Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Doped Carbon Dots as Promising Fluorescent Nanosensors: Synthesis, Characterization, and Recent Applications

Author(s): Galal Magdy, Heba Elmansi*, Fathalla Belal and Asmaa Kamal El-Deen

Volume 29, Issue 6, 2023

Published on: 30 November, 2022

Page: [415 - 444] Pages: 30

DOI: 10.2174/1381612829666221103124856

Price: $65

Abstract

Carbon dots (CDs) have recently attracted attention as a new class of photoluminescent materials with promising optical, chemical, and electrical properties. They have been proposed for various applications, such as pharmaceutical sensing, biomarker detection, and cellular bioimaging, by virtue of their economical synthesis, cheap starting materials, water-solubility, excellent chemical stability, good biocompatibility, and low toxicity. Hetero-atom doping is a reliable and adaptable strategy for enhancing the photoluminescence, electrical, and structural characteristics of CDs. Herein, we present an update on heteroatom-doped CDs. Various modern synthetic routes are highlighted, ranging from synthetic processes to doping components. In addition, the optical and biological properties and the possible applications of heteroatom-doped CDs are discussed. This review will provide an overview of recent advances in doped CDs and their expected future perspectives.

Keywords: Carbon dots, photoluminescence, doping strategies, quantum yield, pharmaceuticals, biomarkers, cellular imaging.

[1]
Zhu S, Meng Q, Wang L, et al. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew Chem Int Ed 2013; 52(14): 3953-7.
[http://dx.doi.org/10.1002/anie.201300519] [PMID: 23450679]
[2]
Semeniuk M, Yi Z, Poursorkhabi V, et al. Future perspectives and review on organic carbon dots in electronic applications. ACS Nano 2019; 13(6): 6224-55.
[http://dx.doi.org/10.1021/acsnano.9b00688] [PMID: 31145587]
[3]
Wang Q, Huang X, Long Y, et al. Hollow luminescent carbon dots for drug delivery. Carbon 2013; 59: 192-9.
[http://dx.doi.org/10.1016/j.carbon.2013.03.009]
[4]
Zhao A, Chen Z, Zhao C, Gao N, Ren J, Qu X. Recent advances in bioapplications of C-dots. Carbon 2015; 85: 309-27.
[http://dx.doi.org/10.1016/j.carbon.2014.12.045]
[5]
Chen H, Wang Z, Zong S, et al. A graphene quantum dot-based FRET system for nuclear-targeted and real-time monitoring of drug delivery. Nanoscale 2015; 7(37): 15477-86.
[http://dx.doi.org/10.1039/C5NR03454J] [PMID: 26346491]
[6]
Martindale BCM, Hutton GAM, Caputo CA, Reisner E. Solar hydrogen production using carbon quantum dots and a molecular nickel catalyst. J Am Chem Soc 2015; 137(18): 6018-25.
[http://dx.doi.org/10.1021/jacs.5b01650] [PMID: 25864839]
[7]
Guo CX, Yang HB, Sheng ZM, Lu ZS, Song QL, Li CM. Layered graphene/quantum dots for photovoltaic devices. Angew Chem Int Ed 2010; 49(17): 3014-7.
[http://dx.doi.org/10.1002/anie.200906291] [PMID: 20349480]
[8]
Li N, Than A, Wang X, et al. Ultrasensitive profiling of metabolites using tyramine-functionalized graphene quantum dots. ACS Nano 2016; 10(3): 3622-9.
[http://dx.doi.org/10.1021/acsnano.5b08103] [PMID: 26928434]
[9]
Ji L, Chen L, Wu P, Gervasio DF, Cai C. Highly selective fluorescence determination of the hematin level in human erythrocytes with no need for separation from bulk hemoglobin. Anal Chem 2016; 88(7): 3935-44.
[http://dx.doi.org/10.1021/acs.analchem.6b00131] [PMID: 26942664]
[10]
Riaz R, Ali M, Maiyalagan T, et al. Dye-sensitized solar cell (DSSC) coated with energy down shift layer of nitrogen-doped carbon quantum dots (N-CQDs) for enhanced current density and stability. Appl Surf Sci 2019; 483: 425-31.
[http://dx.doi.org/10.1016/j.apsusc.2019.03.236]
[11]
Jiang K, han Sun S, Zhang L, et al. Red, green, and blue luminescence by carbon dots: Full-color emission tuning and multicolor cellular imaging. Angew Chemie Int Ed. 2015; 54: pp. 5360-3.
[12]
Kou X, Jiang S, Park SJ, Meng LY. A review: Recent advances in preparations and applications of heteroatom-doped carbon quantum dots. Dalton Trans 2020; 49(21): 6915-38.
[http://dx.doi.org/10.1039/D0DT01004A] [PMID: 32400806]
[13]
Xu Q, Kuang T, Liu Y, et al. Heteroatom-doped carbon dots: synthesis, characterization, properties, photoluminescence mechanism and biological applications. J Mater Chem B Mater Biol Med 2016; 4(45): 7204-19.
[http://dx.doi.org/10.1039/C6TB02131J] [PMID: 32263722]
[14]
Kandasamy G. Recent advancements in doped/co-doped carbon quantum dots for multi-potential applications. J Carbon Res 2019; 5(2): 24.
[15]
Miao S, Liang K, Zhu J, Yang B, Zhao D, Kong B. Hetero-atom-doped carbon dots: Doping strategies, properties and applications. Nano Today 2020; 33: 100879.
[http://dx.doi.org/10.1016/j.nantod.2020.100879]
[16]
Wang X, Feng Y, Dong P, Huang J. A mini review on carbon quantum dots: preparation, properties, and electrocatalytic application. Front Chem 2019; 7: 671.
[http://dx.doi.org/10.3389/fchem.2019.00671] [PMID: 31637234]
[17]
Makkar M, Viswanatha R. Frontier challenges in doping quantum dots: synthesis and characterization. RSC Advances 2018; 8(39): 22103-12.
[http://dx.doi.org/10.1039/C8RA03530J] [PMID: 35541736]
[18]
Qiao ZA, Wang Y, Gao Y, et al. Commercially activated carbon as the source for producing multicolor photoluminescent carbon dots by chemical oxidation. Chem Commun (Camb) 2010; 46(46): 8812-4.
[http://dx.doi.org/10.1039/c0cc02724c] [PMID: 20953494]
[19]
Cao L, Wang X, Meziani MJ, et al. Carbon dots for multiphoton bioimaging. J Am Chem Soc 2007; 129(37): 11318-9.
[http://dx.doi.org/10.1021/ja073527l] [PMID: 17722926]
[20]
Arora N, Sharma NN. Arc discharge synthesis of carbon nanotubes: Comprehensive review. Diamond Relat Mater 2014; 50: 135-50.
[http://dx.doi.org/10.1016/j.diamond.2014.10.001]
[21]
Wang L, Chen X, Lu Y, Liu C, Yang W. Carbon quantum dots displaying dual-wavelength photoluminescence and electrochemiluminescence prepared by high-energy ball milling. Carbon 2015; 94: 472-8.
[http://dx.doi.org/10.1016/j.carbon.2015.06.084]
[22]
Kuzmin PG, Shafeev GA, Bukin VV, et al. Silicon nanoparticles produced by femtosecond laser ablation in ethanol: Size control, structural characterization, and optical properties. J Phys Chem C 2010; 114(36): 15266-73.
[http://dx.doi.org/10.1021/jp102174y]
[23]
Sun YP, Zhou B, Lin Y, et al. Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc 2006; 128(24): 7756-7.
[http://dx.doi.org/10.1021/ja062677d] [PMID: 16771487]
[24]
Zhu S, Song Y, Zhao X, Shao J, Zhang J, Yang B. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): Current state and future perspective. Nano Res 2014 82 2015; 8: 355-81.
[25]
Wang AJ, Li H, Huang H, Qian ZS, Feng JJ. Fluorescent graphene-like carbon nitrides: synthesis, properties and applications. J Mater Chem C Mater Opt Electron Devices 2016; 4(35): 8146-60.
[http://dx.doi.org/10.1039/C6TC02330D]
[26]
Zhuo S, Shao M, Lee ST. Upconversion and downconversion fluorescent graphene quantum dots: ultrasonic preparation and photocatalysis. ACS Nano 2012; 6(2): 1059-64.
[http://dx.doi.org/10.1021/nn2040395] [PMID: 22221037]
[27]
Zhou J, Booker C, Li R, et al. An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs). J Am Chem Soc 2007; 129(4): 744-5.
[http://dx.doi.org/10.1021/ja0669070] [PMID: 17243794]
[28]
Zhang BX, Gao H, Li XL. Synthesis and optical properties of nitrogen and sulfur co-doped graphene quantum dots. New J Chem 2014; 38(9): 4615-21.
[http://dx.doi.org/10.1039/C4NJ00965G]
[29]
Li H, Shao FQ, Huang H, Feng JJ, Wang AJ. Eco-friendly and rapid microwave synthesis of green fluorescent graphitic carbon nitride quantum dots for vitro bioimaging. Sens Actuators B Chem 2016; 226: 506-11.
[http://dx.doi.org/10.1016/j.snb.2015.12.018]
[30]
Zuo P, Lu X, Sun Z, Guo Y, He H. A review on syntheses, properties, characterization and bioanalytical applications of fluorescent carbon dots. Microchim Acta 2015; 183: 519-42.
[31]
Wang Y, Hu A. Carbon quantum dots: Synthesis, properties and applications. J Mater Chem C Mater Opt Electron Devices 2014; 2(34): 6921-39.
[http://dx.doi.org/10.1039/C4TC00988F]
[32]
El-Malla SF, Elshenawy EA, Hammad SF, Mansour FR. Rapid microwave synthesis of N,S-doped carbon quantum dots as a novel turn off-on sensor for label-free determination of copper and etidronate disodium. Anal Chim Acta 2022; 1197: 339491.
[http://dx.doi.org/10.1016/j.aca.2022.339491] [PMID: 35168733]
[33]
Tang L, Ji R, Cao X, et al. Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots. ACS Nano 2012; 6(6): 5102-10.
[http://dx.doi.org/10.1021/nn300760g] [PMID: 22559247]
[34]
Kong W, Wu D, Li G, et al. A facile carbon dots based fluorescent probe for ultrasensitive detection of ascorbic acid in biological fluids via non-oxidation reduction strategy. Talanta 2017; 165: 677-84.
[http://dx.doi.org/10.1016/j.talanta.2017.01.022] [PMID: 28153316]
[35]
Li H, Kang Z, Liu Y, Lee ST. Carbon nanodots: Synthesis, properties and applications. J Mater Chem 2012; 22(46): 24230-53.
[http://dx.doi.org/10.1039/c2jm34690g]
[36]
Li D, Jing P, Sun L, et al. Near‐infrared excitation/emission and multiphoton‐induced fluorescence of carbon dots. Adv Mater 2018; 30(13): 1705913.
[http://dx.doi.org/10.1002/adma.201705913] [PMID: 29411443]
[37]
Qu S, Zhou D, Li D, et al. Toward efficient orange emissive carbon nanodots through conjugated sp 2 -domain controlling and surface charges engineering. Adv Mater 2016; 28(18): 3516-21.
[http://dx.doi.org/10.1002/adma.201504891]
[38]
Magdy G, Abdel Hakiem AF, Belal F, Abdel-Megied AM. Green one-pot synthesis of nitrogen and sulfur co-doped carbon quantum dots as new fluorescent nanosensors for determination of salinomycin and maduramicin in food samples. Food Chem 2021; 343: 128539.
[http://dx.doi.org/10.1016/j.foodchem.2020.128539] [PMID: 33183875]
[39]
Hu S, Trinchi A, Atkin P, Cole I. Tunable photoluminescence across the entire visible spectrum from carbon dots excited by white light. Angew Chem Int Ed 2015; 54(10): 2970-4.
[http://dx.doi.org/10.1002/anie.201411004] [PMID: 25589468]
[40]
Huang JJ, Zhong ZF, Rong MZ, Zhou X, Chen XD, Zhang MQ. An easy approach of preparing strongly luminescent carbon dots and their polymer based composites for enhancing solar cell efficiency. Carbon 2014; 70: 190-8.
[http://dx.doi.org/10.1016/j.carbon.2013.12.092]
[41]
Zhao QL, Zhang ZL, Huang BH, Peng J, Zhang M, Pang DW. Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite. Chem Commun (Camb) 2008; (41): 5116-8.
[http://dx.doi.org/10.1039/b812420e] [PMID: 18956040]
[42]
Wang Y, Dong L, Xiong R, Hu A. Practical access to bandgap-like N-doped carbon dots with dual emission unzipped from PAN@PMMA core-shell nanoparticles. J Mater Chem C Mater Opt Electron Devices 2013; 1(46): 7731-5.
[http://dx.doi.org/10.1039/c3tc30949e]
[43]
Perikala M, Bhardwaj A. Highly stable white-light-emitting carbon dot synthesis using a non-coordinating solvent. ACS Omega 2019; 4(25): 21223-9.
[http://dx.doi.org/10.1021/acsomega.9b02686] [PMID: 31867516]
[44]
Shinde DB, Pillai VK. Electrochemical preparation of luminescent graphene quantum dots from multiwalled carbon nanotubes. Chemistry 2012; 18(39): 12522-8.
[http://dx.doi.org/10.1002/chem.201201043] [PMID: 22893544]
[45]
Mao LH, Tang WQ, Deng ZY, Liu SS, Wang CF, Chen S. Facile access to white fluorescent carbon dots toward light-emitting devices. Ind Eng Chem Res 2014; 53(15): 6417-25.
[http://dx.doi.org/10.1021/ie500602n]
[46]
Tian L, Ghosh D, Chen W, Pradhan S, Chang X, Chen S. Nanosized carbon particles from natural gas soot. Chem Mater 2009; 21(13): 2803-9.
[http://dx.doi.org/10.1021/cm900709w]
[47]
Zhou J, Zhou H, Tang J, Deng S, Yan F, Li W. Carbon dots doped with heteroatoms for fluorescent bioimaging: A review. Microchim Acta 2017; pp. 343-68.
[48]
Kirchner C, Liedl T, Kudera S, et al. Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett 2005; 5(2): 331-8.
[http://dx.doi.org/10.1021/nl047996m] [PMID: 15794621]
[49]
Li F, Rui J, Yan Z, Qiu P, Tang X. A highly sensitive dual-read assay using nitrogen-doped carbon dots for the quantitation of uric acid in human serum and urine samples. Microchim Acta 2021; p. 188.
[50]
Fares NV, Medhat PM, El Maraghy CM, Okeil S, Ayad MF. Influence of nitrogen-doped carbon dot and silver nanoparticle modified carbon paste electrodes on the potentiometric determination of tobramycin sulfate: A comparative study. Chemosensors (Basel) 2021; 9(3): 52.
[http://dx.doi.org/10.3390/chemosensors9030052]
[51]
Gunjal DB, Gurav YM, Gore AH, et al. Nitrogen doped waste tea residue derived carbon dots for selective quantification of tetracycline in urine and pharmaceutical samples and yeast cell imaging application. Opt Mater 2019; 98: 109484.
[http://dx.doi.org/10.1016/j.optmat.2019.109484]
[52]
Zhang Q, Zhang C, Li Z, et al. Nitrogen-doped carbon dots as fluorescent probe for detection of curcumin based on the inner filter ef-fect. RSC Advances 2015; 5(115): 95054-60.
[http://dx.doi.org/10.1039/C5RA18176C]
[53]
Kalaiyarasan G, Joseph J. Determination of vitamin B12 via pH-dependent quenching of the fluorescence of nitrogen doped carbon quantum dots. Mikrochim Acta 2017; 184(10): 3883-91.
[http://dx.doi.org/10.1007/s00604-017-2421-y]
[54]
Wang YF, Li L, Jiang M, Yang X, Yu X, Xu L. One-pot synthesis of boron and nitrogen co-doped silicon-carbon dots for fluorescence enhancement and on-site colorimetric detection of dopamine with high selectivity. Appl Surf Sci 2022; 573: 151457.
[http://dx.doi.org/10.1016/j.apsusc.2021.151457]
[55]
El-Malla SF, Elshenawy EA, Hammad SF, Mansour FR. N-doped carbon dots as a fluorescent nanosensor for determination of colchicine based on inner filter effect. J Fluoresc 2021; 31(3): 675-84.
[http://dx.doi.org/10.1007/s10895-021-02698-0] [PMID: 33566265]
[56]
Tadesse A, Belachew N, Hagos M, Basavaiah K. Synthesis of fluorescent nitrogen and phosphorous co-doped carbon quantum dots for sensing of iron, cell imaging and antioxidant activities. J Fluoresc 2021; 31(3): 763-74.
[http://dx.doi.org/10.1007/s10895-021-02696-2] [PMID: 33655457]
[57]
Gao H, Liu Z, Song L, et al. Synthesis of S-doped graphene by liquid precursor. Nanotechnology 2012; 23(27): 275605.
[http://dx.doi.org/10.1088/0957-4484/23/27/275605] [PMID: 22710561]
[58]
Muthusankar G, Sangili A, Chen SM, et al. In situ assembly of sulfur-doped carbon quantum dots surrounded iron(III) oxide nanocomposite; a novel electrocatalyst for highly sensitive detection of antipsychotic drug olanzapine. J Mol Liq 2018; 268: 471-80.
[http://dx.doi.org/10.1016/j.molliq.2018.07.059]
[59]
Nemati F, Hosseini M, Zare-Dorabei R, Salehnia F, Ganjali MR. Fluorescent turn on sensing of Caffeine in food sample based on sulfur-doped carbon quantum dots and optimization of process parameters through response surface methodology. Sens Actuators B Chem 2018; 273: 25-34.
[http://dx.doi.org/10.1016/j.snb.2018.05.163]
[60]
Zhou J, Shan X, Ma J, et al. Facile synthesis of P-doped carbon quantum dots with highly efficient photoluminescence. RSC Advances 2014; 4(11): 5465-8.
[http://dx.doi.org/10.1039/c3ra45294h]
[61]
Sarkar S, Das K, Ghosh M, Das PK. Amino acid functionalized blue and phosphorous-doped green fluorescent carbon dots as bioimaging probe. RSC Advances 2015; 5(81): 65913-21.
[http://dx.doi.org/10.1039/C5RA09905F]
[62]
Shokri R, Amjadi M. A ratiometric fluorescence sensor for triticonazole based on the encapsulated boron-doped and phosphorous-doped carbon dots in the metal organic framework. Spectrochim Acta A Mol Biomol Spectrosc 2021; 246: 118951.
[http://dx.doi.org/10.1016/j.saa.2020.118951] [PMID: 32992238]
[63]
Jia Y, Hu Y, Li Y, Zeng Q, Jiang X, Cheng Z. Boron doped carbon dots as a multifunctional fluorescent probe for sorbate and vitamin B12. Mikrochim Acta 2019; 186(2): 84.
[http://dx.doi.org/10.1007/s00604-018-3196-5] [PMID: 30627790]
[64]
Ma Y, Chen AY, Huang YY, et al. Off-on fluorescent switching of boron-doped carbon quantum dots for ultrasensitive sensing of catechol and glutathione. Carbon 2020; 162: 234-44.
[http://dx.doi.org/10.1016/j.carbon.2020.02.048]
[65]
Wang X, Chen C, Waterhouse GIN, Qiao X, Xu Z. A novel SERS sensor for the ultrasensitive detection of kanamycin based on a Zn-doped carbon quantum dot catalytic switch controlled by nucleic acid aptamer and size-controlled gold nanorods. Food Chem 2021; 362: 130261.
[http://dx.doi.org/10.1016/j.foodchem.2021.130261] [PMID: 34111691]
[66]
Lin Y, Chen Y, Mo W, Li X, Ma H, Zhao X. An “on-off-on” fluorescent system based on the microwave-assisted preparation of copper-functionalized carbon quantum dots for sensitive detection of ascorbic acid. Opt Mater 2021; 115: 111041.
[http://dx.doi.org/10.1016/j.optmat.2021.111041]
[67]
Li C, Qin Z, Wang M, Liu W, Jiang H, Wang X. Manganese oxide doped carbon dots for temperature-responsive biosensing and target bioimaging. Anal Chim Acta 2020; 1104: 125-31.
[http://dx.doi.org/10.1016/j.aca.2020.01.001] [PMID: 32106943]
[68]
Liu ML, Chen B, Yang T, Wang J, Liu XD, Huang CZ. One-pot carbonization synthesis of europium-doped carbon quantum dots for highly selective detection of tetracycline. Methods Appl Fluoresc 2017; 5: 1-9.
[69]
Zhang Y, He J. Facile synthesis of S, N co-doped carbon dots and investigation of their photoluminescence properties. Phys Chem Chem Phys 2015; 17(31): 20154-9.
[http://dx.doi.org/10.1039/C5CP03498A] [PMID: 26177698]
[70]
Kalytchuk S, Poláková K, Wang Y, et al. Carbon dot nanothermometry: Intracellular photoluminescence lifetime thermal sensing. ACS Nano 2017; 11(2): 1432-42.
[http://dx.doi.org/10.1021/acsnano.6b06670] [PMID: 28125202]
[71]
Ding H, Wei JS, Xiong HM. Nitrogen and sulfur co-doped carbon dots with strong blue luminescence. Nanoscale 2014; 6(22): 13817-23.
[http://dx.doi.org/10.1039/C4NR04267K] [PMID: 25297983]
[72]
Azizi N, Hallaj T, Samadi N. A turn off-on fluorometric and paper‐based colorimetric dual‐mode sensor for isoniazid detection. Luminescence 2022; 37(1): 153-60.
[http://dx.doi.org/10.1002/bio.4156] [PMID: 34741490]
[73]
Xue M, Zhang L, Zhan Z, Zou M, Huang Y, Zhao S. Sulfur and nitrogen binary doped carbon dots derived from ammonium thiocyanate for selective probing doxycycline in living cells and multicolor cell imaging. Talanta 2016; 150: 324-30.
[http://dx.doi.org/10.1016/j.talanta.2015.12.024] [PMID: 26838415]
[74]
Wang J, Zhang H, Zhao J, et al. Simultaneous determination of paracetamol and p-aminophenol using glassy carbon electrode modified with nitrogen and sulfur-co-doped carbon dots. Mikrochim Acta 2019; 186(11): 733.
[http://dx.doi.org/10.1007/s00604-019-3870-2] [PMID: 31673848]
[75]
Tian H, Ju G, Li M, et al. Fluorescent “on-off-on” sensor based on N,S co-doped carbon dots from seaweed (Sargassum carpophyllum) for specific detection of Cr(VI) and ascorbic acid. RSC Advances 2021; 11(57): 35946-53.
[http://dx.doi.org/10.1039/D1RA06544K]
[76]
Zuo P, Chen Z, Yu F, et al. An easy synthesis of nitrogen and phosphorus co-doped carbon dots as a probe for chloramphenicol. RSC Advances 2020; 10(54): 32919-26.
[http://dx.doi.org/10.1039/D0RA04228E] [PMID: 35516483]
[77]
Singh VK, Singh V, Yadav PK, et al. Bright-blue-emission nitrogen and phosphorus-doped carbon quantum dots as a promising nano-probe for detection of Cr(VI) and ascorbic acid in pure aqueous solution and in living cells. New J Chem 2018; 42(15): 12990-7.
[http://dx.doi.org/10.1039/C8NJ02126K]
[78]
Liu Y, Gong X, Dong W, Zhou R, Shuang S, Dong C. Nitrogen and phosphorus dual-doped carbon dots as a label-free sensor for Curcumin determination in real sample and cellular imaging. Talanta 2018; 183: 61-9.
[http://dx.doi.org/10.1016/j.talanta.2018.02.060] [PMID: 29567190]
[79]
Dadkhah S, Mehdinia A, Jabbari A, Manbohi A. Rapid and sensitive fluorescence and smartphone dual-mode detection of dopamine based on nitrogen-boron co-doped carbon quantum dots. Mikrochim Acta 2020; 187(10): 569.
[http://dx.doi.org/10.1007/s00604-020-04543-w] [PMID: 32930878]
[80]
P K, Cherian AR, Sirimahachai U, Thadathil DA, Varghese A, Hegde G. Detection of picric acid in industrial effluents using multifunctional green fluorescent B/N-carbon quantum dots. J Environ Chem Eng 2022; 10(2): 107209.
[http://dx.doi.org/10.1016/j.jece.2022.107209]
[81]
Fu Q, Long C, Qin L, et al. Fluorescent and colorimetric dual-mode detection of tetracycline in wastewater based on heteroatoms-doped reduced state carbon dots. Environ Pollut 2021; 283: 117109.
[http://dx.doi.org/10.1016/j.envpol.2021.117109] [PMID: 33878685]
[82]
Liu Y, Wei Z, Duan W, et al. A dual-mode sensor for colorimetric and “turn-on” fluorescent detection of ascorbic acid. Dyes Pigments 2018; 149: 491-7.
[http://dx.doi.org/10.1016/j.dyepig.2017.10.039]
[83]
Hu X, Zhao Y, Dong J, et al. A strong blue fluorescent nanoprobe based on Mg/N co-doped carbon dots coupled with molecularly imprinted polymer for ultrasensitive and highly selective detection of tetracycline in animal-derived foods. Sens Actuators B Chem 2021; 338: 129809.
[http://dx.doi.org/10.1016/j.snb.2021.129809]
[84]
Huang S, Yang E, Yao J, et al. Nitrogen, cobalt co-doped fluorescent magnetic carbon dots as ratiometric fluorescent probes for cholesterol and uric acid in human blood serum. ACS Omega 2019; 4(5): 9333-42.
[http://dx.doi.org/10.1021/acsomega.9b00874] [PMID: 31460022]
[85]
Nie H, Li M, Li Q, et al. Carbon dots with continuously tunable full-color emission and their application in ratiometric pH sensing. Chem Mater 2014; 26(10): 3104-12.
[http://dx.doi.org/10.1021/cm5003669]
[86]
Lu S, Xiao G, Sui L, et al. Piezochromic carbon dots with two-photon fluorescence. Angew Chem Int Ed 2017; 56(22): 6187-91.
[http://dx.doi.org/10.1002/anie.201700757] [PMID: 28378520]
[87]
Du Y, Guo S. Chemically doped fluorescent carbon and graphene quantum dots for bioimaging, sensor, catalytic and photoelectronic applications. Nanoscale 2016; 8(5): 2532-43.
[http://dx.doi.org/10.1039/C5NR07579C] [PMID: 26757977]
[88]
Wang Z, Zeng H, Sun L. Graphene quantum dots: versatile photoluminescence for energy, biomedical, and environmental applications. J Mater Chem C Mater Opt Electron Devices 2015; 3(6): 1157-65.
[http://dx.doi.org/10.1039/C4TC02536A]
[89]
Tan J, Li Q, Meng S, et al. Time‐dependent phosphorescence colors from carbon dots for advanced dynamic information encryption. Adv Mater 2021; 33(16): 2006781.
[http://dx.doi.org/10.1002/adma.202006781] [PMID: 33709513]
[90]
Li Q, Li Y, Meng S, et al. Achieving 46% efficient white-light emissive carbon dot-based materials by enhancing phosphorescence for single-component white-light-emitting diodes. J Mater Chem C Mater Opt Electron Devices 2021; 9(21): 6796-801.
[http://dx.doi.org/10.1039/D1TC01001H]
[91]
Li Q, Zhao Z, Meng S, et al. Ultra‐strong phosphorescence with 48% quantum yield from grinding treated thermal annealed carbon dots and boric acid composite. SmartMat 2021; 3(2): 260-8.
[92]
Miao X, Qu D, Yang D, et al. Synthesis of carbon dots with multiple color emission by controlled graphitization and surface functionalization. Adv Mater 2018; 30(1): 1704740.
[http://dx.doi.org/10.1002/adma.201704740] [PMID: 29178388]
[93]
Ding H, Yu SB, Wei JS, Xiong HM. Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano 2016; 10(1): 484-91.
[http://dx.doi.org/10.1021/acsnano.5b05406] [PMID: 26646584]
[94]
Bao L, Liu C, Zhang ZL, Pang DW. Photoluminescence-tunable carbon nanodots: Surface-state energy-gap tuning. Adv Mater 2015; 27(10): 1663-7.
[http://dx.doi.org/10.1002/adma.201405070] [PMID: 25589141]
[95]
Bao L, Zhang ZL, Tian ZQ, et al. Electrochemical tuning of luminescent carbon nanodots: from preparation to luminescence mechanism. Adv Mater 2011; 23(48): 5801-6.
[http://dx.doi.org/10.1002/adma.201102866] [PMID: 22144369]
[96]
Ai L, Yang Y, Wang B, et al. Insights into photoluminescence mechanisms of carbon dots: advances and perspectives. Sci Bull (Beijing) 2021; 66(8): 839-56.
[http://dx.doi.org/10.1016/j.scib.2020.12.015]
[97]
Yu J, Liu C, Yuan K, et al. Luminescence mechanism of carbon dots by tailoring functional groups for sensing Fe3+ ions. Nanomaterials 2018; 8(4): 233.
[http://dx.doi.org/10.3390/nano8040233] [PMID: 29649110]
[98]
Chen X, Bai J, Yuan G, Zhang L, Ren L. One-pot preparation of nitrogen-doped carbon dots for sensitive and selective detection of Ag+ and glutathione. Microchem J 2021; 165: 106156.
[http://dx.doi.org/10.1016/j.microc.2021.106156]
[99]
Amin N, Afkhami A, Hosseinzadeh L, Madrakian T. Green and cost-effective synthesis of carbon dots from date kernel and their application as a novel switchable fluorescence probe for sensitive assay of Zoledronic acid drug in human serum and cellular imaging. Anal Chim Acta 2018; 1030: 183-93.
[http://dx.doi.org/10.1016/j.aca.2018.05.014] [PMID: 30032768]
[100]
Jiang X, Qin D, Mo G, et al. Ginkgo leaf-based synthesis of nitrogen-doped carbon quantum dots for highly sensitive detection of salazosulfapyridine in mouse plasma. J Pharm Biomed Anal 2019; 164: 514-9.
[http://dx.doi.org/10.1016/j.jpba.2018.11.025] [PMID: 30453158]
[101]
Amjadi M, Hallaj T, Mayan MA. Green synthesis of nitrogen-doped carbon dots from lentil and its application for colorimetric determination of thioridazine hydrochloride. RSC Advances 2016; 6(106): 104467-73.
[http://dx.doi.org/10.1039/C6RA22899B]
[102]
Wang J, Su S, Wei J, et al. Ratio-metric sensor to detect riboflavin via fluorescence resonance energy transfer with ultrahigh sensitivity. Phys E Low-Dimensional Syst Nanostructures 2015; 72: 17-24.
[http://dx.doi.org/10.1016/j.physe.2015.04.006]
[103]
Abd Elhaleem SM, Elsebaei F, Shalan S, Belal F. Turn-off fluorescence of nitrogen and sulfur carbon quantum dots as effective fluorescent probes for determination of imatinib. Application to biological fluids. Spectrochim Acta A Mol Biomol Spectrosc 2022; 272: 120954.
[http://dx.doi.org/10.1016/j.saa.2022.120954] [PMID: 35151161]
[104]
Abd Elhaleem SM, Elsebaei F, Shalan S, Belal F. Utilization of N,S‐doped carbon dots as a fluorescent nanosensor for determination of cromolyn based on inner filter effect: application to aqueous humour. Luminescence 2022; 37(5): 713-21.
[http://dx.doi.org/10.1002/bio.4212] [PMID: 35158415]
[105]
Yan Z, Xiao A, Lu H, Liu Z, Chen J. Determination of metronidazole by a flow-injection chemiluminescence method using ZnOdoped carbon quantum dots. Carbon 2014; 77: 1197.
[http://dx.doi.org/10.1016/j.carbon.2014.06.043]
[106]
Xu S, Liu Y, Yang H, Zhao K, Li J, Deng A. Fluorescent nitrogen and sulfur co-doped carbon dots from casein and their applications for sensitive detection of Hg 2+ and biothiols and cellular imaging. Anal Chim Acta 2017; 964: 150-60.
[http://dx.doi.org/10.1016/j.aca.2017.01.037] [PMID: 28351631]
[107]
Qu K, Wang J, Ren J, Qu X. Carbon dots prepared by hydrothermal treatment of dopamine as an effective fluorescent sensing platform for the label-free detection of iron(III) ions and dopamine. Chemistry 2013; 19(22): 7243-9.
[http://dx.doi.org/10.1002/chem.201300042] [PMID: 23576265]
[108]
Shangguan J, Huang J, He D, et al. Highly Fe 3+ -selective fluorescent nanoprobe based on ultrabright N/P codoped carbon dots and its application in biological samples. Anal Chem 2017; 89(14): 7477-84.
[http://dx.doi.org/10.1021/acs.analchem.7b01053] [PMID: 28628302]
[109]
Cheng C, Xing M, Wu Q. A universal facile synthesis of nitrogen and sulfur co-doped carbon dots from cellulose-based biowaste for fluorescent detection of Fe3+ ions and intracellular bioimaging. Mater Sci Eng C 2019; 99: 611-9.
[http://dx.doi.org/10.1016/j.msec.2019.02.003] [PMID: 30889736]
[110]
Zhao Y, Piao Y, Meng L, Jin B. N‐doped luteolin‐based carbon dots as a novel matrix for the analysis of small molecules by MALDI‐TOF MS. J Chin Chem Soc (Taipei) 2021; 68(10): 1965-71.
[http://dx.doi.org/10.1002/jccs.202100092]
[111]
Le TH, Kim JH, Park SJ. “Turn on” fluorescence sensor of glutathione based on inner filter effect of co-doped carbon dot/gold nanoparticle composites. Int J Mol Sci 2021; 23(1): 190.
[http://dx.doi.org/10.3390/ijms23010190] [PMID: 35008614]
[112]
Hallaj T, Azizi N, Amjadi M. A dual-mode colorimetric and fluorometric nanosensor for detection of uric acid based on N, P co-doped carbon dots and in-situ formation of Au/Ag core-shell nanoparticles. Microchem J 2021; 162: 105865.
[http://dx.doi.org/10.1016/j.microc.2020.105865]
[113]
Zan M, Li C, Zhu D, et al. A novel “on-off-on” fluorescence assay for the discriminative detection of Cu(II) and l-cysteine based on red-emissive Si-CDs and cellular imaging applications. J Mater Chem B Mater Biol Med 2020; 8(5): 919-27.
[http://dx.doi.org/10.1039/C9TB02681A] [PMID: 31912848]
[114]
Wu Y, Wei P, Pengpumkiat S, Schumacher EA, Remcho VT. A novel ratiometric fluorescent immunoassay for human α-fetoprotein based on carbon nanodot-doped silica nanoparticles and FITC. Anal Methods 2016; 8(27): 5398-406.
[http://dx.doi.org/10.1039/C6AY01171C]
[115]
Shahnawaz Khan M, Bhaisare ML, Pandey S, et al. Exploring the ability of water soluble carbon dots as matrix for detecting neurological disorders using MALDI-TOF MS. Int J Mass Spectrom 2015; 393: 25-33.
[http://dx.doi.org/10.1016/j.ijms.2015.10.007]
[116]
Qin D, Jiang X, Mo G, Feng J, Yu C, Deng B. A Novel carbon quantum dots signal amplification strategy coupled with sandwich electro-chemiluminescence immunosensor for the detection of ca15-3 in human serum. ACS Sens 2019; 4(2): 504-12.
[http://dx.doi.org/10.1021/acssensors.8b01607] [PMID: 30693767]
[117]
Bahari D, Babamiri B, Salimi A, Salimizand H. Ratiometric fluorescence resonance energy transfer aptasensor for highly sensitive and selective detection of Acinetobacter baumannii bacteria in urine sample using carbon dots as optical nanoprobes. Talanta 2021; 221: 121619.
[http://dx.doi.org/10.1016/j.talanta.2020.121619] [PMID: 33076147]
[118]
Yang ST, Cao L, Luo PG, et al. Carbon dots for optical imaging in vivo. J Am Chem Soc 2009; 131(32): 11308-9.
[http://dx.doi.org/10.1021/ja904843x] [PMID: 19722643]
[119]
Yang ST, Wang X, Wang H, et al. Carbon dots as nontoxic and high-performance fluorescence imaging agents. J Phys Chem C 2009; 113(42): 18110-4.
[http://dx.doi.org/10.1021/jp9085969] [PMID: 20357893]
[120]
Liu Y, Luo S, Wu P, et al. Hydrothermal synthesis of green fluorescent nitrogen doped carbon dots for the detection of nitrite and multicolor cellular imaging. Anal Chim Acta 2019; 1090: 133-42.
[http://dx.doi.org/10.1016/j.aca.2019.09.015] [PMID: 31655638]
[121]
Song S, Liang F, Li M, et al. A label-free nano-probe for sequential and quantitative determination of Cr(VI) and ascorbic acid in real samples based on S and N dual-doped carbon dots. Spectrochim Acta A Mol Biomol Spectrosc 2019; 215: 58-68.
[http://dx.doi.org/10.1016/j.saa.2019.02.065] [PMID: 30822735]
[122]
Nie S. Understanding and overcoming major barriers in cancer nanomedicine. Nanomedicine (Lond) 2010; 5(4): 523-8.
[http://dx.doi.org/10.2217/nnm.10.23] [PMID: 20528447]
[123]
Huang X, Zhang F, Zhu L, et al. Effect of injection routes on the biodistribution, clearance, and tumor uptake of carbon dots. ACS Nano 2013; 7(7): 5684-93.
[http://dx.doi.org/10.1021/nn401911k] [PMID: 23731122]
[124]
Tao H, Yang K, Ma Z, et al. In vivo NIR fluorescence imaging, biodistribution, and toxicology of photoluminescent carbon dots produced from carbon nanotubes and graphite. Small 2012; 8(2): 281-90.
[http://dx.doi.org/10.1002/smll.201101706] [PMID: 22095931]
[125]
Zhang H, Wang G, Zhang Z, et al. One step synthesis of efficient red emissive carbon dots and their bovine serum albumin composites with enhanced multi-photon fluorescence for in vivo bioimaging. Light Sci Appl 2022; 11: 1-14.
[http://dx.doi.org/10.1038/s41377-022-00798-5]
[126]
Wang M, Jiao Y, Cheng C, Hua J, Yang Y. Nitrogen-doped carbon quantum dots as a fluorescence probe combined with magnetic solid-phase extraction purification for analysis of folic acid in human serum. Anal Bioanal Chem 2017; 409(30): 7063-75.
[http://dx.doi.org/10.1007/s00216-017-0665-3] [PMID: 28971257]
[127]
Yang P, Zhu Z, Chen M, Chen W, Zhou X. Microwave-assisted synthesis of xylan-derived carbon quantum dots for tetracycline sensing. Opt Mater 2018; 85: 329-36.
[http://dx.doi.org/10.1016/j.optmat.2018.06.034]
[128]
Ma Y, Song Y, Ma Y, et al. N-doped carbon dots as a fluorescent probe for the sensitive and facile detection of carbamazepine based on the inner filter effect. New J Chem 2018; 42(11): 8992-7.
[http://dx.doi.org/10.1039/C8NJ00764K]
[129]
Zhang Z, Chen J, Duan Y, et al. Highly luminescent nitrogen-doped carbon dots for simultaneous determination of chlortetracycline and sulfasalazine. Luminescence 2018; 33(2): 318-25.
[http://dx.doi.org/10.1002/bio.3416] [PMID: 29044942]
[130]
Ma K, Liang L, Zhou X, Tan W, Hu O, Chen Z. A redox-induced dual-mode colorimetric and fluorometric method based on N-CDS and MNO2 for determination of isoniazid in tablets and plasma samples. Spectrochim Acta. Mol Biomol Spectrosc 2021; 247: 119097.
[131]
Yu C, Qin D, Jiang X, Zheng X, Deng B. Facile synthesis of bright yellow fluorescent nitrogen-doped carbon quantum dots and their applications to an off-on probe for highly sensitive detection of methimazole. Microchem J 2021; 168: 106480.
[http://dx.doi.org/10.1016/j.microc.2021.106480]
[132]
Ren G, Hou X, Kang Y, et al. Efficient preparation of nitrogen-doped fluorescent carbon dots for highly sensitive detection of metronidazole and live cell imaging. Spectrochim Acta A Mol Biomol Spectrosc 2020; 234: 118251.
[http://dx.doi.org/10.1016/j.saa.2020.118251] [PMID: 32193157]
[133]
Kalaiyarasan G, Joseph J. Efficient dual-mode colorimetric/fluorometric sensor for the detection of copper ions and vitamin C based on pH-sensitive amino-terminated nitrogen-doped carbon quantum dots: effect of reactive oxygen species and antioxidants. Anal Bioanal Chem 2019; 411(12): 2619-33.
[http://dx.doi.org/10.1007/s00216-019-01710-8] [PMID: 30903223]
[134]
Devi JSA, Aparna RS, Aswathy B, Nebu J, Aswathy AO, George S. Understanding the citric acid-urea co-directed microwave assisted synthesis and ferric ion modulation of fluorescent nitrogen doped carbon dots: A turn on assay for ascorbic acid. ChemistrySelect 2019; 4(3): 816-24.
[http://dx.doi.org/10.1002/slct.201803726]
[135]
Du F, Cheng Z, Kremer M, et al. A label-free multifunctional nanosensor based on N-doped carbon nanodots for vitamin B 12 and Co 2+ detection, and bioimaging in living cells and zebrafish. J Mater Chem B Mater Biol Med 2020; 8(23): 5089-95.
[http://dx.doi.org/10.1039/D0TB00443J] [PMID: 32406457]
[136]
Ghani SM, Rezaei B, Jamei HR, Ensafi AA. Novel synthesis of a dual fluorimetric sensor for the simultaneous analysis of levodopa and pyridoxine. Anal Bioanal Chem 2021; 413(2): 377-87.
[http://dx.doi.org/10.1007/s00216-020-03005-9] [PMID: 33106947]
[137]
Yola ML, Atar N. Development of molecular imprinted sensor including graphitic carbon nitride/N-doped carbon dots composite for novel recognition of epinephrine. Compos, Part B Eng 2019; 175: 107113.
[http://dx.doi.org/10.1016/j.compositesb.2019.107113]
[138]
Zhuo S, Fang J, Li M, Wang J, Zhu C, Du J. Manganese(II)-doped carbon dots as effective oxidase mimics for sensitive colorimetric determination of ascorbic acid. Mikrochim Acta 2019; 186(12): 745.
[http://dx.doi.org/10.1007/s00604-019-3887-6] [PMID: 31691124]
[139]
Anjana RR, Anjali Devi JS, Jayasree M, et al. S,N-doped carbon dots as a fluorescent probe for bilirubin. Mikrochim Acta 2018; 185(1): 11.
[http://dx.doi.org/10.1007/s00604-017-2574-8] [PMID: 29594591]
[140]
Magdy G, Al-enna AA, Belal F, El-Domany RA, Abdel-Megied AM. Application of sulfur and nitrogen doped carbon quantum dots as sensitive fluorescent nanosensors for the determination of saxagliptin and gliclazide. R Soc Open Sci 2022; 9(6): 220285.
[http://dx.doi.org/10.1098/rsos.220285] [PMID: 35706663]
[141]
Belal F, Mabrouk M, Hammad S, Barseem A, Ahmed H. One‐pot synthesis of fluorescent nitrogen and sulfur-carbon quantum dots as a sensitive nanosensor for trimetazidine determination. Luminescence 2021; 36(6): 1435-43.
[http://dx.doi.org/10.1002/bio.4083] [PMID: 33982840]
[142]
Cheng S, Zhang J, Liu Y, Wang Y, Xiao Y, Zhang Y. One-step synthesis of N, S-doped carbon dots with orange emission and their application in tetracycline antibiotics, quercetin sensing, and cell imaging. Microchim Acta 2021; p. 188.
[143]
Akhgari F, Samadi N, Farhadi K, Akhgari M. A green one-pot synthesis of nitrogen and sulfur co-doped carbon quantum dots for sensitive and selective detection of cephalexin. Can J Chem 2017; 95(6): 641-8.
[http://dx.doi.org/10.1139/cjc-2016-0531]
[144]
Hallaj T, Amjadi M, Manzoori JL, Azizi N. A novel chemiluminescence sensor for the determination of indomethacin based on sulfur and nitrogen co‐doped carbon quantum dot-KMnO4 reaction. Luminescence 2017; 32(7): 1174-9.
[http://dx.doi.org/10.1002/bio.3306] [PMID: 28524362]
[145]
Shi W, Guo F, Han M, et al. N,S co-doped carbon dots as a stable bio-imaging probe for detection of intracellular temperature and tetracycline. J Mater Chem B Mater Biol Med 2017; 5(18): 3293-9.
[http://dx.doi.org/10.1039/C7TB00810D] [PMID: 32264395]
[146]
Zuo P, Liu J, Guo H, et al. Multifunctional N,S co-doped carbon dots for sensitive probing of temperature, ferric ion, and methotrexate. Anal Bioanal Chem 2019; 411(8): 1647-57.
[http://dx.doi.org/10.1007/s00216-019-01617-4] [PMID: 30707268]
[147]
Li Y, Hu Y, Jia Y, Jiang X, Cheng Z N. S Co-Doped Carbon Quantum Dots for the Selective and Sensitive Fluorescent Determination of N-Acetyl-l-Cysteine in Pharmaceutical Products and Urine. 2019; 52: 1711-31.
[148]
Yao D, Liang A, Jiang Z. A fluorometric clenbuterol immunoassay using sulfur and nitrogen doped carbon quantum dots. Mikrochim Acta 2019; 186(5): 323.
[http://dx.doi.org/10.1007/s00604-019-3431-8] [PMID: 31049706]
[149]
El Sharkasy ME, Tolba MM, Belal F, Walash MI, Aboshabana R. Thiosemicarbazide functionalized carbon quantum dots as a fluorescent probe for the determination of some oxicams: application to dosage forms and biological fluids. RSC Advances 2022; 12(22): 13826-36.
[http://dx.doi.org/10.1039/D2RA01040B] [PMID: 35541436]
[150]
Zhu Y, Lu Y, Shi L, Yang Y. β-Cyclodextrin functionalized N,Zn codoped carbon dots for specific fluorescence detection of fluoro-quinolones in milk samples. Microchem J 2020; 153: 104517.
[http://dx.doi.org/10.1016/j.microc.2019.104517]
[151]
Shekarbeygi Z, Farhadian N, Ansari M, Shahlaei M, Moradi S. An innovative green sensing strategy based on Cu-doped Tragacanth/Chitosan nano carbon dots for Isoniazid detection. Spectrochim Acta A Mol Biomol Spectrosc 2020; 228: 117848.
[http://dx.doi.org/10.1016/j.saa.2019.117848] [PMID: 31784230]
[152]
Xiao J, Hao X, Miao C, et al. Determination of chondroitin sulfate in synovial fluid and drug by ratiometric fluorescence strategy based on carbon dots quenched FAM-labeled ssDNA. Colloids Surf B Biointerfaces 2020; 192: 111030.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111030] [PMID: 32353709]
[153]
Amjadi M, Hallaj T, Manzoori JL, Shahbazsaghir T. An amplified chemiluminescence system based on Si-doped carbon dots for detection of catecholamines. Spectrochim Acta A Mol Biomol Spectrosc 2018; 201: 223-8.
[http://dx.doi.org/10.1016/j.saa.2018.04.058] [PMID: 29753967]
[154]
Chen J, He P, Bai H, et al. Poly(β-cyclodextrin)/carbon quantum dots modified glassy carbon electrode: Preparation, characterization and simultaneous electrochemical determination of dopamine, uric acid and tryptophan. Sens Actuators B Chem 2017; 252: 9-16.
[http://dx.doi.org/10.1016/j.snb.2017.05.096]
[155]
Wu D, Li G, Chen X, et al. Fluorometric determination and imaging of glutathione based on a thiol-triggered inner filter effect on the fluorescence of carbon dots. Mikrochim Acta 2017; 184(7): 1923-31.
[http://dx.doi.org/10.1007/s00604-017-2187-2]
[156]
Lu S, Li G, Lv Z, et al. Facile and ultrasensitive fluorescence sensor platform for tumor invasive biomaker β-glucuronidase detection and inhibitor evaluation with carbon quantum dots based on inner-filter effect. Biosens Bioelectron 2016; 85: 358-62.
[http://dx.doi.org/10.1016/j.bios.2016.05.021] [PMID: 27196253]
[157]
Chen P, Peng H, Zhang Z, et al. Facile preparation of highly thermosensitive N-doped carbon dots and their detection of temperature and 6-mercaotopurine. Microchem J 2021; 171: 106835.
[http://dx.doi.org/10.1016/j.microc.2021.106835]
[158]
Wang L, Jana J, Chung JS, Hur SH. Glutathione modified N-doped carbon dots for sensitive and selective dopamine detection. Dye Pigment 2021; p. 186.
[159]
Yan J, Lu Y, Xie S, et al. Highly fluorescent N -doped carbon quantum dots derived from bamboo stems for selective detection of Fe 3+ ions in biological systems. J Biomed Nanotechnol 2021; 17(2): 312-21.
[http://dx.doi.org/10.1166/jbn.2021.3034] [PMID: 33785101]
[160]
Gao Y, Zhang H, Shuang S, Han H, Dong C. An “on-off-on” fluorescent nanoprobe for recognition of Cu2+ and GSH based on nitrogen co-doped carbon quantum dots, and its logic gate operation. Anal Methods 2019; 11(20): 2650-7.
[http://dx.doi.org/10.1039/C9AY00424F]
[161]
Kalaiyarasan G, Hemlata C, Joseph J. Fluorescence turn-on, specific detection of cystine in human blood plasma and urine samples by nitrogen-doped carbon quantum dots. ACS Omega 2019; 4(1): 1007-14.
[http://dx.doi.org/10.1021/acsomega.8b03187] [PMID: 31459376]
[162]
Gong P, Sun L, Wang F, et al. Highly fluorescent N-doped carbon dots with two-photon emission for ultrasensitive detection of tumor marker and visual monitor anticancer drug loading and delivery. Chem Eng J 2019; 356: 994-1002.
[http://dx.doi.org/10.1016/j.cej.2018.09.100]
[163]
Konar S, Kumar BNP, Mahto MK, et al. N-doped carbon dot as fluorescent probe for detection of cysteamine and multicolor cell imag-ing. Sens Actuators B Chem 2019; 286: 77-85.
[http://dx.doi.org/10.1016/j.snb.2019.01.117]
[164]
Zhou J, Han T, Ma H, et al. A novel electrochemiluminescent immunosensor based on the quenching effect of aminated graphene on nitrogen-doped carbon quantum dots. Anal Chim Acta 2015; 889: 82-9.
[http://dx.doi.org/10.1016/j.aca.2015.07.018] [PMID: 26343429]
[165]
Zhu Z, Lin X, Wu L, et al. Nitrogen-doped carbon dots as a ratiometric fluorescent probe for determination of the activity of acid phosphatase, for inhibitor screening, and for intracellular imaging. Microchim Acta 2019; (8): 558.
[166]
Prakobkij A, Jarujamrus P, Chunta S, et al. Nitrogen-doped carbon dots/Ni-MnFe-layered double hydroxides (N-CDs/Ni-MnFe-LDHs) hybrid nanomaterials as immunoassay label for low-density lipoprotein detection. Microchim Acta 2022; p. 189.
[167]
Lu X, Fan Z. Determination of cholic acid in body fluids by β-cyclodextrin-modified N-doped carbon dot fluorescent probes. Spectrochim Acta A Mol Biomol Spectrosc 2019; 216: 342-8.
[http://dx.doi.org/10.1016/j.saa.2019.03.066] [PMID: 30921656]
[168]
Zhuo SJ, Fang J, Wang J, Zhu CQ. One-step hydrothermal synthesis of silver-doped carbon quantum dots for highly selective detection of uric acid. Methods Appl Fluoresc 2019; 8(1): 015005.
[http://dx.doi.org/10.1088/2050-6120/ab5d8c] [PMID: 31783379]
[169]
Zhou Q, Fang Y, Li J, et al. A design strategy of dual-ratiomentric optical probe based on europium-doped carbon dots for colorimetric and fluorescent visual detection of anthrax biomarker. Talanta 2021; 222: 121548.
[http://dx.doi.org/10.1016/j.talanta.2020.121548] [PMID: 33167252]
[170]
Bandi R, Alle M, Park CW, et al. Cellulose nanofibrils/carbon dots composite nanopapers for the smartphone-based colorimetric detection of hydrogen peroxide and glucose. Sens Actuators B Chem 2021; 330: 129330.
[http://dx.doi.org/10.1016/j.snb.2020.129330]
[171]
Zhuo S, Guan Y, Li H, et al. Facile fabrication of fluorescent Fedoped carbon quantum dots for dopamine sensing and bioimaging application. Analyst (Lond) 2019; 144(2): 656-62.
[http://dx.doi.org/10.1039/C8AN01741G] [PMID: 30484788]
[172]
Tang XY, Liu YM, Bai XL, et al. Turn-on fluorescent probe for dopamine detection in solutions and live cells based on in situ formation of aminosilane-functionalized carbon dots. Anal Chim Acta 2021; 1157: 338394.
[http://dx.doi.org/10.1016/j.aca.2021.338394] [PMID: 33832585]
[173]
Mu Z, Hua J, Feng S, Yang Y. A ratiometric fluorescence and light scattering sensing platform based on Cu-doped carbon dots for tryptophan and Fe(III). Spectrochim Acta A Mol Biomol Spectrosc 2019; 219: 248-56.
[http://dx.doi.org/10.1016/j.saa.2019.04.065] [PMID: 31048254]
[174]
Duan Y, Huang Y, Chen S, Zuo W, Shi B. Cu-doped carbon dots as catalysts for the chemiluminescence detection of glucose. ACS Omega 2019; 4(6): 9911-7.
[http://dx.doi.org/10.1021/acsomega.9b00738] [PMID: 31460081]
[175]
Zhang X, Chai L, Nie S, Lv C, Wang Q, Li Z. Facile synthesis of boronic acid-decorated carbon nanodots as optical nanoprobes for gly-coprotein sensing. Analyst (Lond) 2019; 144(6): 1975-81.
[http://dx.doi.org/10.1039/C8AN02192A] [PMID: 30694263]
[176]
Yu C, Jiang X, Qin D, Mo G, Zheng X, Deng B. Facile syntheses of S,N-codoped carbon quantum dots and their applications to a novel off-on nanoprobe for detection of 6-thioguanine and its bioimaging. ACS Sustain Chem Eng 2019; 7(19): 16112-20.
[http://dx.doi.org/10.1021/acssuschemeng.9b02886]
[177]
Yousefi S, Saraji M. Developing a fluorometric aptasensor based on carbon quantum dots and silver nanoparticles for the detection of adenosine. Microchem J 2019; 148: 169-76.
[http://dx.doi.org/10.1016/j.microc.2019.04.083]
[178]
Wang H, Lu Q, Hou Y, Liu Y, Zhang Y. High fluorescence S, N co-doped carbon dots as an ultra-sensitive fluorescent probe for the determination of uric acid. Talanta 2016; 155: 62-9.
[http://dx.doi.org/10.1016/j.talanta.2016.04.020] [PMID: 27216657]
[179]
Li X, Yang H, Wang N, Sun T, Bian W, Choi MMF. Nitrogen and sulfur co-doped fluorescent carbon dots for the detection of morin and cell imaging. Curr Anal Chem 2018; 15(1): 47-55.
[http://dx.doi.org/10.2174/1573411014666180904104629]
[180]
Dong W, Wang R, Gong X, Dong C. An efficient turn-on fluorescence biosensor for the detection of glutathione based on FRET between N,S dual-doped carbon dots and gold nanoparticles. Anal Bioanal Chem 2019; 411(25): 6687-95.
[http://dx.doi.org/10.1007/s00216-019-02042-3] [PMID: 31407048]
[181]
Amiri M, Haji Shabani AM, Dadfarnia S, Shokoufi N, Hajipour-Verdom B, Sadjadi S. Carbon dots doped by nitrogen and sulfur for dual-mode colorimetric and fluorometric determination of Fe3+ and histidine and intracellular imaging of Fe3+ in living cells. Mikrochim Acta 2020; 187(10): 562.
[http://dx.doi.org/10.1007/s00604-020-04512-3] [PMID: 32920698]
[182]
Cao JT, Zhang WS, Wang H, Ma SH, Liu YM. A novel nitrogen and sulfur co-doped carbon dots-H2O2 chemiluminescence system for carcinoembryonic antigen detection using functional HRP-Au@Ag for signal amplification. Spectrochim Acta A Mol Biomol Spectrosc 2019; 219: 281-7.
[http://dx.doi.org/10.1016/j.saa.2019.04.063] [PMID: 31051422]
[183]
Shi B, Su Y, Zhang L, Huang M, Liu R, Zhao S. Nitrogen and phosphorus co-doped carbon nanodots as a novel fluorescent probe for highly sensitive detection of fe 3+ in human serum and living cells. ACS Appl Mater Interfaces 2016; 8(17): 10717-25.
[http://dx.doi.org/10.1021/acsami.6b01325] [PMID: 27014959]
[184]
Ni P, Xie J, Chen C, Jiang Y, Lu Y, Hu X. Fluorometric determination of the activity of alkaline phosphatase and its inhibitors based on ascorbic acid-induced aggregation of carbon dots. Mikrochim Acta 2019; 186(3): 202.
[http://dx.doi.org/10.1007/s00604-019-3303-2] [PMID: 30796533]
[185]
Zhang J, Yang H, Pan S, Liu H, Hu X. A novel “off-on-off” fluorescent-nanoprobe based on B, N co-doped carbon dots and MnO2 nanosheets for sensitive detection of GSH and Ag. Spectrochim Acta - Part A Mol Biomol Spectrosc 2021; p. 244.
[186]
Yang M, Liu M, Wu Z, et al. Carbon dots co-doped with nitrogen and chlorine for “off-on” fluorometric determination of the activity of acetylcholinesterase and for quantification of organophosphate pesticides. Mikrochim Acta 2019; 186(8): 585.
[http://dx.doi.org/10.1007/s00604-019-3715-z] [PMID: 31363918]
[187]
Guo J, Li S, Wang J, Wang J. Dual-recognition immune-cochemical ECL-sensor based on Ti,Mg@N-CDs-induced and novel signal-sensing units Poly(DVB-co-PBA)-reported for alphafetoprotein detection. Sens Actuators B Chem 2021; 346: 130548.
[http://dx.doi.org/10.1016/j.snb.2021.130548]
[188]
Hu JJ, Bai XL, Liu YM, Liao X. Functionalized carbon quantum dots with dopamine for tyrosinase activity analysis. Anal Chim Acta 2017; 995: 99-105.
[http://dx.doi.org/10.1016/j.aca.2017.09.038] [PMID: 29126486]
[189]
Li P, Ang AN, Feng H, Li SFY. Rapid detection of an anthrax biomarker based on the recovered fluorescence of carbon dot-Cu(II) systems. J Mater Chem C Mater Opt Electron Devices 2017; 5(28): 6962-72.
[http://dx.doi.org/10.1039/C7TC01058C]
[190]
Fan X, Feng Y, Su Y, Zhang L, Lv Y. A green solid-phase method for preparation of carbon nitride quantum dots and their applications in chemiluminescent dopamine sensing. RSC Advances 2015; 5(68): 55158-64.
[http://dx.doi.org/10.1039/C5RA05397H]
[191]
Zhang L, Wang Z, Wang H, et al. Nitrogen-doped carbon dots for wash-free imaging of nucleolus orientation. Microchim Acta 2021; 188(6): 183.
[192]
Wang C, Pan C, Wei Z, et al. One-step synthesis of nitrogen-doped multi-emission carbon dots and their fluorescent sensing in HClO and cellular imaging. Microchim Acta 2021; 188(10): 330.
[193]
Limosani F, Bauer EM, Cecchetti D, et al. Top-down n-doped carbon quantum dots for multiple purposes: Heavy metal detection and intracellular fluorescence. Nanomaterials (Basel) 2021; 11(9): 2249.
[http://dx.doi.org/10.3390/nano11092249] [PMID: 34578565]
[194]
Atchudan R, Edison TNJI, Perumal S, Vinodh R, Lee YR. Betel-derived nitrogen-doped multicolor carbon dots for environmental and biological applications. J Mol Liq 2019; 296: 111817.
[http://dx.doi.org/10.1016/j.molliq.2019.111817]
[195]
Li L, Li L, Chen CP, Cui F. Green synthesis of nitrogen-doped carbon dots from ginkgo fruits and the application in cell imaging. Inorg Chem Commun 2017; 86: 227-31.
[http://dx.doi.org/10.1016/j.inoche.2017.10.006]
[196]
Gu D, Shang S, Yu Q, Shen J. Green synthesis of nitrogen-doped carbon dots from lotus root for Hg(II) ions detection and cell imaging. Appl Surf Sci 2016; 390: 38-42.
[http://dx.doi.org/10.1016/j.apsusc.2016.08.012]
[197]
Chen Z, Wang X, Li H, et al. Controllable and mass fabrication of highly luminescent N-doped carbon dots for bioimaging applications. RSC Advances 2015; 5(29): 22343-9.
[http://dx.doi.org/10.1039/C4RA16990E]
[198]
Du F, Li J, Hua Y, et al. Multicolor nitrogen-doped carbon dots for live cell imaging. J Biomed Nanotechnol 2015; 11(5): 780-8.
[http://dx.doi.org/10.1166/jbn.2015.2008] [PMID: 26349391]
[199]
Zhao A, Zhao C, Li M, Ren J, Qu X. Ionic liquids as precursors for highly luminescent, surface-different nitrogen-doped carbon dots used for label-free detection of Cu2+/Fe3+ and cell imaging. Anal Chim Acta 2014; 809: 128-33.
[http://dx.doi.org/10.1016/j.aca.2013.10.046] [PMID: 24418143]
[200]
Tadesse A, Hagos M, RamaDevi D, Basavaiah K, Belachew N. Fluorescent-nitrogen-doped carbon quantum dots derived from citrus lemon juice: green synthesis, mercury(II) ion sensing, and live cell imaging. ACS Omega 2020; 5(8): 3889-98.
[http://dx.doi.org/10.1021/acsomega.9b03175] [PMID: 32149215]
[201]
Walia S, Shukla AK, Sharma C, Acharya A. Engineered bright blueand red-emitting carbon dots facilitate synchronous imaging and inhibition of bacterial and cancer cell progression via 1O2-mediated DNA damage under photoirradiation. ACS Biomater Sci Eng 2019; 5(4): 1987-2000.
[http://dx.doi.org/10.1021/acsbiomaterials.9b00149] [PMID: 33405519]
[202]
Jia J, Lu W, Li L, et al. Orange-emitting N-doped carbon dots as fluorescent and colorimetric dual-mode probes for nitrite detection and cellular imaging. J Mater Chem B Mater Biol Med 2020; 8(10): 2123-7.
[http://dx.doi.org/10.1039/C9TB02934F] [PMID: 32073103]
[203]
Hu Y, Ji W, Qiao J, Li H, Zhang Y, Luo J. Simple and sensitive multi-components detection using synthetic nitrogen-doped carbon dots based on soluble starch. J Fluoresc 2021; 31(5): 1379-92.
[http://dx.doi.org/10.1007/s10895-021-02764-7] [PMID: 34156612]
[204]
Zou WS, Kong WL, Zhao QC, et al. A composite consisting of bromine-doped carbon dots and ferric ions as a fluorescent probe for determination and intracellular imaging of phosphate. Mikrochim Acta 2019; 186(8): 576.
[http://dx.doi.org/10.1007/s00604-019-3700-6] [PMID: 31346739]
[205]
Sun Z, Zhou W, Luo J, et al. High-efficient and pH-sensitive orange luminescence from silicon-doped carbon dots for information encryption and bio-imaging. J Colloid Interface Sci 2022; 607(Pt 1): 16-23.
[http://dx.doi.org/10.1016/j.jcis.2021.08.188] [PMID: 34492349]
[206]
Yue L, Li H, Liu Q, et al. Manganese-doped carbon quantum dots for fluorometric and magnetic resonance (dual mode) bioimaging and biosensing. Mikrochim Acta 2019; 186(5): 315.
[http://dx.doi.org/10.1007/s00604-019-3407-8] [PMID: 31041599]
[207]
Mohandoss S, Palanisamy S, Priya VV, et al. Excitation-dependent multiple luminescence emission of nitrogen and sulfur co-doped carbon dots for cysteine sensing, bioimaging, and photoluminescent ink applications. Microchem J 2021; 167: 106280.
[http://dx.doi.org/10.1016/j.microc.2021.106280]
[208]
Zhang H, Gao Y, Jiao Y, Lu W, Shuang S, Dong C. Highly sensitive fluorescent carbon dots probe with ratiometric emission for the determination of ClO−. Analyst (Lond) 2020; 145(6): 2212-8.
[http://dx.doi.org/10.1039/C9AN02570G] [PMID: 32091508]
[209]
Saini D, Kaushik J, Garg AK, Dalal C, Sonkar SK. N, S-codoped carbon dots for nontoxic cell imaging and as a sunlight-active photo-catalytic material for the removal of chromium. ACS Appl Bio Mater 2020; 3(6): 3656-63.
[http://dx.doi.org/10.1021/acsabm.0c00296] [PMID: 35025236]
[210]
Ding C, Deng Z, Chen J, Jin Y. One-step microwave synthesis of N,S co-doped carbon dots from 1,6-hexanediamine dihydrochloride for cell imaging and ion detection. Colloids Surf B Biointerfaces 2020; 189: 110838.
[http://dx.doi.org/10.1016/j.colsurfb.2020.110838] [PMID: 32028131]
[211]
Shen J, Zhang T, Cai Y, Chen X, Shang S, Li J. Highly fluorescent N,S-co-doped carbon dots: synthesis and multiple applications. New J Chem 2017; 41(19): 11125-37.
[http://dx.doi.org/10.1039/C7NJ00505A]
[212]
Pathak A, Pv S, Stanley J, Satheesh Babu TG. Multicolor emitting N/S-doped carbon dots as a fluorescent probe for imaging pathogenic bacteria and human buccal epithelial cells. Mikrochim Acta 2019; 186: 1-10.
[213]
Chen Y, Wu Y, Weng B, Wang B, Li C. Facile synthesis of nitrogen and sulfur co-doped carbon dots and application for Fe(III) ions detection and cell imaging. Sens Actuators B Chem 2016; 223: 689-96.
[http://dx.doi.org/10.1016/j.snb.2015.09.081]
[214]
Lu W, Gong X, Nan M, Liu Y, Shuang S, Dong C. Comparative study for N and S doped carbon dots: Synthesis, characterization and applications for Fe3+ probe and cellular imaging. Anal Chim Acta 2015; 898: 116-27.
[http://dx.doi.org/10.1016/j.aca.2015.09.050] [PMID: 26526917]
[215]
Wang Y, Zhuang Q, Ni Y. Facile microwave-assisted solid-phase synthesis of highly fluorescent nitrogen-sulfur-codoped carbon quantum dots for cellular imaging applications. Chemistry 2015; 21(37): 13004-11.
[http://dx.doi.org/10.1002/chem.201501723] [PMID: 26227302]
[216]
Sun Y, Shen C, Wang J, Lu Y. Facile synthesis of biocompatible N, S-doped carbon dots for cell imaging and ion detecting. RSC Advances 2015; 5(21): 16368-75.
[http://dx.doi.org/10.1039/C4RA13820A]
[217]
Tu Y, Wang S, Yuan X, et al. Facile hydrothermal synthesis of nitrogen, phosphorus-doped fluorescent carbon dots for live/dead bacterial differentiation, cell imaging and two nitrophenols detection. Dyes Pigments 2021; 184: 108761.
[http://dx.doi.org/10.1016/j.dyepig.2020.108761]
[218]
Jiao Y, Meng Y, Lu W, et al. Design of long-wavelength emission carbon dots for hypochlorous detection and cellular imaging. Talanta 2020; 219: 121170.
[http://dx.doi.org/10.1016/j.talanta.2020.121170] [PMID: 32887093]
[219]
Bajpai VK, Khan I, Shukla S, et al. N,P-doped carbon nanodots for food-matrix decontamination, anticancer potential, and cellular bio-imaging applications. J Biomed Nanotechnol 2020; 16(3): 283-303.
[http://dx.doi.org/10.1166/jbn.2020.2899] [PMID: 32493540]
[220]
Wang H, Zhang L, Guo X, et al. Comparative study of Cl,N-Cdots and N-Cdots and application for trinitrophenol and ClO− sensor and cell-imaging. Anal Chim Acta 2019; 1091: 76-87.
[http://dx.doi.org/10.1016/j.aca.2019.09.019] [PMID: 31679577]
[221]
Li J, Tang K, Yu J, Wang H, Tu M, Wang X. Nitrogen and chlorine co-doped carbon dots as probe for sensing and imaging in biological samples. R Soc Open Sci 2019; 6(1): 181557.
[http://dx.doi.org/10.1098/rsos.181557] [PMID: 30800391]
[222]
Bouzas-Ramos D, Cigales Canga J, Mayo JC, et al. Carbon quantum dots codoped with nitrogen and lanthanides for multimodal imaging. Adv Funct Mater 2019; 29(38): 1903884.
[http://dx.doi.org/10.1002/adfm.201903884]
[223]
Mohandoss S, Khanal HD, Palanisamy S, You S, Shim JJ, Lee YR. Multiple heteroatom-doped photoluminescent carbon dots for rati-ometric detection of Hg2+ ions in cell imaging and environmental applications. Anal Methods 2022; 14(6): 635-42.
[http://dx.doi.org/10.1039/D1AY02077C] [PMID: 35080218]
[224]
Mu Z, Hua J, Yang Y. N, S, I co-doped carbon dots for folic acid and temperature sensing and applied to cellular imaging. Spectrochim Acta A Mol Biomol Spectrosc 2020; 224: 117444.
[225]
Zhu P, Gan Y, Lin K, et al. Dual-response detection of oxidized glutathione, ascorbic acid, and cell imaging based on ph/redox dual-sensitive fluorescent carbon dots. ACS Omega 2020; 5(9): 4482-9.
[http://dx.doi.org/10.1021/acsomega.9b03730] [PMID: 32175495]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy