Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

In silico Exploration of the Potential Inhibitory Activity of Novel Compounds Against Candida albicans N-myristoyltransferase

Author(s): Afzal Hussain* and Chandan Kumar Verma

Volume 21, Issue 3, 2024

Published on: 05 December, 2022

Page: [575 - 589] Pages: 15

DOI: 10.2174/1570180820666221027091852

Price: $65

conference banner
Abstract

Background: Candida albicans is a fungal species associated with opportunistic fungal infectious agents in human populations, especially in immunocompromised patients, such as transplant patients, HIV-positive patients, chemotherapy patients, and low-birth-weight newborns. The death rate for systemic Candida illnesses ranges from 29 to 76 percent. Only a few medications are available to treat them, such as amphotericin B, fluconazole, terbinafine, and caspofungin, which have adverse reactions and are harmful.

Objective: The goal of this research is to apply specialized bioinformatics approaches, such as molecular docking, scaffold hopping, virtual screening, pharmacophore modeling, and molecular dynamics (MD) simulation, to discover possibly novel and potent therapeutic drug candidates against Candida albicans in a shorter period and at a low cost.

Methods: MDPI, MayBridge, Hitfinder, Mcule library, SQLite Database, DrugBank, ZINC, and NCI database were used to perform pharmacophore modeling, scaffold hopping, virtual screening, docking, and ADMET characteristics study against NMT. The molecular dynamics simulations for the best ten docked protein-ligand complexes were examined to determine the stability of protein-ligand interactions during a 200 ns simulation period, demonstrating their potential for lead molecule production via more improvement and experimental verification.

Results: We have identified that compounds DB01940 ((3R,4R)-3-(4-hydroxybenzamido)azepan-4-yl 4- (2-hydroxybenzoyl)benzoate), DB01772 (3-(3-{[(2S)-2,3-dihydroxypropyl]amino}phenyl)-4-(5-fluoro-1- methyl-1H-indol-3-yl)-2,5-dihydro-1H-pyrrole-2,5-dione), and NCI5485 (1,3-bis((7-chloro-4- quinolinyl)amino)-2-propanol) could be more promising Candida albicans NMT inhibitors.

Conclusion: In conclusion, these compounds have the potential to be effective anti-NMT medicines. The results demonstrated that our computational technique found some potential and effective NMT inhibitors that may be tested in clinical trials.

Keywords: Candida albicans, NMT, biofilm, microbial pathogens, scaffold hopping, pharmacophore modeling, molecular dynamics.

[1]
Brown, G.D.; Denning, D.W.; Gow, N.A.R.; Levitz, S.M.; Netea, M.G.; White, T.C. Hidden killers: Human fungal infections. Sci. Transl. Med., 2012, 4(165), 165rv13.
[http://dx.doi.org/10.1126/scitranslmed.3004404] [PMID: 23253612]
[2]
Brown, G.D.; Denning, D.W.; Levitz, S.M. Tackling human fungal infections. Science, 2012, 336(6082), 647.
[http://dx.doi.org/10.1126/science.1222236] [PMID: 22582229]
[3]
Pfaller, M.A.; Diekema, D.J. Epidemiology of invasive candidiasis: A persistent public health problem. Clin. Microbiol. Rev., 2007, 20(1), 133-163.
[http://dx.doi.org/10.1128/CMR.00029-06] [PMID: 17223626]
[4]
Roemer, T.; Krysan, D.J. Antifungal drug development: Challenges, unmet clinical needs, and new approaches. Cold Spring Harb. Perspect. Med., 2014, 4(5), a019703.
[http://dx.doi.org/10.1101/cshperspect.a019703] [PMID: 24789878]
[5]
Perlroth, J.; Choi, B.; Spellberg, B. Nosocomial fungal infections: Epidemiology, diagnosis, and treatment. Med. Mycol., 2007, 45(4), 321-346.
[http://dx.doi.org/10.1080/13693780701218689] [PMID: 17510856]
[6]
Rueping, M.J.G.T.; Vehreschild, J.J.; Cornely, O.A. Invasive candidiasis and candidemia: From current opinions to future perspectives. Expert Opin. Investig. Drugs, 2009, 18(6), 735-748.
[http://dx.doi.org/10.1517/13543780902911440] [PMID: 19426121]
[7]
Jacobsen, I.D.; Wilson, D.; Wächtler, B.; Brunke, S.; Naglik, J.R.; Hube, B. Candida albicans dimorphism as a therapeutic target. Expert Rev. Anti Infect. Ther., 2012, 10(1), 85-93.
[http://dx.doi.org/10.1586/eri.11.152] [PMID: 22149617]
[8]
Pappas, P.G.; Kauffman, C.A.; Andes, D.; Benjamin, D.K., Jr; Calandra, T.F.; Edwards, J.E., Jr; Filler, S.G.; Fisher, J.F.; Kullberg, B.J.; Zeichner, L.O.; Reboli, A.C.; Rex, J.H.; Walsh, T.J.; Sobe, J.D. Clinical practice guidelines for the management of candidiasis: 2009 update by the Infectious Diseases Society of America. Clin. Infect. Dis., 2009, 48(5), 503-535.
[http://dx.doi.org/10.1086/596757] [PMID: 19191635]
[9]
Pfaller, M.A.; Diekema, D.J.; Jones, R.N.; Sader, H.S.; Fluit, A.C.; Hollis, R.J.; Messer, S.A. International surveillance of bloodstream infections due to Candida species: Frequency of occurrence and in vitro susceptibilities to fluconazole, ravuconazole, and voriconazole of isolates collected from 1997 through 1999 in the SENTRY antimicrobial surveillance program. J. Clin. Microbiol., 2001, 39(9), 3254-3259.
[http://dx.doi.org/10.1128/JCM.39.9.3254-3259.2001] [PMID: 11526159]
[10]
Sheehan, D.J.; Hitchcock, C.A.; Sibley, C.M. Current and emerging azole antifungal agents. Clin. Microbiol. Rev., 1999, 12(1), 40-79.
[http://dx.doi.org/10.1128/CMR.12.1.40] [PMID: 9880474]
[11]
Schiaffella, F.; Macchiarulo, A.; Milanese, L.; Vecchiarelli, A.; Costantino, G.; Pietrella, D.; Fringuelli, R. Design, synthesis, and microbiological evaluation of new Candida albicans CYP51 inhibitors. J. Med. Chem., 2005, 48(24), 7658-7666.
[http://dx.doi.org/10.1021/jm050685j] [PMID: 16302806]
[12]
Shapiro, R.S.; Robbins, N.; Cowen, L.E. Regulatory circuitry governing fungal development, drug resistance, and disease. Microbiol. Mol. Biol. Rev., 2011, 75(2), 213-267.
[http://dx.doi.org/10.1128/MMBR.00045-10] [PMID: 21646428]
[13]
Wiegand, R.C.; Carr, C.; Minnerly, J.C.; Pauley, A.M.; Carron, C.P.; Langner, C.A.; Duronio, R.J.; Gordon, J.I. The Candida albicans myristoyl-CoA:Protein N-myristoyltransferase gene. Isolation and expression in Saccharomyces cerevisiae and Escherichia coli. J. Biol. Chem., 1992, 267(12), 8591-8598.
[http://dx.doi.org/10.1016/S0021-9258(18)42484-2] [PMID: 1569105]
[14]
Fazly, A.; Jain, C.; Dehner, A.C.; Issi, L.; Lilly, E.A.; Ali, A.; Cao, H.; Fidel, P.L., Jr; Rao, R.P.; Kaufman, P.D. Chemical screening identifies filastatin, a small molecule inhibitor of Candida albicans adhesion, morphogenesis, and pathogenesis. Proc. Natl. Acad. Sci. USA, 2013, 110(33), 13594-13599.
[http://dx.doi.org/10.1073/pnas.1305982110] [PMID: 23904484]
[15]
Garcia, C.; Burgain, A.; Chaillot, J.; Pic, É.; Khemiri, I.; Sellam, A. A phenotypic small-molecule screen identifies halogenated salicylanilides as inhibitors of fungal morphogenesis, biofilm formation and host cell invasion. Sci. Rep., 2018, 8(1), 11559.
[http://dx.doi.org/10.1038/s41598-018-29973-8] [PMID: 30068935]
[16]
Siwek, A. Stefańska, J.; Dzitko, K.; Ruszczak, A. Antifungal effect of 4-arylthiosemicarbazides against Candida species. Search for molecular basis of antifungal activity of thiosemicarbazide derivatives. J. Mol. Model., 2012, 18(9), 4159-4170.
[http://dx.doi.org/10.1007/s00894-012-1420-5] [PMID: 22535361]
[17]
Perfect, J.R. The antifungal pipeline: A reality check. Nat. Rev. Drug Discov., 2017, 16(9), 603-616.
[http://dx.doi.org/10.1038/nrd.2017.46] [PMID: 28496146]
[18]
Gauwerky, K.; Borelli, C.; Korting, H.C. Targeting virulence: A new paradigm for antifungals. Drug Discov. Today, 2009, 14(3-4), 214-222.
[http://dx.doi.org/10.1016/j.drudis.2008.11.013] [PMID: 19152839]
[19]
Groll, A.H.; De Lucca, A.J.; Walsh, T.J. Emerging targets for the development of novel antifungal therapeutics. Trends Microbiol., 1998, 6(3), 117-124.
[http://dx.doi.org/10.1016/S0966-842X(97)01206-7] [PMID: 9582938]
[20]
Hussain, A.; Verma, C.K. Computational drug repurposing resources and approaches for discovering novel antifungal drugs against Candida albicans N-myristoyl transferase. J. Pure Appl. Microbiol., 2021, 15(2), 556-579.
[http://dx.doi.org/10.22207/JPAM.15.2.49]
[21]
Sogabe, S.; Masubuchi, M.; Sakata, K.; Fukami, T.A.; Morikami, K.; Shiratori, Y.; Ebiike, H.; Kawasaki, K.; Aoki, Y.; Shimma, N.; D’Arcy, A.; Winkler, F.K.; Banner, D.W.; Ohtsuka, T. Crystal structures of Candida albicans N-myristoyltransferase with two distinct inhibitors. Chem. Biol., 2002, 9(10), 1119-1128.
[http://dx.doi.org/10.1016/S1074-5521(02)00240-5] [PMID: 12401496]
[22]
LigPrep; Schrödinger., LLC: New York, NY, 2017. Available from https://www.schrodinger.com/products/ligprep
[23]
Dixon, S.L.; Smondyrev, A.M.; Rao, S.N. PHASE: A novel approach to pharmacophore modeling and 3D database searching. Chem. Biol. Drug Des., 2006, 67(5), 370-372.
[http://dx.doi.org/10.1111/j.1747-0285.2006.00384.x] [PMID: 16784462]
[24]
Hussain, A.; Verma, C.K. Ligand- and structure-based pharmacophore modeling, docking study reveals 2-[[4-[6-(isopropylamino) pyrimidin-4-yl]-1H-pyrrolo[2,3-b] pyridin-6-yl] amino] ethanol as a potential anticancer agent of CDK9/cyclin T1 kinase. J. Cancer Res. Ther., 2019, 15(5), 1131-1140.
[http://dx.doi.org/10.4103/jcrt.JCRT_47_18] [PMID: 31603123]
[25]
Hussain, A.; Verma, C.K. A combination of pharmacophore modeling, molecular docking and virtual screening study reveals 3, 5, 7-trihydroxy-2-(3, 4, 5- trihydroxyphenyl)-4H-chromen-4-one as a potential anti-cancer agent of COT kinase. Ind. J. Pharm. Educ. Res., 2018, 52(4), 699-706.
[http://dx.doi.org/10.5530/ijper.52.4.81]
[26]
Li, S-Y.; Cheng, X-C.; Ding, T-T.; Liu, Y-Y.; Zhang, L-M.; Shi, JR.; Xu, W-R. Exploring dual agonists for PPARα/γ receptors using pharmacophore modeling, docking analysis and molecule dynamics simulation. Comb. Chem. High Throughput Screen., 2022, 25(9), 1450-1461.
[http://dx.doi.org/10.2174/1386207324666210628114216] [PMID: 34182904]
[27]
Dixon, S.L.; Smondyrev, A.M.; Knoll, E.H.; Rao, S.N.; Shaw, D.E.; Friesner, R.A. PHASE: A new engine for pharmacophore perception, 3D QSAR model development, and 3D database screening: 1. Methodology and preliminary results. J. Comput. Aided Mol. Des., 2006, 20(10-11), 647-671.
[http://dx.doi.org/10.1007/s10822-006-9087-6] [PMID: 17124629]
[28]
Nada, H.; Lee, K.; Gotina, L.; Pae, A.N.; Elkamhawy, A. Identification of novel discoidin domain receptor 1 (DDR1) inhibitors using E-pharmacophore modeling, structure-based virtual screening, molecular dynamics simulation and MM-GBSA approaches. Comput. Biol. Med., 2022, 142, 105217.
[http://dx.doi.org/10.1016/j.compbiomed.2022.105217] [PMID: 35032738]
[29]
Böhm, H.J.; Flohr, A.; Stahl, M. Scaffold hopping. Drug Discov. Today. Technol., 2004, 1(3), 217-224.
[http://dx.doi.org/10.1016/j.ddtec.2004.10.009] [PMID: 24981488]
[30]
Chen, M.; Li, Z.; Shao, X.; Maienfisch, P. Scaffold-hopping approach to identify new chemotypes of dimpropyridaz. J. Agric. Food Chem., 2022, 70(36), 11109-11122.
[http://dx.doi.org/10.1021/acs.jafc.2c00636] [PMID: 35412307]
[31]
Manual, G.U., Glide5. 5. 2009. Available from, https://www.g.com/en/DE/service/downloads.html
[32]
Hussain, A.; Verma, C.K.; Chouhan, U. Identification of novel inhibitors against Cyclin Dependent Kinase 9/Cyclin T1 complex as: Anti cancer agent. Saudi J. Biol. Sci., 2017, 24(6), 1229-1242.
[http://dx.doi.org/10.1016/j.sjbs.2015.10.003] [PMID: 28855816]
[33]
Hussain, A.; Verma, C.K. Molecular docking and in silico ADMET study reveals 3-(5- {[4-(aminomethyl) piperidin-1-yl] methyl}-1h-indol-2-yl)-1h-indazole-6-carbonitrile as a potential inhibitor of cancer Osaka thyroid kinase. Biomed. Res. (Aligarh), 2017, 28(13), 5805-5815.
[34]
Li, Y.; Liu, S.; Wang, J.; Rui, X.; Tian, H.; Li, C.; Guo, C. in silico studies of piperidine derivatives as protein kinase B inhibitors through 3D-QSAR, molecular docking and molecular dynamics simulation. Lett. Drug Des. Discov., 2022, 19(7), 591-605.
[http://dx.doi.org/10.2174/1570180818666211207105516]
[35]
da Silva Lima, C.H.; de Araujo Vanelis Soares, J.C.; de Sousa Ribeiro, J.L.; Muri, E.M.F.; de Albuquerque, S.; Dias, L.R.S. Anti-Trypanosoma cruzi activity and molecular docking studies of 1H-pyrazolo [3, 4-b] pyridine derivatives. Lett. Drug Des. Discov., 2020, 17(2), 184-191.
[http://dx.doi.org/10.2174/1570180816666190305141733]
[36]
QikProp; Schrödinger., LLC: New York, NY, 2019 Available from https://www.schrodinger.com/products/qikprop
[37]
Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.E.; Berendsen, H.J.C. GROMACS: Fast, flexible, and free. J. Comput. Chem., 2005, 26(16), 1701-1718.
[http://dx.doi.org/10.1002/jcc.20291] [PMID: 16211538]
[38]
Mollica, A.; Zengin, G.; Durdagi, S.; Ekhteiari Salmas, R.; Macedonio, G.; Stefanucci, A.; Dimmito, M.P.; Novellino, E. Combinatorial peptide library screening for discovery of diverse α-glucosidase inhibitors using molecular dynamics simulations and binary QSAR models. J. Biomol. Struct. Dyn., 2019, 37(3), 726-740.
[http://dx.doi.org/10.1080/07391102.2018.1439403] [PMID: 29421954]
[39]
Ozkat, G.Y.; Yildiz, I. in silico studies to develop new GSK3β inhibitors effective in the Alzheimer’s disease. Lett. Drug Des. Discov., 2022, 19(8), 691-705.
[http://dx.doi.org/10.2174/1570180819666220210100813]
[40]
Ansari, W.A.; Ahamad, T.; Khan, M.A.; Khan, Z.A.; Khan, M.F. Exploration of luteolin as potential anti-COVID-19 agent: Molecular docking, molecular dynamic simulation, ADMET and DFT analysis. Lett. Drug Des. Discov., 2022, 19(8), 741-756.
[http://dx.doi.org/10.2174/1570180819666211222151725]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy