Review Article

斑鳖素及其类似物抗癌作用的研究进展

卷 30, 期 18, 2023

发表于: 27 December, 2022

页: [2006 - 2019] 页: 14

弟呕挨: 10.2174/0929867330666221103151537

价格: $65

conference banner
摘要

背景:斑蝥素(CTD)是一种剧毒物质,可用于治疗多种癌症。然而,由于其严重的副作用,临床应用受到限制。近年来,筛选其类似物、探索其作用机制以及使用某些物质的联合治疗被认为是减少副作用并提高CTD治疗活性的可行方法。该综述旨在描述CTD类似物的SAR(构效关系)、CTD诱导机制和联合治疗探索。 方法:我们通过输入数据库搜索关于CTD的研究。有目的地筛选和提取重要信息,包括SAR、机制、方法等。 结果:一些在C-5和C-6位具有咪唑鎓盐或双键的CTD类似物显示出良好的抗癌活性。通过在C-1或C-4位置引入甲基和乙酰氧基,PP的抑制作用减弱甚至失活。去除C-2和C-3的两个甲基可以减少副作用并提高疗效。用氟取代甲基也可以提高活性并降低毒性。通过打开五元酸酐环形成羧酸、盐、酰胺和酯衍生物,可以提高水溶性和生物利用度。抗癌机制可分为以下几个方面,包括抑制细胞侵袭和转移、诱导细胞凋亡、调节细胞周期和增强免疫力。CTD及其类似物(脂质体、纳米粒子和胶束)的合理配方可以提高癌症的靶向性,减少毒副作用。CTD联合抗血管生成药物(人参皂苷Rg3、贝伐单抗、阿帕替尼和Endostar)显示出额外的抗胰腺癌症作用。 结论:发现其潜在机制与多通道和多靶点相互作用密切相关,为后续探索新的临床治疗应用提供了指导方向。然而,一些详细的机制仍然不清楚,需要更多的证据来验证。此外,提高CTD及其类似物治疗潜力的新方法在未来仍需进行更多的临床试验。这一前景非常广阔,值得进一步研究。

关键词: 斑鳌素,毒性,抗癌,副作用,构效关系,联合治疗。

[1]
Yao, H.; Zhao, J.; Wang, Z.; Lv, J.; Du, G.; Jin, Y.; Zhang, Y.; Song, S.; Han, G. Enhanced anticancer efficacy of cantharidin by mPEG-PLGA micellar encapsulation: An effective strategy for application of a poisonous traditional Chinese medicine. Colloids Surf. B Biointerfaces, 2020, 196, 111285.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111285] [PMID: 32771818]
[2]
Chattopadhyay, D.; Swingle, M.R.; Salter, E.A.; Wood, E.; D’Arcy, B.; Zivanov, C.; Abney, K.; Musiyenko, A.; Rusin, S.F.; Kettenbach, A.; Yet, L.; Schroeder, C.E.; Golden, J.E.; Dunham, W.H.; Gingras, A.C.; Banerjee, S.; Forbes, D.; Wierzbicki, A.; Honkanen, R.E. Crystal structures and mutagenesis of PPP-family ser/thr protein phosphatases elucidate the selectivity of cantharidin and novel norcantharidin-based inhibitors of PP5C. Biochem. Pharmacol., 2016, 109, 14-26.
[http://dx.doi.org/10.1016/j.bcp.2016.03.011] [PMID: 27002182]
[3]
Ghoneim, K. Cantharidin toxicosis to animal and human in the world: A review. Stand. Res. J. Toxicol. Environ. Health Sci., 2013, 2013, 43229799.
[4]
Jakovac-Strajn, B.; Brozić, D.; Tavčar-Kalcher, G.; Babič, J.; Trilar, T.; Vengust, M. Entomological surveillance and cantharidin concentrations in Mylabris variabilis and Epicauta rufidorsum blister beetles in slovenia. Animals, 2021, 11(1), 220-228.
[http://dx.doi.org/10.3390/ani11010220] [PMID: 33477415]
[5]
Yi, S.; Wass, J.; Vincent, P.; Iland, H. Inhibitory effect of norcantharidin on K562 human myeloid leukemia cells in vitro. Leuk. Res., 1991, 15(10), 883-886.
[http://dx.doi.org/10.1016/0145-2126(91)90163-N] [PMID: 1921448]
[6]
Falck, B. Spanish Fly—Cantharidin’s Alter Ego. JAMA Dermatol., 2018, 154(1), 51-51.
[http://dx.doi.org/10.1001/jamadermatol.2017.4531] [PMID: 29322194]
[7]
Gisondi, S.; Gasperi, T.; Roma, E.; Tomai, P.; Gentili, A.; Vignoli, L.; Bologna, M.A.; Mancini, E. Cantharidin content in two Mediterranean species of blister beetles, Lydus trimaculatus and Mylabris variabilis (Coleoptera: Meloidae). Entomol. Sci., 2019, 22(3), 258-263.
[http://dx.doi.org/10.1111/ens.12364]
[8]
Wang, S.; Wu, X.; Tan, M.; Gong, J.; Tan, W.; Bian, B.; Chen, M.; Wang, Y. Fighting fire with fire: Poisonous Chinese herbal medicine for cancer therapy. J. Ethnopharmacol., 2012, 140(1), 33-45.
[http://dx.doi.org/10.1016/j.jep.2011.12.041] [PMID: 22265747]
[9]
Eichenfield, L.F.; McFalda, W.; Brabec, B.; Siegfried, E.; Kwong, P.; McBride, M.; Rieger, J.; Willson, C.; Davidson, M.; Burnett, P. Safety and efficacy of VP-102, a proprietary, drug-device combination product containing cantharidin, 0.7% (w/v), in children and adults with molluscum contagiosum. JAMA Dermatol., 2020, 156(12), 1315-1323.
[http://dx.doi.org/10.1001/jamadermatol.2020.3238] [PMID: 32965495]
[10]
Pan, M.S.; Cao, J.; Fan, Y.Z. Insight into norcantharidin, a small-molecule synthetic compound with potential multi- target anticancer activities. Chin. Med., 2020, 15(1), 55-82.
[http://dx.doi.org/10.1186/s13020-020-00338-6] [PMID: 32514288]
[11]
Jiang, Z.; Chi, J.; Han, B.; Liu, W. Preparation and pharmacological evaluation of norcantharidin-conjugated carboxymethyl chitosan in mice bearing hepatocellular carcinoma. Carbohydr. Polym., 2017, 174, 282-290.
[http://dx.doi.org/10.1016/j.carbpol.2017.06.072] [PMID: 28821069]
[12]
Liu, D. W.; Chen, Z. W. The effects of cantharidin and cantharidin derivates on tumour cells. Anti-Cancer Agent Med., 2009, 9(4), 392-396.
[13]
Deng, L.P.; Dong, J.; Cai, H.; Wang, W. Cantharidin as an antitumor agent: A retrospective review. Curr. Med. Chem., 2013, 20(2), 159-166.
[http://dx.doi.org/10.2174/092986713804806711] [PMID: 23210849]
[14]
Ren, Y.; Kinghorn, A.D. Antitumor potential of the protein phosphatase inhibitor, cantharidin, and selected derivatives. Bioorg. Med. Chem., 2021, 32, 116012.
[http://dx.doi.org/10.1016/j.bmc.2021.116012] [PMID: 33454654]
[15]
Ma, Q.; Feng, Y.; Deng, K.; Shao, H.; Sui, T.; Zhang, X.; Sun, X.; Jin, L.; Ma, Z.; Luo, G. Unique responses of hepatocellular carcinoma and cholangiocarcinoma cell lines toward cantharidin and norcantharidin. J. Cancer, 2018, 9(12), 2183-2190.
[http://dx.doi.org/10.7150/jca.25454] [PMID: 29937938]
[16]
Su, C.C.; Liu, S.H.; Lee, K.I.; Huang, K.T.; Lu, T.H.; Fang, K.M.; Wu, C.C.; Yen, C.C.; Lai, C.H.; Su, Y.C.; Huang, C.F. Cantharidin induces apoptosis through the calcium/PKC-regulated endoplasmic reticulum stress pathway in human bladder cancer cells. Am. J. Chin. Med., 2015, 43(3), 581-600.
[http://dx.doi.org/10.1142/S0192415X15500366] [PMID: 25967669]
[17]
Kuo, J-H.; Chu, Y-L.; Yang, J-S.; Lin, J-P.; Lai, K-C.; Kuo, H-M.; Hsia, T-C.; Chung, J-G. Cantharidin induces apoptosis in human bladder cancer TSGH 8301 cells through mitochondria-dependent signal pathways. Int. J. Oncol., 2010, 37(5), 1243-1250.
[PMID: 20878071]
[18]
Zhang, Q.; Zhu, G. The pathological pattern of seven malignant cancers following Demethylcantharidin. Adv. Pharm. J., 2017, 2(6), 243-247.
[19]
Yeh, C.B.; Hsieh, M.J.; Hsieh, Y.H.; Chien, M.H.; Chiou, H.L.; Yang, S.F. Antimetastatic effects of norcantharidin on hepatocellular carcinoma by transcriptional inhibition of MMP-9 through modulation of NF-kB activity. PLoS One, 2012, 7(2), e31055.
[http://dx.doi.org/10.1371/journal.pone.0031055] [PMID: 22363545]
[20]
Wang, G.S. Medical uses of mylabris in ancient China and recent studies. J. Ethnopharmacol., 1989, 26(2), 147-162.
[http://dx.doi.org/10.1016/0378-8741(89)90062-7] [PMID: 2689797]
[21]
Wang, G.; Dong, J.; Deng, L. Overview of cantharidin and its analogues. Curr. Med. Chem., 2018, 25(17), 2034-2044.
[http://dx.doi.org/10.2174/0929867324666170414165253] [PMID: 28413963]
[22]
Wang, G.F. The new developments of cantharidin and its analogues. J. Chem. Soc. Pak., 2017, 39(4), 599-609.
[23]
Millán, A.P.; Torres, J.J.; Johnson, S.; Marro, J. Growth strategy determines the memory and structural properties of brain networks. Neural Netw., 2021, 142, 44-56.
[http://dx.doi.org/10.1016/j.neunet.2021.04.027] [PMID: 33984735]
[24]
McCluskey, A.; Bowyer, M.C.; Collins, E.; Sim, A.T.R.; Sakoff, J.A.; Baldwin, M.L. Anhydride modified cantharidin analogues: Synthesis, inhibition of protein phosphatases 1 and 2A and anticancer activity. Bioorg. Med. Chem. Lett., 2000, 10(15), 1687-1690.
[http://dx.doi.org/10.1016/S0960-894X(00)00323-1] [PMID: 10937725]
[25]
Hizartzidis, L.; Gilbert, J.; Gordon, C.P.; Sakoff, J.A.; McCluskey, A. Synthesis and cytotoxicity of octahydroepoxyisoindole-7-carboxylic acids and norcantharidin–amide hybrids as norcantharidin analogues. ChemMedChem, 2019, 14(12), 1152-1161.
[http://dx.doi.org/10.1002/cmdc.201900180] [PMID: 30938091]
[26]
Li, Y.; Sun, H.; Xi, N.; Zhang, Y. Effects of cantharidin and norcantharidin on larval feeding and adult oviposition preferences of the Diamondback Moth (Lepidoptera: Plutellidae). J. Econ. Entomol., 2019, 112(4), 1634-1637.
[http://dx.doi.org/10.1093/jee/toz049] [PMID: 30924494]
[27]
Wang, L.; Zheng, S.L.; Lv, S.M.; Zhang, Y.L.; Wang, Y. Inhibitory mechanism of cantharidin derivatives against Sclerotinia sclerotiorum. Chinese J. Pesticide Sci., 2021, 23(1), 107-116.
[28]
Massicot, F.; Dutertre-Catella, H.; Pham-Huy, C.; Liu, X.H.; Duc, H.T.; Warnet, J.M. In vitro assessment of renal toxicity and inflammatory events of two protein phosphatase inhibitors cantharidin and nor-cantharidin. Basic Clin. Pharmacol. Toxicol., 2005, 96(1), 26-32.
[http://dx.doi.org/10.1111/j.1742-7843.2005.pto960104.x] [PMID: 15667592]
[29]
Zhao, C.; Jia, J.; Wang, X.; Luo, C.; Wang, Y. Synthesis of norcantharidin complex salts. J. Heterocycl. Chem., 2019, 56(5), 1567-1570.
[http://dx.doi.org/10.1002/jhet.3533]
[30]
Xiao, Z.; Wen, L.; Zeng, D.; Yin, D.; Zhou, X.; Tang, C.; Li, Y. Protein phosphatase 2A inhibiting β-catenin phosphorylation contributes critically to the anti-renal interstitial fibrotic effect of norcantharidin. Inflammation, 2020, 43(3), 878-891.
[http://dx.doi.org/10.1007/s10753-019-01173-0] [PMID: 31940108]
[31]
Essers, M.; Wibbeling, B.; Haufe, G. Synthesis of the first fluorinated cantharidin analogues. Tetrahedron Lett., 2001, 42(32), 5429-5433.
[http://dx.doi.org/10.1016/S0040-4039(01)01056-5]
[32]
McCluskey, A.; Taylor, C.; Quinn, R.J.; Suganuma, M.; Fujiki, H. Inhibition of protein phosphatase 2A by cantharidin analogues. Bioorg. Med. Chem. Lett., 1996, 6(9), 1025-1028.
[http://dx.doi.org/10.1016/0960-894X(96)00166-7]
[33]
Baba, Y.; Hirukawa, N.; Tanohira, N.; Sodeoka, M. Structure-based design of a highly selective catalytic site-directed inhibitor of Ser/Thr protein phosphatase 2B (calcineurin). J. Am. Chem. Soc., 2003, 125(32), 9740-9749.
[http://dx.doi.org/10.1021/ja034694y] [PMID: 12904040]
[34]
Thaqi, A.; Scott, J.L.; Gilbert, J.; Sakoff, J.A.; McCluskey, A. Synthesis and biological activity of Δ-5,6-norcantharimides: Importance of the 5,6-bridge. Eur. J. Med. Chem., 2010, 45(5), 1717-1723.
[http://dx.doi.org/10.1016/j.ejmech.2010.01.004] [PMID: 20153915]
[35]
Manda, S.; Sharma, S.; Wani, A.; Joshi, P.; Kumar, V.; Guru, S.K.; Bharate, S.S.; Bhushan, S.; Vishwakarma, R.A.; Kumar, A.; Bharate, S.B. Discovery of a marine-derived bis-indole alkaloid fascaplysin, as a new class of potent P-glycoprotein inducer and establishment of its structure–activity relationship. Eur. J. Med. Chem., 2016, 107, 1-11.
[http://dx.doi.org/10.1016/j.ejmech.2015.10.049] [PMID: 26560048]
[36]
Sun, R.R.; Guo, J.H.; Yang, C.; Yang, L.J.; Huang, C. Synthesis and antitumor evaluation of novel N-substituted norcantharidin imidazolium derivatives. Curr. Org. Synth., 2018, 15(2), 237-245.
[http://dx.doi.org/10.2174/1570179414666170824160901]
[37]
Deng, L.; Dong, J.; Wang, W. Exploiting protein phosphatase inhibitors based on cantharidin analogues for cancer drug discovery. Mini Rev. Med. Chem., 2013, 13(8), 1166-1176.
[http://dx.doi.org/10.2174/1389557511313080005] [PMID: 23373656]
[38]
Deng, L.; Tang, S. Norcantharidin analogues: A patent review (2006 – 2010). Expert Opin. Ther. Pat., 2011, 21(11), 1743-1753.
[http://dx.doi.org/10.1517/13543776.2011.629190] [PMID: 22017412]
[39]
McCluskey, A.; Keane, M.A.; Mudgee, L.M.; Sim, A.T.R.; Sakoff, J.; Quinn, R.J. Anhydride modified cantharidin analogues. Is ring opening important in the inhibition of protein phosphatase 2A? Eur. J. Med. Chem., 2000, 35(10), 957-964.
[http://dx.doi.org/10.1016/S0223-5234(00)00186-0] [PMID: 11121622]
[40]
Pachuta-Stec, A.; Nowak, R.; Pietrzak, W.; Pitucha, M. Synthesis and antioxidant activity of new norcantharidin analogs. Chem. Biodivers., 2019, 16(4), e1800673.
[http://dx.doi.org/10.1002/cbdv.201800673] [PMID: 30888741]
[41]
Lawrenson, S.B.; Pearce, A.K.; Hart, S.; Whitwood, A.C.; O’Reilly, R.K.; North, M. Synthesis of cytotoxic spirocyclic imides from a biomass-derived oxanorbornene. Tetrahedron, 2021, 77, 131754.
[http://dx.doi.org/10.1016/j.tet.2020.131754]
[42]
He, T.; Liu, J.; Wang, X.; Duan, C.; Li, X.; Zhang, J. Analysis of cantharidin-induced nephrotoxicity in HK-2 cells using untargeted metabolomics and an integrative network pharmacology analysis. Food Chem. Toxicol., 2020, 146, 111845.
[http://dx.doi.org/10.1016/j.fct.2020.111845] [PMID: 33152469]
[43]
He, T.; Wang, Q.; Ao, J.; Chen, K.; Li, X.; Zhang, J.; Duan, C. Endoplasmic reticulum stress contributes to autophagy and apoptosis in cantharidin-induced nephrotoxicity. Food Chem. Toxicol., 2022, 163, 112986.
[http://dx.doi.org/10.1016/j.fct.2022.112986] [PMID: 35398186]
[44]
Yu, Y.; Zhang, Y.; Zhang, J.; Guan, C.; Liu, L.; Ren, L. Cantharidin-induced acute hepatotoxicity: The role of TNF-α, IKK-α, Bcl-2, Bax and caspase3. J. Appl. Toxicol., 2020, 40(11), 1526-1533.
[http://dx.doi.org/10.1002/jat.4003] [PMID: 32627230]
[45]
Zhang, J.; Chen, Q.; Wang, L.; Chen, K.; Mu, W.; Duan, C.; Li, X. Study on the mechanism of cantharidin-induced hepatotoxicity in rat using serum and liver metabolomics combined with conventional pathology methods. J. Appl. Toxicol., 2020, 40(9), 1259-1271.
[http://dx.doi.org/10.1002/jat.3983] [PMID: 32468647]
[46]
Liu, F.; Wang, X.; Duan, C.; Zhang, J.; Li, X. Hepatoxicity mechanism of cantharidin-induced liver LO2 cells by LC–MS metabolomics combined traditional approaches. Toxicol. Lett., 2020, 333, 49-61.
[http://dx.doi.org/10.1016/j.toxlet.2020.07.024] [PMID: 32726682]
[47]
Zhang, X.; Lin, C.C.; Chan, W.K.N.; Liu, K.L.; Yang, Z.J.; Zhang, H.Q. Augmented anticancer effects of cantharidin with liposomal encapsulation: In vitro and in vivo evaluation. Molecules, 2017, 22(7), 1052-1063.
[http://dx.doi.org/10.3390/molecules22071052] [PMID: 28672816]
[48]
Naz, F.; Wu, Y.; Zhang, N.; Yang, Z.; Yu, C. Anticancer attributes of cantharidin: Involved molecular mechanisms and pathways. Molecules, 2020, 25(14), 3279-3297.
[http://dx.doi.org/10.3390/molecules25143279] [PMID: 32707651]
[49]
Cohen, A.; Ioannidis, K.; Ehrlich, A.; Regenbaum, S.; Cohen, M.; Ayyash, M.; Tikva, S.S.; Nahmias, Y. Mechanism and reversal of drug-induced nephrotoxicity on a chip. Sci. Transl. Med., 2021, 13(582), eabd6299.
[http://dx.doi.org/10.1126/scitranslmed.abd6299] [PMID: 33627489]
[50]
Su, R.; Wu, H.; Liu, X.; Wei, L. Predicting drug-induced hepatotoxicity based on biological feature maps and diverse classification strategies. Brief. Bioinform., 2021, 22(1), 428-437.
[http://dx.doi.org/10.1093/bib/bbz165] [PMID: 31838506]
[51]
Yu, Z.; Li, L.; Wang, C.; He, H.; Liu, G.; Ma, H.; Pang, L.; Jiang, M.; Lu, Q.; Li, P.; Qi, H. Cantharidin induces apoptosis and promotes differentiation of AML cells through nuclear receptor Nur77-mediated signaling pathway. Front. Pharmacol., 2020, 11, 1321.
[http://dx.doi.org/10.3389/fphar.2020.01321] [PMID: 32982739]
[52]
Zhu, M.; Shi, X.; Gong, Z.; Su, Q.; Yu, R.; Wang, B.; Yang, T.; Dai, B.; Zhan, Y.; Zhang, D.; Zhang, Y. Cantharidin treatment inhibits hepatocellular carcinoma development by regulating the JAK2/STAT3 and PI3K/Akt pathways in an EphB4-dependent manner. Pharmacol. Res., 2020, 158, 104868.
[http://dx.doi.org/10.1016/j.phrs.2020.104868] [PMID: 32407961]
[53]
Song, M.; Wang, X.; Luo, Y.; Liu, Z.; Tan, W.; Ye, P.; Fu, Z.; Lu, F.; Xiang, W.; Tang, L.; Yao, L.; Nie, Y.; Xiao, J. Cantharidin suppresses gastric cancer cell migration/invasion by inhibiting the PI3K/Akt signaling pathway via CCAT1. Chem. Biol. Interact., 2020, 317, 108939.
[http://dx.doi.org/10.1016/j.cbi.2020.108939] [PMID: 31945315]
[54]
Wang, J.; Gong, J.; Wei, Z. Strategies for liposome drug delivery systems to improve tumor treatment efficacy. AAPS PharmSciTech, 2022, 23(1), 27.
[http://dx.doi.org/10.1208/s12249-021-02179-4] [PMID: 34907483]
[55]
Zhu, K.; Zhou, L.; Zou, M.; Ning, S.; Liu, S.; Zhou, Y.; Du, K.; Zhang, X.; Xia, X. 18-GA-Suc modified liposome loading cantharidin for augmenting hepatic specificity: Preparation, characterization, antitumor effects, and liver-targeting efficiency. J. Pharm. Sci., 2020, 109(6), 2038-2047.
[http://dx.doi.org/10.1016/j.xphs.2020.03.001] [PMID: 32173319]
[56]
Zhou, L.; Zou, M.; Zhu, K.; Ning, S.; Xia, X. Development of 11-DGA-3-O-gal-modified cantharidin liposomes for treatment of Hepatocellular carcinoma. Molecules, 2019, 24(17), 3080-3098.
[http://dx.doi.org/10.3390/molecules24173080] [PMID: 31450608]
[57]
Zhu, J.; Zhang, W.; Wang, D.; Li, S.; Wu, W. Preparation and characterization of norcantharidin liposomes modified with stearyl glycyrrhetinate. Exp. Ther. Med., 2018, 16(3), 1639-1646.
[http://dx.doi.org/10.3892/etm.2018.6416] [PMID: 30186382]
[58]
Liu, Y. Phase 1 clinical study for evaluation of pharmacokinetic, safety, tolerance of Norcantharidin lipid microsphere for injection in patients with solid tumor, NCT04673396, 2020. https://clinicaltrials.gov/ct2/show/NCT04673396.
[59]
Zhang, H.; Jiang, Y.; Ni, X.; Chen, L.; Wu, M.; Liu, J.; Yang, B.; Shan, X.; Yang, L.; Fan, J.; Chen, Y.; Wu, J.; Fu, S. Glycyrrhetinic acid-modified norcantharidin nanoparticles for active targeted therapy of Hepatocellular carcinoma. J. Biomed. Nanotechnol., 2018, 14(1), 114-126.
[http://dx.doi.org/10.1166/jbn.2018.2467] [PMID: 29463369]
[60]
Huang, X.; Tang, W.; Lin, C.; Sa, Z.; Xu, M.; Liu, J.; Wang, L.; Li, W.; Chen, Y.; Yang, C. Protective mechanism of Astragalus polysaccharides against Cantharidin-induced liver injury determined in vivo by liquid chromatography/mass spectrometry metabolomics. Basic Clin. Pharmacol. Toxicol., 2021, 129(1), 61-71.
[http://dx.doi.org/10.1111/bcpt.13585] [PMID: 33834601]
[61]
Shao, H.; Dong, L.; Feng, Y.; Wang, C.; Tong, H. The protective effect of L-glutamine against acute cantharidin-induced cardiotoxicity in the mice. BMC Pharmacol. Toxicol., 2020, 21(1), 71-80.
[http://dx.doi.org/10.1186/s40360-020-00449-8] [PMID: 33004081]
[62]
Du, Y.; Wan, H.; Huang, P.; Yang, J.; He, Y. A critical review of Astragalus polysaccharides: From therapeutic mechanisms to pharmaceutics. Biomed. Pharmacother., 2022, 147, 112654.
[http://dx.doi.org/10.1016/j.biopha.2022.112654] [PMID: 35086031]
[63]
Singh, R.; Cheng, S.; Li, J.; Kumar, S.; Zeng, Q.; Zeng, Q. Norcantharidin combined with 2-deoxy-d-glucose suppresses the hepatocellular carcinoma cells proliferation and migration. 3 Biotech, 2021, 11(3), 142-154.
[64]
Xu, M.D.; Liu, L.; Wu, M.Y.; Jiang, M.; Shou, L.M.; Wang, W.J.; Wu, J.; Zhang, Y.; Gong, F.R.; Chen, K.; Tao, M.; Zhi, Q.; Li, W. The combination of cantharidin and antiangiogenic therapeutics presents additive antitumor effects against pancreatic cancer. Oncogenesis, 2018, 7(11), 94-108.
[http://dx.doi.org/10.1038/s41389-018-0102-2] [PMID: 30478299]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy