Research Article

新型水杨醛二胺衍生物对人宫颈癌细胞ROS介导的遗传毒性和凋亡

卷 30, 期 33, 2023

发表于: 27 December, 2022

页: [3815 - 3829] 页: 15

弟呕挨: 10.2174/0929867330666221026162452

价格: $65

conference banner
摘要

背景:宫颈癌是女性中最常见的癌症之一。因此,癌症研究正在进行一种新的化疗药物,对癌细胞的作用更大,对正常人类健康细胞的副作用更小。以HeLa、DU-145、PC3、DLD-1、ECC、HT-29和PNT1-A为对照,研究了目前研究的新型配体L2b作为水杨醛二胺的还原衍生物。 目标:由于L2b具有抗增殖能力,本研究旨在观察L2b对HeLa细胞的凋亡、细胞毒性和基因毒性活性。 方法:为此,MTT法用于筛选细胞毒性作用,comet法用于寻找DNA损伤或遗传毒性水平,ELISA和DNA片段法用于测定细胞凋亡,AO/EB染色法用于检测活细胞、凋亡细胞和坏死细胞的比例。为了揭示氧化状态,OSI通过总氧化剂和抗氧化状态比率进行评估。采用FRAP法计算铁还原抗氧化能力,采用总硫醇法和谷胱甘肽法测定HeLa细胞的抗氧化值。 结果:在这个结果中,我们发现了L2b对HeLa细胞的巨大影响,特别是在提高ROS速率,破坏其DNA和引起一系列导致凋亡的反应方面。 结论:综上所述,这些数据预测了哪个配体L2b能够促进体外宫颈癌细胞株的凋亡。需要进一步的癌症研究来揭示配体L2b在HeLa细胞系中的凋亡途径及其体内抗癌药物效力。

关键词: 细胞凋亡,宫颈癌,化疗,细胞毒性,DNA损伤,配体L2b,氧化应激,水杨醛二胺。

« Previous
[1]
Baken, L.A.; Koutsky, L.A.; Kuypers, J.; Kosorok, M.R.; Lee, S.K.; Kiviat, N.B.; Holmes, K.K. Genital human papillomavirus infection among male and female sex partners: Prevalence and type-specific concordance. J. Infect. Dis., 1995, 171(2), 429-432.
[http://dx.doi.org/10.1093/infdis/171.2.429] [PMID: 7844382]
[2]
Gökçe, Ö.; Yılmaz, A.; Gürbüz, V.; Konaç, E.; Ekmekçi, A. Apoptotic effect of vinorelbine on human cervical cancer HeLa cells. J. Dev. Med, 2011, 25, 5-14.
[3]
Waggoner, S.E.; Darcy, K.M.; Tian, C.; Lanciano, R. Smoking behavior in women with locally advanced cervical carcinoma: A Gynecologic Oncology Group study. Am. J. Obstet. Gynecol., 2010, 202(3), 283.e1.
[http://dx.doi.org/10.1016/j.ajog.2009.10.884] [PMID: 20044066]
[4]
Loft, A.; Berthelsen, A.K.; Roed, H.; Ottosen, C.; Lundvall, L.; Knudsen, J.; Nedergaard, L.; Højgaard, L.; Engelholm, S.A. The diagnostic value of PET/CT scanning in patients with cervical cancer: A prospective study. Gynecol. Oncol., 2007, 106(1), 29-34.
[http://dx.doi.org/10.1016/j.ygyno.2007.03.027] [PMID: 17482666]
[5]
Huang, H.C.; Chang, J.H.; Tung, S.F.; Wu, R.T.; Foegh, M.L.; Chu, S.H. Immunosuppressive effect of emodin, a free radical generator. Eur. J. Pharmacol., 1992, 211(3), 359-364.
[http://dx.doi.org/10.1016/0014-2999(92)90393-I] [PMID: 1535596]
[6]
Koivusalo, R.; Hietanen, S. The cytotoxicity of chemotherapy drugs varies in cervical cancer cells depending on the p53 status. Cancer Biol. Ther., 2004, 3(11), 1177-1183.
[http://dx.doi.org/10.4161/cbt.3.11.1340] [PMID: 15640620]
[7]
Fujimoto, J. Novel strategy of anti-angiogenic therapy for uterine cervical carcinomas. Anticancer Res., 2009, 29(7), 2665-2669.
[PMID: 19596943]
[8]
Tülüce, Y.; Lak, P.T.A.; Koyuncu, İ.; Kılıç, A.; Durgun, M.; Özkol, H. The apoptotic, cytotoxic and genotoxic effect of novel binuclear boron-fluoride complex on endometrial cancer. Biometals, 2017, 30(6), 933-944.
[http://dx.doi.org/10.1007/s10534-017-0060-8] [PMID: 29052084]
[9]
Tülüce, Y.; Ahmed, B.A.; Koyuncu, İ.; Durgun, M. The cytotoxic, apoptotic and oxidative effects of carbonic anhydrase IX inhibitor on colorectal cancer cells. J. Bioenerg. Biomembr., 2018, 50(2), 107-116.
[http://dx.doi.org/10.1007/s10863-018-9749-9] [PMID: 29520697]
[10]
Perez, R.P. Cellular and molecular determinants of cisplatin resistance. Eur. J. Cancer, 1998, 34(10), 1535-1542.
[http://dx.doi.org/10.1016/S0959-8049(98)00227-5] [PMID: 9893624]
[11]
Wang, X.D.; Gu, L.Q.; Wu, J.Y. Apoptosis-inducing activity of new pyrazole emodin derivatives in human hepatocellular carcinoma HepG2 cells. Biol. Pharm. Bull., 2007, 30(6), 1113-1116.
[http://dx.doi.org/10.1248/bpb.30.1113] [PMID: 17541163]
[12]
Kilic, A.; Ozbahceci, O.; Durgun, M.; Aydemir, M. Different hemi-salen/salan ligand containing binuclear boron-fluoride complexes: Synthesis, spectroscopy, fluorescence properties, and catalysis. Polycycl. Aromat. Compd., 2019, 39(3), 248-265.
[http://dx.doi.org/10.1080/10406638.2017.1314973]
[13]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]
[14]
Singh, N.P.; McCoy, M.T.; Tice, R.R.; Schneider, E.L. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res., 1988, 175(1), 184-191.
[http://dx.doi.org/10.1016/0014-4827(88)90265-0] [PMID: 3345800]
[15]
Tice, R.R.; Strauss, G.H. The single cell gel electrophoresis/comet assay: A potential tool for detecting radiation-induced DNA damage in humans. Stem Cells, 1995, 13(Suppl. 1), 207-214.
[PMID: 7488947]
[16]
Dikilitas, M.; Kocyigit, A. Assessment of computerized and manual analysis of slides processed in single cell gel electrophoresis assay. Fresenius Environ. Bull., 2012, 21, 2981-2987.
[17]
Olive, P.L. DNA damage and repair in individual cells: Applications of the comet assay in radiobiology. Int. J. Radiat. Biol., 1999, 75(4), 395-405.
[http://dx.doi.org/10.1080/095530099140311] [PMID: 10331844]
[18]
Collins, A.R. The comet assay for DNA damage and repair: Principles, applications, and limitations. Mol. Biotechnol., 2004, 26(3), 249-261.
[http://dx.doi.org/10.1385/MB:26:3:249] [PMID: 15004294]
[19]
Canady, J.; Arndt, S.; Karrer, S.; Bosserhoff, A.K. Increased KGF expression promotes fibroblast activation in a double paracrine manner resulting in cutaneous fibrosis. J. Invest. Dermatol., 2013, 133(3), 647-657.
[http://dx.doi.org/10.1038/jid.2012.389] [PMID: 23096718]
[20]
Mallavadhani, U.V.; Vanga, N.R.; Jeengar, M.K.; Naidu, V.G.M. Synthesis of novel ring-A fused hybrids of oleanolic acid with capabilities to arrest cell cycle and induce apoptosis in breast cancer cells. Eur. J. Med. Chem., 2014, 74, 398-404.
[http://dx.doi.org/10.1016/j.ejmech.2013.12.040] [PMID: 24487188]
[21]
Darzynkiewicz, Z. Differential Staining of DNA and RNA in Intact Cells and Isolated Cell Nuclei with Acridine Orange. In: Methods in Cell Biology. Vol.33. Flow Cytometry; Darzynkiewicz, Z.; Crissman, H.A., Eds.; Academic Press: New York, N.Y., 1990; pp. 285-298.
[http://dx.doi.org/10.1016/S0091-679X(08)60532-4]
[22]
Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem., 1996, 239(1), 70-76.
[http://dx.doi.org/10.1006/abio.1996.0292] [PMID: 8660627]
[23]
Jiménez-Escrig, A.; Jiménez-Jiménez, I.; Pulido, R.; Saura-Calixto, F. Antioxidant activity of fresh and processed edible seaweeds. J. Sci. Food Agric., 2001, 81(5), 530-534.
[http://dx.doi.org/10.1002/jsfa.842]
[24]
Vandeputte, C.; Guizon, I.; Genestie-Denis, I.; Vannier, B.; Lorenzon, G. A microtiter plate assay for total glutathione and glutathione disulfide contents in cultured/isolated cells: Performance study of a new miniaturized protocol. Cell Biol. Toxicol., 1994, 10(5-6), 415-421.
[http://dx.doi.org/10.1007/BF00755791] [PMID: 7697505]
[25]
Dai, J.; Weinberg, R.S.; Waxman, S.; Jing, Y. Malignant cells can be sensitized to undergo growth inhibition and apoptosis by arsenic trioxide through modulation of the glutathione redox system. Blood, 1999, 93(1), 268-277.
[http://dx.doi.org/10.1182/blood.V93.1.268] [PMID: 9864170]
[26]
Schoell, W.M.J.; Janicek, M.F.; Mirhashemi, R. Epidemiology and biology of cervical cancer. Semin. Surg. Oncol., 1999, 16(3), 203-211.
[http://dx.doi.org/10.1002/(SICI)1098-2388(199904/05)16:3<203::AID-SSU2>3.0.CO;2-C] [PMID: 10225296]
[27]
Bertram, J.S. The molecular biology of cancer. Mol. Aspects Med., 2000, 21(6), 167-223.
[http://dx.doi.org/10.1016/S0098-2997(00)00007-8] [PMID: 11173079]
[28]
Patel, S.; Gheewala, N.; Suthar, A.; Shah, A. In-vitro cytotoxicity activity of Solanum nigrum extract against Hela cell line and Vero cell line. Int. J. Pharm. Pharm. Sci., 2009, 1, 38-46.
[29]
Jeyaraj, M.; Rajesh, M.; Arun, R.; MubarakAli, D.; Sathishkumar, G.; Sivanandhan, G.; Dev, G.K.; Manickavasagam, M.; Premkumar, K.; Thajuddin, N.; Ganapathi, A. An investigation on the cytotoxicity and caspase-mediated apoptotic effect of biologically synthesized silver nanoparticles using Podophyllum hexandrum on human cervical carcinoma cells. Colloids Surf. B Biointerfaces, 2013, 102, 708-717.
[http://dx.doi.org/10.1016/j.colsurfb.2012.09.042] [PMID: 23117153]
[30]
Palizban, A.A.; Sadeghi-Aliabadi, H.; Abdollahpour, F. Effect of cerium lanthanide on Hela and MCF-7 cancer cell growth in the presence of transferring. Res. Pharm. Sci., 2010, 5(2), 119-125.
[PMID: 21589800]
[31]
Peng, Y.; Guo, C.; Yang, Y.; Li, F.; Zhang, Y.; Jiang, B.; Li, Q. Baicalein induces apoptosis of human cervical cancer HeLa cells in vitro. Mol. Med. Rep., 2015, 11(3), 2129-2134.
[http://dx.doi.org/10.3892/mmr.2014.2885] [PMID: 25373554]
[32]
Fisher, D.E. Apoptosis in cancer therapy: Crossing the threshold. Cell, 1994, 78(4), 539-542.
[http://dx.doi.org/10.1016/0092-8674(94)90518-5] [PMID: 8069905]
[33]
Xie, C.L.; Pan, Y.B.; Hu, L.Q.; Qian, Y.N. Propofol attenuates hydrogenperoxide-induced apoptosis in human umbilical vein endothelial cells via multiple signaling pathways. Korean J. Anesthesiol., 2015, 68(5), 488-495.
[http://dx.doi.org/10.4097/kjae.2015.68.5.488] [PMID: 26495060]
[34]
Hideg, É.; Jansen, M.A.K.; Strid, Å. UV-B exposure, ROS, and stress: Inseparable companions or loosely linked associates? Trends Plant Sci., 2013, 18(2), 107-115.
[http://dx.doi.org/10.1016/j.tplants.2012.09.003] [PMID: 23084465]
[35]
Pelicano, H.; Carney, D.; Huang, P. ROS stress in cancer cells and therapeutic implications. Drug Resist. Updat., 2004, 7(2), 97-110.
[http://dx.doi.org/10.1016/j.drup.2004.01.004] [PMID: 15158766]
[36]
Li, Z.; Yang, Y.; Ming, M.; Liu, B. Mitochondrial ROS generation for regulation of autophagic pathways in cancer. Biochem. Biophys. Res. Commun., 2011, 414(1), 5-8.
[http://dx.doi.org/10.1016/j.bbrc.2011.09.046] [PMID: 21951851]
[37]
Tiloke, C.; Phulukdaree, A.; Chuturgoon, A.A. The antiproliferative effect of Moringa oleifera crude aqueous leaf extract on cancerous human alveolar epithelial cells. BMC Complement. Altern. Med., 2013, 13(1), 226.
[http://dx.doi.org/10.1186/1472-6882-13-226] [PMID: 24041017]
[38]
Ott, M.; Gogvadze, V.; Orrenius, S.; Zhivotovsky, B. Mitochondria, oxidative stress and cell death. Apoptosis, 2007, 12(5), 913-922.
[http://dx.doi.org/10.1007/s10495-007-0756-2] [PMID: 17453160]
[39]
Ueda, S.; Masutani, H.; Nakamura, H.; Tanaka, T.; Ueno, M.; Yodoi, J. Redox control of cell death. Antioxid. Redox Signal., 2002, 4(3), 405-414.
[http://dx.doi.org/10.1089/15230860260196209] [PMID: 12215208]
[40]
Arora, S.; Jain, J.; Rajwade, J.M.; Paknikar, K.M. Cellular responses induced by silver nanoparticles: In vitro studies. Toxicol. Lett., 2008, 179(2), 93-100.
[http://dx.doi.org/10.1016/j.toxlet.2008.04.009] [PMID: 18508209]
[41]
Pan, X.; Zhao, Y.Q.; Hu, F.Y.; Chi, C.F.; Wang, B. Anticancer activity of a hexapeptide from Skate (Raja porosa) cartilage protein hydrolysate in HeLa cells. Mar. Drugs, 2016, 14(8), 153.
[http://dx.doi.org/10.3390/md14080153] [PMID: 27537897]
[42]
Prokhorova, E.A.; Zamaraev, A.V.; Kopeina, G.S.; Zhivotovsky, B.; Lavrik, I.N. Role of the nucleus in apoptosis: Signaling and execution. Cell. Mol. Life Sci., 2015, 72(23), 4593-4612.
[http://dx.doi.org/10.1007/s00018-015-2031-y] [PMID: 26346492]
[43]
Khan, M.; Maryam, A.; Qazi, J.I.; Ma, T. Targeting apoptosis and multiple signaling pathways with icariside II in cancer cells. Int. J. Biol. Sci., 2015, 11(9), 1100-1112.
[http://dx.doi.org/10.7150/ijbs.11595] [PMID: 26221076]
[44]
Tuluce, Y.; Gorgisen, G.; Gulacar, I.M.; Koyuncu, I.; Durgun, M.; Akocak, S.; Ozkol, H.; Kaya, Z. Antiproliferative and apoptotic role of novel synthesized Cu(II) Complex with 3-(3-(4-fluorophenyl)Triaz-1-en-1-yl) benzenesulfonamide in common cancer models. Anticancer Res., 2018, 38(9), 5115-5120.
[http://dx.doi.org/10.21873/anticanres.12832] [PMID: 30194157]
[45]
Tülüce, Y.; Masseh, H.D.I.; Koyuncu, İ.; Kiliç, A.; Durgun, M.; Özkol, H. Novel fluorine boron hybrid complex as potential antiproliferative drugs on colorectal cancer cell line. Anticancer. Agents Med. Chem., 2019, 19(5), 627-637.
[http://dx.doi.org/10.2174/1871520619666190117142353] [PMID: 30652651]
[46]
Koyuncu, I.; Tülüce, Y.; Slahaddin Qadir, H.; Durgun, M.; Supuran, C.T. Evaluation of the anticancer potential of a sulphonamide carbonic anhydrase IX inhibitor on cervical cancer cells. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 703-711.
[http://dx.doi.org/10.1080/14756366.2019.1579805] [PMID: 30810431]
[47]
Tülüce, Y.; Hussein, A.I.; Koyuncu, İ.; Kiliç, A.; Durgun, M. The effect of a bis-structured Schiff base on apoptosis, cytotoxicity, and DNA damage of breast cancer cells. J. Biochem. Mol. Toxicol., 2022, 2022, e23148.
[http://dx.doi.org/10.1002/jbt.23148] [PMID: 35719061]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy