437-S438.
[http://dx.doi.org/10.1093/ecco-jcc/jjy222.762]
[93]
Gao, P.; Zeng, M.; Tan, S.L.; Sun, G.J.; Wang, S.B.; Xiu, W.H.; Bao, R.D. The utility model relates to a pyridazine derivative inhibitor, a preparation method and application thereof. WO Patent 2,020,156,311, 2020.
[94]
Pandolfo, M. Friedreich ataxia: the clinical picture. J Neurol., 2009, 256(l 1), 3-8.
[http://dx.doi.org/10.1007/s00415-009-1002-3]
[95]
Weidemann, F.; Rummey, C.; Bijnens, B.; Störk, S.; Jasaityte, R.; Dhooge, J.; Baltabaeva, A.; Sutherland, G.; Schulz, J.B.; Meier, T. The heart in Friedreich ataxia: definition of cardiomyopathy, disease severity, and correlation with neurological symptoms. Circulation, 2012, 125(13), 1626-1634.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.111.059477] [PMID: 22379112]
[96]
Patel, M.; Isaacs, C.J.; Seyer, L.; Brigatti, K.; Gelbard, S.; Strawser, C.; Foerster, D.; Shinnick, J.; Schadt, K.; Yiu, E.M.; Delatycki, M.B.; Perlman, S.; Wilmot, G.R.; Zesiewicz, T.; Mathews, K.; Gomez, C.M.; Yoon, G.; Subramony, S.H.; Brocht, A.; Farmer, J.; Lynch, D.R. Progression of Friedreich ataxia: Quantitative characterization over 5 years. Ann. Clin. Transl. Neurol., 2016, 3(9), 684-694.
[http://dx.doi.org/10.1002/acn3.332] [PMID: 27648458]
[97]
Hill, S.; Lamberson, C.R.; Xu, L.; To, R.; Tsui, H.S.; Shmanai, V.V.; Bekish, A.V.; Awad, A.M.; Marbois, B.N.; Cantor, C.R.; Porter, N.A.; Clarke, C.F.; Shchepinov, M.S. Small amounts of isotope-reinforced polyunsaturated fatty acids suppress lipid autoxidation. Free Radic. Biol. Med., 2012, 53(4), 893-906.
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.06.004] [PMID: 22705367]
[98]
Bedlack, R. ALSUntangled No. 47: RT001. Amyotroph. Lateral Scler. Frontotemporal Degener., 2019, 20(3-4), 294-297.
[http://dx.doi.org/10.1080/21678421.2018.1549531] [PMID: 30689428]
[99]
Zesiewicz, T.; Heerinckx, F.; De Jager, R.; Omidvar, O.; Kilpatrick, M.; Shaw, J.; Shchepinov, M.S. Randomized, clinical trial of RT001: Early signals of efficacy in Friedreich’s ataxia. Mov. Disord., 2018, 33(6), 1000-1005.
[http://dx.doi.org/10.1002/mds.27353] [PMID: 29624723]
[100]
Navratil, A.R.; Shchepinov, M.S.; Dennis, E.A. Lipidomics reveals dramatic physiological kinetic isotope effects during the enzymatic oxygenation of polyunsaturated fatty acids ex vivo. J. Am. Chem. Soc., 2018, 140(1), 235-243.
[http://dx.doi.org/10.1021/jacs.7b09493] [PMID: 29206462]
[101]
Angelova, P.R.; Andruska, K.M.; Midei, M.G.; Barilani, M.; Atwal, P.; Tucher, O.; Milner, P.; Heerinckx, F.; Shchepinov, M.S. RT001 in progressive supranuclear palsy-clinical and in vitro observations. Antioxidants, 2021, 10(7), 1021.
[http://dx.doi.org/10.3390/antiox10071021] [PMID: 34202031]
[102]
Hill, S.; Hirano, K.; Shmanai, V.V.; Marbois, B.N.; Vidovic, D.; Bekish, A.V.; Kay, B.; Tse, V.; Fine, J.; Clarke, C.F.; Shchepinov, M.S. Isotope-reinforced polyunsaturated fatty acids protect yeast cells from oxidative stress. Free Radic. Biol. Med., 2011, 50(1), 130-138.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.10.690] [PMID: 20955788]
[103]
Brenna, J.T.; James, G.; Midei, M.; Heerinckx, F.; Atwal, P.; Milner, P.; Schmidt, K.; van der Ploeg, L.; Fielding, R.; Shchepinov, M.S. Plasma and red blood cell membrane accretion and pharmacokinetics of RT001 (bis-Allylic 11,11-D2-Linoleic Acid Ethyl Ester) during long term dosing in patients. J. Pharm. Sci., 2020, 109(11), 3496-3503.
[http://dx.doi.org/10.1016/j.xphs.2020.08.019] [PMID: 32871154]
[104]
Schepinov, M.S. Oxidative retinal diseases. WO Patent 2,012,148,930, 2012.
[105]
Schepinov, M.S. Neurodegenerative disorders and muscle diseases implicating pufas. WO Patent 2,012,148,926, 2012.
[106]
Scholl, H.P.; Tsang, S.H.; Kay, C.N. Stargardt disease ALK-001 phase 2 clinical trial: 12-month interim data. Invest. Ophthalmol. Vis. Sci., 2019, 60(9), 1336.
[107]
Saad, L.; Washington, I. Can deuterated vitamin A be used to prevent blindness? The case of ALK-001. Abstracts of Papers of the Am. Chem. Soc., 2015, 250, 270.
[108]
Issa, P.C.; Barnard, A.R.; Washington, I.; MacLaren, R.E. C20-D3-Vitamin A (ALK-001) rescues the phenotype of an Abca4(-/-) mouse model of Stargardt disease. Invest. Ophthalmol. Vis. Sci., 2014, 55(13), 5015.
[109]
Scholl, H.P.; Shah, S.M.; Kay, C.N.; Tsang, S.H. TEASE: A phase 2 clinical trial assessing the tolerability and effects of oral once-a day ALK-001 on Stargardt disease. Invest. Ophthalmol. Vis. Sci., 2016, 57(12), 2685.
[110]
Hector, F.; DeLuca, D.; Praveen, K.; Tadikonda, M. Method of synthesis of retinoic acid. U.S. Patent 5,808,120, 1998.
[111]
Adamson, N.J.; Hull, E.; Malcolmson, S.J. Enantioselective intermolecular addition of aliphatic amines to acyclic dienes with a Pd–PHOX Catalyst. J. Am. Chem. Soc., 2017, 139(21), 7180-7183.
[http://dx.doi.org/10.1021/jacs.7b03480] [PMID: 28453290]
[112]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin., 2019, 69(1), 7-34.
[http://dx.doi.org/10.3322/caac.21551] [PMID: 30620402]
[113]
Palmberg, C.; Koivisto, P.; Visakorpi, T.; Tammela, T.L.J. PSA decline is an independent prognostic marker in hormonally treated prostate cancer. Eur. Urol., 1999, 36(3), 191-196.
[http://dx.doi.org/10.1159/000067996] [PMID: 10450001]
[114]
Gittes, R.F. Carcinoma of the prostate. N. Engl. J. Med., 1991, 324(4), 236-245.
[http://dx.doi.org/10.1056/NEJM199101243240406] [PMID: 1985245]
[115]
Crawford, E.D.; Eisenberger, M.A.; McLeod, D.G.; Spaulding, J.T.; Benson, R.; Dorr, F.A.; Blumenstein, B.A.; Davis, M.A.; Goodman, P.J. A controlled trial of leuprolide with and without flutamide in prostatic carcinoma. N. Engl. J. Med., 1989, 321(7), 419-424.
[http://dx.doi.org/10.1056/NEJM198908173210702] [PMID: 2503724]
[116]
Denis, L.J.; Carnelro, D.; Moura, J.L.; Bono, A. Goserelin acetate andflutamide versus bilateral orchiectomy: A phase III EORTC trial (30853). EORTC GU Group and EORTC Data Center. Urology, 1993, 42(2), 119-129.
[http://dx.doi.org/10.1016/0090-4295(93)90634-M] [PMID: 8367920]
[117]
Schalken, J.; Fitzpatrick, J.M. Enzalutamide: targeting the androgen signalling pathway in metastatic castration-resistant prostate cancer. BJU Int., 2016, 117(2), 215-225.
[http://dx.doi.org/10.1111/bju.13123] [PMID: 25818596]
[118]
Tran, C.; Ouk, S.; Clegg, N.J.; Chen, Y.; Watson, P.A.; Arora, V.; Wongvipat, J.; Smith-Jones, P.M.; Yoo, D.; Kwon, A.; Wasielewska, T.; Welsbie, D.; Chen, C.D.; Higano, C.S.; Beer, T.M.; Hung, D.T.; Scher, H.I.; Jung, M.E.; Sawyers, C.L. Development of a second-generation antiandrogen for treatment of advanced prostate cancer. Science, 2009, 324(5928), 787-790.
[http://dx.doi.org/10.1126/science.1168175] [PMID: 19359544]
[119]
Scher, H.I.; Fizazi, K.; Saad, F.; Taplin, M.E.; Sternberg, C.N.; Miller, K.; de Wit, R.; Mulders, P.; Chi, K.N.; Shore, N.D.; Armstrong, A.J.; Flaig, T.W.; Fléchon, A.; Mainwaring, P.; Fleming, M.; Hainsworth, J.D.; Hirmand, M.; Selby, B.; Seely, L.; de Bono, J.S. Increased survival with enzalutamide in prostate cancer after chemotherapy. N. Engl. J. Med., 2012, 367(13), 1187-1197.
[http://dx.doi.org/10.1056/NEJMoa1207506] [PMID: 22894553]
[120]
Wen, L.; Yao, J.; Valderrama, A. Evaluation of treatment patterns and costs in patients with prostate cancer and bone metastases. J Manage. Care Spec. Pharm., 2019, 25(3-b suppl.), S1-S11.
[http://dx.doi.org/10.18553/jmcp.2019.25.3-b.s1]
[121]
Nelson, S.D.; Trager, W.F. The use of deuterium isotope effects to probe the active site properties, mechanism of cytochrome P450-catalyzed reactions, and mechanisms of metabolically dependent toxicity. Drug Metab. Dispos., 2003, 31(12), 1481-1497.
[http://dx.doi.org/10.1124/dmd.31.12.1481] [PMID: 14625345]
[122]
Sharma, R.; Strelevitz, T.J.; Gao, H.; Clark, A.J.; Schildknegt, K.; Obach, R.S.; Ripp, S.L.; Spracklin, D.K.; Tremaine, L.M.; Vaz, A.D.N. Deuterium isotope effects on drug pharmacokinetics. I. System-dependent effects of specific deuteration with aldehyde oxidase cleared drugs. Drug Metab. Dispos., 2012, 40(3), 625-634.
[http://dx.doi.org/10.1124/dmd.111.042770] [PMID: 22190693]
[123]
Zhong, L.; Hou, C.; Zhang, L.; Zhao, J.; Li, F.; Li, W. Synthesis of deuterium-enriched sorafenib derivatives and evaluation of their biological activities. Mol. Divers., 2019, 23(2), 341-350.
[http://dx.doi.org/10.1007/s11030-018-9875-7] [PMID: 30238393]
[124]
Pang, X.; Peng, L.; Chen, Y. Effect of N -methyl deuteration on pharmacokinetics and pharmacodynamics of enzalutamide. J. Labelled Comp. Radiopharm., 2017, 60(9), 401-409.
[http://dx.doi.org/10.1002/jlcr.3516] [PMID: 28432800]
[125]
Joulia, M.L.; Carton, E.; Jouinot, A.; Allard, M.; Huillard, O.; Khoudour, N.; Peyromaure, M.; Zerbib, M.; Schoemann, A.T.; Vidal, M.; Goldwasser, F.; Alexandre, J.; Blanchet, B. Pharmacokinetic/pharmacodynamic relationship of enzalutamide and its active metabolite N-desmethyl enzalutamide in metastatic castration-resistant prostate cancer patients. Clin. Genitourin. Cancer, 2020, 18(2), 155-160.
[http://dx.doi.org/10.1016/j.clgc.2019.05.020] [PMID: 31630979]
[126]
Higano, C.S.; Beer, T.M.; Taplin, M.E.; Efstathiou, E.; Hirmand, M.; Forer, D.; Scher, H.I. Long-term safety and anti-tumor activity in the phase 1-2 study of enzalutamide in pre- and post-docetaxel castration-resistant prostate cancer. Eur. Urol., 2015, 68(5), 795-801.
[http://dx.doi.org/10.1016/j.eururo.2015.01.026] [PMID: 25698064]
[127]
Golshayan, A.R.; Antonarakis, E.S. Enzalutamide: An evidence-based review of its use in the treatment of prostate cancer. Core Evid., 2013, 8, 27-35.
[PMID: 23589709]
[128]
Bi, F.; Zheng, L.; Liu, J.Y.; Cheng, K.; Chao, P.; Zhou, Y.W.; Wei, Q.; Zeng, H.; Shen, P.F.; Shu, Z.Q.; Zhou, Z.X.; Zheng, W.; Chen, Y.W.; Li, X.H. Phase I study of HC-1119, an androgen receptor inhibitor: Results from the dose escalation and expansion cohorts. J. Clin. Oncol., 2018, 36(15), e17021.
[129]
Li, X.; Cheng, K.; Li, X.; Zhou, Y.; Liu, J.; Zeng, H.; Chen, Y.; Liu, X.; Zhang, Y.; Wang, Y.; Bi, F.; Zheng, L. Phase I clinical trial of HC -1119: A deuterated form of enzalutamide. Int. J. Cancer, 2021, 149(7), 1473-1482.
[http://dx.doi.org/10.1002/ijc.33706] [PMID: 34109624]
[130]
Zhu, L.J.; Lei, F. Imidazole diketone compounds and their uses. CN. Patent 103,159,680, 2013.
[131]
Santiago, J.A.; Potashkin, J.A. The impact of disease comorbidities in Alzheimer’s disease. Front. Aging Neurosci., 2021, 13, 631770.
[http://dx.doi.org/10.3389/fnagi.2021.631770] [PMID: 33643025]
[132]
Garay, R.P.; Grossberg, G.T. AVP-786 for the treatment of agitation in dementia of the Alzheimer’s type. Expert Opin. Investig. Drugs, 2017, 26(1), 121-132.
[http://dx.doi.org/10.1080/13543784.2017.1267726] [PMID: 27936965]
[133]
Khoury, R.; Marx, C.; Mirgati, S.; Velury, D.; Chakkamparambil, B.; Grossberg, G.T. AVP-786 as a promising treatment option for Alzheimer’s disease including agitation. Expert Opin. Pharmacother., 2021, 22(7), 783-795.
[http://dx.doi.org/10.1080/14656566.2021.1882995] [PMID: 33615952]
[134]
Li, X.J.Z.; Li, J.Z.; Ma, X.L.; Chi, W.Z.; Liu, H.; Hu, X.H.; Zheng, X.L.; Zhai, Z.J.; Li, J.X. Method for preparing dextromethorphan. CN Patent 104,119,273, 2014.
[135]
Yamao, N. Industrial process of mono-alkylating a piperidine nitrogen in piperidine derivatives with deuterated-alkyl. WO Patent 2,019,049,918, 2019.
[136]
Miyake, M. Method for introducing deuterated lower alkyl into amine moiety of compound containing secondary amin. WO Patent 2,020,184,670, 2020.
[137]
Huebert, N.D.; Palfreyman, M.G.; Haegele, K.D. A comparison of the effects of reversible and irreversible inhibitors of aromatic L-amino acid decarboxylase on the half-life and other pharmacokinetic parameters of oral L-3,4-dihydroxyphenylalanine. Drug Metab. Dispos., 1983, 11(3), 195-200.
[PMID: 6135575]
[138]
Olanow, C.W.; Stern, M.B.; Sethi, K. The scientific and clinical basis for the treatment of Parkinson disease (2009). Neurology, 2009, 72(Supplement 4), S1-S136.
[http://dx.doi.org/10.1212/WNL.0b013e3181a1d44c] [PMID: 19470958]
[139]
Magrinelli, F.; Picelli, A.; Tocco, P.; Federico, A.; Roncari, L.; Smania, N.; Zanette, G.; Tamburin, S. Pathophysiology of motor dysfunction in Parkinson’s disease as the rationale for drug treatment and rehabilitation. Parkinsons Dis., 2016, 2016, 9832839.
[http://dx.doi.org/10.1155/2016/9832839] [PMID: 27366343]
[140]
Nishijima, H.; Mori, F.; Kimura, T.; Miki, Y.; Kinoshita, I.; Nakamura, T.; Kon, T.; Suzuki, C.; Wakabayashi, K.; Tomiyama, M. Cabergoline, a long-acting dopamine agonist, attenuates L-dopa-induced dyskinesia without L-dopa sparing in a rat model of Parkinson’s disease. Neurosci. Res., 2022, 178, 93-97.
[http://dx.doi.org/10.1016/j.neures.2022.02.001] [PMID: 35150767]
[141]
Krauser, J.A.; Guengerich, F.P. Cytochrome P450 3A4-catalyzed testosterone 6beta-hydroxylation stereochemistry, kinetic deuterium isotope effects, and rate-limiting steps. J. Biol. Chem., 2005, 280(20), 19496-19506.
[http://dx.doi.org/10.1074/jbc.M501854200] [PMID: 15772082]
[142]
Malmlöf, T.; Feltmann, K.; Konradsson-Geuken, Å.; Schneider, F.; Alken, R.G.; Svensson, T.H.; Schilström, B. Deuterium-substituted l-DOPA displays increased behavioral potency and dopamine output in an animal model of Parkinson’s disease: Comparison with the effects produced by l-DOPA and an MAO-B inhibitor. J. Neural. Transm. (Vienna), 2015, 122(2), 259-272.
[http://dx.doi.org/10.1007/s00702-014-1247-6] [PMID: 24906468]
[143]
Malmlöf, T.; Svensson, T.H.; Schilström, B. Altered behavioural and neurochemical profile of l-DOPA following deuterium substitutions in the molecule. Exp. Neurol., 2008, 212(2), 538-542.
[http://dx.doi.org/10.1016/j.expneurol.2008.05.003] [PMID: 18561915]
[144]
Malmlöf, T.; Rylander, D.; Alken, R.G.; Schneider, F.; Svensson, T.H.; Cenci, M.A.; Schilström, B. Deuterium substitutions in the L-DOPA molecule improve its anti-akinetic potency without increasing dyskinesias. Exp. Neurol., 2010, 225(2), 408-415.
[http://dx.doi.org/10.1016/j.expneurol.2010.07.018] [PMID: 20659451]
[145]
Heikkinen, H.; Varhe, A.; Laine, T.; Puttonen, J.; Kela, M.; Kaakkola, S.; Reinikainen, K. Entacapone improves the availability of L-DOPA in plasma by decreasing its peripheral metabolism independent of L-DOPA/carbidopa dose. Br. J. Clin. Pharmacol., 2002, 54(4), 363-371.
[http://dx.doi.org/10.1046/j.1365-2125.2002.01654.x] [PMID: 12392583]
[146]
Schneider, F.; Erisson, L.; Beygi, H.; Bradbury, M.; Cohen-Barak, O.; Grachev, I.D.; Guzy, S.; Loupe, P.S.; Levi, M.; McDonald, M.; Savola, J.M.; Papapetropoulos, S.; Tracewell, W.G.; Velinova, M.; Spiegelstein, O. Pharmacokinetics, metabolism and safety of deuterated L-DOPA (SD-1077)/carbidopa compared to L-DOPA/carbidopa following single oral dose administration in healthy subjects. Br. J. Clin. Pharmacol., 2018, 84(10), 2422-2432.
[http://dx.doi.org/10.1111/bcp.13702] [PMID: 29959802]
[147]
Alken, R.; Malmlöf, T.; Feltmann, K.; Konradsson-Geuken, A.; Schneider, F.; Schilström, B.; Svensson, T.H. Less dyskinesia at motor-equivalent doses of triple-deuterated L-DOPA vs. L-DOPA after chronic administration in rats. Eur. Neuropsychopharmacol., 2016, 26, S253-S254.
[http://dx.doi.org/10.1016/S0924-977X(16)31127-0]
[148]
Russ, H.; Mandel, S.A.; Moshav, A.H.; Arie, S.; Orbach, A. Combination of deuterated levodopa with carbidopa and opicapone for the treatment of parkinson's disease. WO Patent 2,017,060,870, 2017.
[149]
Harbeson, S. L. Deuterium medicinal chemistry: From bench to clinic. NERM-345, New Haven, CT, USA, 2015.
[150]
Harbeson, S.L. Deuterium-modified drugs: Discovery and development. Am. Chem. Soc., 2015, 250, 310.
[151]
Harbeson, S. Substituted triazolo-pyridazine derivatives for the treatment of diseases associated with certain GABA-A receptors. WO Patent 2,010,025,407, 2010.
[152]
Igo, D.; Bis, J.; Weissman, S.; Turnquist, D. Preparation of polymorphs of 7-(tert-butyl-d9)-3-(2,5-difluorophenyl)-6-[(1-methyl-1H-1,2,4-triazol-5-yl)methoxy]-1,2,4-triazolo[4,3-b]pyridazine. WO Patent 2,013,170,241, 2013.
[153]
Uttamsingh, V.; Pilja, L.; Brummel, C.L.; Grotbeck, B.; Cassella, J.V.; Braman, G. CTP-656 multiple dose pharmacokinetic profile continues to support a once-daily potentiator for cystic fibrosis patients with gating mutations. Pediatr. Pulmonol., 2016, 51, 277-277.
[154]
Altshuler, D.M.; Anderson, C.D.; Chen, W.C.; Clemens, J.J.; Cleveland, T.; Coon, T.R.; Frieman, B.; Grootenhuis, P.; Hadida, R.S.S.; Hare, B.J.; Kewalramani, R.; McCartney, J.; Miller, M.T.; Paraselli, P.; Pierre, F.; Robertson, S.M.; Sosnay, P.R.; Swift, S.E.; Zhou, J.L. Preparation of macrocyclic compound for treating cystic fibrosis. WO Patent 2,020,102,346, 2020.
[155]
Tang, X.; Bridson, G.; Ke, J.; Wu, L.; Erol, H.; Graham, P.; Lin, C.H.; Braman, V.; Zhao, H.; Liu, J.F.; Lin, Z.J.; Cheng, C. Quantitative analyses of CTP-499 and five major metabolites by core-structure analysis. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2014, 963(963), 1-9.
[http://dx.doi.org/10.1016/j.jchromb.2014.05.043] [PMID: 24927417]
[156]
McCormick, B.B.; Sydor, A.; Akbari, A.; Fergusson, D.; Doucette, S.; Knoll, G. The effect of pentoxifylline on proteinuria in diabetic kidney disease: A meta-analysis. Am. J. Kidney Dis., 2008, 52(3), 454-463.
[http://dx.doi.org/10.1053/j.ajkd.2008.01.025] [PMID: 18433957]
[157]
Levey, A.S.; Cattran, D.; Friedman, A.; Miller, W.G.; Sedor, J.; Tuttle, K.; Kasiske, B.; Hostetter, T. Proteinuria as a surrogate outcome in CKD: Report of a scientific workshop sponsored by the National Kidney Foundation and the US Food and Drug Administration. Am. J. Kidney Dis., 2009, 54(2), 205-226.
[http://dx.doi.org/10.1053/j.ajkd.2009.04.029] [PMID: 19577347]
[158]
Brenner, B.M.; Cooper, M.E.; de Zeeuw, D.; Keane, W.F.; Mitch, W.E.; Parving, H.H.; Remuzzi, G.; Snapinn, S.M.; Zhang, Z.; Shahinfar, S. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N. Engl. J. Med., 2001, 345(12), 861-869.
[http://dx.doi.org/10.1056/NEJMoa011161] [PMID: 11565518]
[159]
Navarro-González, J.F.; Mora-Fernández, C. The role of inflammatory cytokines in diabetic nephropathy. J. Am. Soc. Nephrol., 2008, 19(3), 433-442.
[http://dx.doi.org/10.1681/ASN.2007091048] [PMID: 18256353]
[160]
Sabounjian, L.; Graham, P.; Wu, L.J.; Braman, V.; Cheng, C.F.; Liu, J.L.; Shipley, J.; Neutel, J.; Dao, M. A A first-in-patient, multicenter, double-blind, 2-ARM, placebo-controlled, randomized safety and tolerability study of a novel oral drug candidate, CTP-499, in chronic kidney disease. Clin Pharm Drug Dev., 2016, 5(4), 314-325.
[161]
Jha, V.; Wang, A.Y.M.; Wang, H. The impact of CKD identification in large countries: The burden of illness. Nephrol. Dial. Transplant., 2012, 27(Suppl. 3), iii32-iii38.
[http://dx.doi.org/10.1093/ndt/gfs113] [PMID: 23115140]
[162]
Graham, P.; Sabounjian, L.; Shipley, J.; Braman, V.; Harnett, M.; Turnquist, D.; Cheng, C.F.; Wu, L.J. Safety, tolerability and pharmacokinetics of CTP-499 in a multi-center, double-blind, two-arm, placebo-controlled, randomized study in non-dialysis patients with stage 3 chronic kidney disease. Am. J. Kidney Dis., 2012, 59(4), B38.
[http://dx.doi.org/10.1053/j.ajkd.2012.02.102]
[163]
Singh, B.; Diamond, S.A.; Pergola, P.E.; Shipley, J.E.; Wu, L.J.; Sabounjian, L.A.; Graham, P.B. Effect of CTP-499 on renal function in patients with type 2 diabetes and kidney disease. Am. J. Kidney Dis., 2014, 63(5), B120.
[http://dx.doi.org/10.1053/j.ajkd.2014.01.446]
[164]
Braman, V.; Graham, P.; Cheng, C.; Turnquist, D.; Harnett, M.; Sabounjian, L.; Shipley, J. A randomized phase I evaluation of CTP-499, a novel deuterium-containing drug candidate for diabetic nephropathy. Clin. Pharmacol. Drug Dev., 2013, 2(1), 53-66.
[http://dx.doi.org/10.1002/cpdd.3] [PMID: 27121560]
[165]
Wiberg, K.B. The deuterium isotope effect. Chem. Rev., 1955, 55(4), 713-743.
[http://dx.doi.org/10.1021/cr50004a004]
[166]
Kimura, Y.; Kanematsu, Y.; Sakagami, H.; Rivera Rocabado, D.S.; Shimazaki, T.; Tachikawa, M.; Ishimoto, T. Hydrogen/deuterium transfer from anisole to methoxy radicals: A theoretical study of a deuterium-labeled drug model. J. Phys. Chem. A, 2022, 126(1), 155-163.
[http://dx.doi.org/10.1021/acs.jpca.1c08514] [PMID: 34981930]
[167]
Parasrampuria, D.; Braman, V.; Cheng, C.; Grotbeck, B. First human exposure suggests a unique metabolic profile with multiple active species for CTP-499, a novel agent for treatment of chronic kidney disease. ASN Poster, THPO358, 2011.
[168]
Harbeson, S.; Tung, R. Deuterium medicinal chemistry: A new approach to drug discovery and development. Med. Chem. News., 2014, 2, 8-22.
[169]
Lin, S.L.; Chen, Y.M.; Chiang, W.C.; Tsai, T.J.; Chen, W.Y. Review Article. Pentoxifylline: A potential therapy for chronic kidney disease. Nephrology (Carlton), 2004, 9(4), 198-204.
[http://dx.doi.org/10.1111/j.1440-1797.2004.00267.x] [PMID: 15363050]
[170]
Aslanian, A.; Hogan, K.; West, K.; Bridson, G.; Wu, L. CTP-499, a novel drug for the treatment of chronic kidney disease, ameliorates renal fibrosis and inflammation in vivo. ASN. ASN Poster, 2012.
[171]
Aslanian, A.; Hogan, K.; Qin, S. CTP-499, a novel drug for the potential treatment of chronic kidney disease, has anti-fibrotic, anti-inflammatory, and anti-oxidative activities with in vivo efficacy. ASN Poster, 2011.
[172]
Badri, S.; Dashti-Khavidaki, S.; Lessan-Pezeshki, M.; Abdollahi, M. A review of the potential benefits of pentoxifylline in diabetic and non-diabetic proteinuria. J. Pharm. Pharm. Sci., 2011, 14(1), 128-137.
[http://dx.doi.org/10.18433/J3BP4G] [PMID: 21501559]
[173]
Galkina, E.; Ley, K. Leukocyte recruitment and vascular injury in diabetic nephropathy. J. Am. Soc. Nephrol., 2006, 17(2), 368-377.
[http://dx.doi.org/10.1681/ASN.2005080859] [PMID: 16394109]
[174]
Ghorbani, A.; Omidvar, B.; Beladi-Mousavi, S.S.; Lak, E.; Vaziri, S. The effect of pentoxifylline on reduction of proteinuria among patients with type 2 diabetes under blockade of angiotensin system: a double blind and randomized clinical trial. Nefrologia, 2012, 32(6), 790-796.
[PMID: 23169362]
[175]
Rodríguez-Morán, M.; González-González, G.; Bermúdez-Barba, M.V.; Garza, C.E.M.; Tamez-Pérez, H.E.; Martínez-Martínez, F.J.; Guerrero-Romero, F. Effects of pentoxifylline on the urinary protein excretion profile of type 2 diabetic patients with microproteinuria – A double-blind, placebo-controlled randomized trial. Clin. Nephrol., 2006, 66(7), 3-10.
[http://dx.doi.org/10.5414/CNP66003] [PMID: 16878429]
[176]
Braman, V.; Graham, P.; Cheng, C.; Turnquist, D.; Harnett, M.; Sabounjian, L.; Shipley, J. A randomized phase 1 evaluation of CTP-499, a novel deuterium-containing drug candidate for diabetic nephropathy. Clin. Pharmacol. Drug Dev., 2013, 2(1), 53-66.
[http://dx.doi.org/10.1002/cpdd.3] [PMID: 27121560]
[177]
Tung, R.D.; Liu, J.F.; Harbeson, S.L. Preparation of deuterated xanthine derivatives for pharmaceutical use. U.S. Patent 20,110,059,995, 2011.
[178]
Hogan, K.; Uttamsingh, V.; Hamilton, C.; Aslanian, A.; Brummel, C.; Braman, V.; Cassella, J.; Wong, D. 1060 JAK inhibitor CTP-543: Modeled exposure-response profile suggests improved therapeutic window. J. Invest. Dermatol., 2018, 138(5), S180-S180.
[http://dx.doi.org/10.1016/j.jid.2018.03.1073]
[179]
Von Hehn, J.; Hamilton, C.; Uttamsingh, V.; Hogan, K.; Aslanian, A.M.; Grotbeck, B.; Brummel, C.L.; Braman, V.; Cassella, J. Safety, pharmacokinetic and pharmacodynamic evaluation of CTP-543 (deuterated ruxolitinib) in a phase I healthy volunteer study. J. Am. Acad. Dermatol., 2017, 76(6), AB225-AB225.
[http://dx.doi.org/10.1016/j.jaad.2017.04.877]
[180]
Silverman, I.R.; Liu, J.F.; Morgan, A.J.; Pandya, B.; Harbeson, S.L. Deuterium-substituted derivative of ruxolitinib. CN. Patent 104,725,380, 2015.
[181]
Meng, X.; Ling, Y.; Zhang, L.; Zhang, Q.; Dong, P.; Zhu, T.; Lu, H. Potential for jaktinib hydrochloride to treat cytokine storms in patients with COVID-19. Biosci. Trends, 2020, 14(3), 161-167.
[http://dx.doi.org/10.5582/bst.2020.03106] [PMID: 32536632]
[182]
Liu, J.; Lv, B.; Yin, H.; Zhu, X.; Wei, H.; Ding, Y. A phase I, randomized, double-blind, placebo-controlled, single ascending dose, multiple ascending dose and food effect study to evaluate the tolerance, pharmacokinetics of jaktinib, a new selective janus kinase inhibitor in healthy chinese volunteers. Front. Pharmacol., 2020, 11, 604314.
[http://dx.doi.org/10.3389/fphar.2020.604314] [PMID: 33536914]
[183]
Lv, B.H.; Sheng, Z.L.; Cao, B.W. Deuterated (phenylamino)pyrimidine compounds as JAK kinase inhibitors and their preparation, pharmaceutical compositions and use in the treatment of diseases. WO Patent 2,014,114,274, 2014.
[184]
Boucher, D.; Hillier, S.; Newsome, D.; Wang, Y.; Takemoto, D.; Gu, Y.; Markland, W.; Hoover, R.; Arimoto, R.; Maxwell, J.; Fields, S.Z.; Charifson, P.; Penney, M.S.; Tanner, K. Preclinical characterization of the selective DNA-dependent protein kinase (DNA-PK) inhibitor VX-984 in combination with chemotherapy. Ann. Oncol., 2016, 27, vi122.
[http://dx.doi.org/10.1093/annonc/mdw368.25]
[185]
Boucher, D.; Newsome, D.; Takemoto, D.; Hillier, S.; Wang, Y.; Arimoto, R.; Maxwell, J.; Charifson, P.; Fields, S.Z.; Tanner, K.; Penney, M.S. Preclinical characterization of VX-984, a selective DNA-dependent protein kinase (DNA-PK) inhibitor in combination with doxorubicin in breast and ovarian cancers. Cancer Res., 2017, 77(4), P5-06-05.
[http://dx.doi.org/10.1158/1538-7445.SABCS16-P5-06-05]
[186]
Maxwell, J.; Cottrell, K.; Xu, J.W.; Arimoto, R. Discovery of VX-984: A novel, selective DNA-PK inhibitor for the treatment of cancer. Am. Chem. Soc., 2016, 251
[187]
Cottrell, K.; Boucher, B.; Arimoto, R.; Engtrakul, J. Discovery of VX-984: Mitigation of aldehyde oxidase metabolism through the use of targeted deuteration. Am. Chem. Soc., 2016, 251.
[188]
Timme, C.R.; Rath, B.H.; O’Neill, J.W.; Camphausen, K.; Tofilon, P.J. The DNA-PK inhibitor VX-984 enhances the radiosensitivity of glioblastoma cells grown in vitro and as orthotopic xenografts. Mol. Cancer Ther., 2018, 17(6), 1207-1216.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-1267] [PMID: 29549168]
[189]
Boucher, D.; Hoover, R.; Wang, Y.; Gu, Y.; Newsome, D.; Ford, P.; Moody, C.; Damagnez, V.; Arimoto, R.; Hillier, S.; Wood, M.; Markland, W.; Eustace, B.; Cottrell, K.; Penney, M.; Furey, B.; Tanner, K.; Maxwell, J.; Charifson, P. Abstract 3716: Potent radiation enhancement with VX-984, a selective DNA-PKcs inhibitor for the treatment of NSCLC. Cancer Res., 2016, 76(14 Suppl.), 3716.
[http://dx.doi.org/10.1158/1538-7445.AM2016-3716]
[190]
Charifson, P.S.; Cottrell, K.M.; Deng, H.B.; Duffy, J.P.; Gao, H.; Giroux, S.; Green, J.; Jackson, K.L.; Kennedy, J.M.; Lauffer, D.J.; Ledeboer, M.W.; Li, P.; Maxwell, J.P.; Morris, M.A.; Pierce, A.C.; Waal, N.D.; Xu, J.W. DNA-PK inhibitors. U.S. Patent 20,140,045,869, 2014.
[191]
Reider, P.J.; Conn, R.S.E.; Davis, P.; Grenda, V.J.; Zambito, A.J.; Grabowski, E.J.J. Synthesis of (R)-serine-2-d and its conversion to the broad-spectrum antibiotic fludalanine. J. Org. Chem., 1987, 52(15), 3326-3334.
[http://dx.doi.org/10.1021/jo00391a029]
[192]
Doller, D.; Brummel, C.L.; Liu, J.F.; Tung, R.D.; Wong, D.H.; Petryshen, T.L.; Hurst, R.S. Deuterated analogs of D-serine and uses thereof. WO Patent 2,020,243,650, 2020.
[193]
Wu, Y.S.; Niu, C.S.; Geng, Y.; Zheng, M.L.; Liang, A.; Meng, Q.G.; Yang, T.; Wang, G.H.; Huo, Y.F.; Guo, R.Y.; Li, J.Y.; Zou, D.P. Preparation of deuterated palbociclib derivatives as antitumor agents. CN Patent 106,967,064, 2017.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy