Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Flavonoids for the Treatment of Breast Cancer, Present Status and Future Prospective

Author(s): Sonali Sahoo, Priyanka Mohapatra and Sanjeeb Kumar Sahoo*

Volume 23, Issue 6, 2023

Published on: 03 November, 2022

Page: [658 - 675] Pages: 18

DOI: 10.2174/1871520623666221024114521

Price: $65

Abstract

Breast Cancer is one of the most notorious cancer affecting women globally. Current therapies available for breast cancer treatment have certain limited efficacy; develop drug resistance and severe adverse effects. Thus, identifying novel therapies for treatment will reduce the devastating effect on cancer survivors. The exhilarating and fastgrowing studies on flavonoids have evidenced that it has the potential to inflect various antitumor activity and modulate various signal transduction pathways in carcinogenesis. Flavonoids also have been found to regulate cellular metabolism and oxidative stress, cell cycle progression, angiogenesis and metastasis, ultimately preventing the progression of the diseases. As per the reports, a flavonoid-rich diet appears to be the most potent and promising approach to abate the risk of cancer. Thus, now a day, these are the prime target for drug discovery research. Based on existing findings, it can be concluded that beyond the currently employed chemotherapeutics, natural products (like flavonoids) exhibit pleiotropic, multi-target activities and are budding as possible complementary chemopreventive molecules against breast cancer with fewer side effects than conventional therapy. In this review, we comprehensively highlight an outline of the multiple pleiotropic pharmacological effects of various major classes of flavonoids on breast cancer with their specific mechanisms underlying its anticancer effect.

Keywords: Breast cancer, flavonoids, apoptosis, tumor microenvironment, metastasis, cell cycle progression.

Graphical Abstract
[1]
Ghoncheh, M.; Pournamdar, Z.; Salehiniya, H. Incidence and mortality and epidemiology of breast cancer in the world. Asian Pac. J. Cancer Prev., 2016, 17(sup 3), 43-46.
[http://dx.doi.org/10.7314/APJCP.2016.17.S3.43] [PMID: 27165206]
[2]
Bhattacharyya, G.S.; Doval, D.C.; Desai, C.J.; Chaturvedi, H.; Sharma, S.; Somashekhar, S.P. Overview of breast cancer and implications of overtreatment of early-stage breast cancer: An Indian perspective. JCO Glob. Oncol., 2020, 6(6), 789-798.
[http://dx.doi.org/10.1200/GO.20.00033] [PMID: 32511068]
[3]
Dai, X.; Li, T.; Bai, Z.; Yang, Y.; Liu, X.; Zhan, J.; Shi, B. Breast cancer intrinsic subtype classification, clinical use and future trends. Am. J. Cancer Res., 2015, 5(10), 2929-2943.
[PMID: 26693050]
[4]
Eliyatkin, N. Yalçın, E.; Zengel, B.; Aktaş; S.; Vardar, E. Molecular classification of breast carcinoma: From traditional, old-fashioned way to a new age, and a new way. J. Breast Health, 2015, 11(2), 59-66.
[http://dx.doi.org/10.5152/tjbh.2015.1669] [PMID: 28331693]
[5]
Harbeck, N.; Penault-Llorca, F.; Cortes, J.; Gnant, M.; Houssami, N.; Poortmans, P.; Ruddy, K.; Tsang, J.; Cardoso, F. Breast cancer. Nat. Rev. Dis. Primers, 2019, 5(1), 66.
[http://dx.doi.org/10.1038/s41572-019-0111-2] [PMID: 31548545]
[6]
Ashraf, M.A. Phytochemicals as potential anticancer drugs: Time to ponder nature’s bounty. BioMed Res. Int., 2020, 2020, 1-7.
[http://dx.doi.org/10.1155/2020/8602879] [PMID: 32076618]
[7]
Choudhari, A.S.; Mandave, P.C.; Deshpande, M.; Ranjekar, P.; Prakash, O. Phytochemicals in cancer treatment: From preclinical studies to clinical practice. Front. Pharmacol., 2020, 10, 1614.
[http://dx.doi.org/10.3389/fphar.2019.01614] [PMID: 32116665]
[8]
Wang, T.Y.; Li, Q.; Bi, K.S. Bioactive flavonoids in medicinal plants: Structure, activity and biological fate. Asian J. Pharm. Sci., 2018, 13(1), 12-23.
[9]
Kopustinskiene, D.M.; Jakstas, V.; Savickas, A.; Bernatoniene, J. Flavonoids as anticancer agents. Nutrients, 2020, 12(2), 457.
[http://dx.doi.org/10.3390/nu12020457] [PMID: 32059369]
[10]
Widowati, W.; Jasaputra, D.K.; Heriady, Y.; Faried, A.; Rizal, R.; Widodo, W.S.; Benowo Wibowo, S.H.; W., Kusuma H.S.; Girsang, E.; Ehrich Lister, I.N. Dietary flavonoids against various breast cancer subtypes: A molecular docking study. Sci. Asia, 2019, 45(5), 452.
[http://dx.doi.org/10.2306/scienceasia1513-1874.2019.45.452]
[11]
Tiwari, P.; Mishra, K.P. Flavonoids sensitize tumor cells to radiation: Molecular mechanisms and relevance to cancer radiotherapy. Int. J. Radiat. Biol., 2020, 96(3), 360-369.
[http://dx.doi.org/10.1080/09553002.2020.1694193] [PMID: 31738629]
[12]
Dandawate, P.R.; Subramaniam, D.; Jensen, R.A.; Anant, S. Targeting cancer stem cells and signaling pathways by phytochemicals: Novel approach for breast cancer therapy. Semin. Cancer Biol., 2016, 40-41, 192-208.
[http://dx.doi.org/10.1016/j.semcancer.2016.09.001] [PMID: 27609747]
[13]
Ginestier, C.; Hur, M.H.; Charafe-Jauffret, E.; Monville, F.; Dutcher, J.; Brown, M.; Jacquemier, J.; Viens, P.; Kleer, C.G.; Liu, S.; Schott, A.; Hayes, D.; Birnbaum, D.; Wicha, M.S.; Dontu, G. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell, 2007, 1(5), 555-567.
[http://dx.doi.org/10.1016/j.stem.2007.08.014] [PMID: 18371393]
[14]
Sak, K.; Everaus, H. Role of flavonoids in future anticancer therapy by eliminating the cancer stem cells. Curr. Stem Cell Res. Ther., 2015, 10(3), 271-282.
[http://dx.doi.org/10.2174/1574888X10666141126122316] [PMID: 25429700]
[15]
Selvakumar, P.; Badgeley, A.; Murphy, P.; Anwar, H.; Sharma, U.; Lawrence, K.; Lakshmikuttyamma, A. Flavonoids and other polyphenols act as epigenetic modifiers in breast cancer. Nutrients, 2020, 12(3), 761.
[http://dx.doi.org/10.3390/nu12030761] [PMID: 32183060]
[16]
Martinez-Perez, C.; Ward, C.; Cook, G.; Mullen, P.; McPhail, D.; Harrison, D.J.; Langdon, S.P. Novel flavonoids as anti-cancer agents: Mechanisms of action and promise for their potential application in breast cancer. Biochem. Soc. Trans., 2014, 42(4), 1017-1023.
[http://dx.doi.org/10.1042/BST20140073] [PMID: 25109996]
[17]
Ávila-Gálvez, M.Á.; Giménez-Bastida, J.A.; Espín, J.C.; González-Sarrías, A. Dietary phenolics against breast cancer. A critical evidence-based review and future perspectives. Int. J. Mol. Sci., 2020, 21(16), 5718.
[http://dx.doi.org/10.3390/ijms21165718] [PMID: 32784973]
[18]
Sevim Beyza Gürler, Y.K.; Baran, Y. Flavonoids in cancer therapy: Current and future trends.In: Biodiversity and Biomedicine; Academic Press, 2020, pp. 403-440.
[19]
Nde, C.; Zingue, S.; Winter, E.; Creczynski-Pasa, T.; Michel, T.; Fernandez, X.; Njamen, D.; Clyne, C. Flavonoids, breast cancer chemopreventive and/or chemotherapeutic agents. Curr. Med. Chem., 2015, 22(30), 3434-3446.
[http://dx.doi.org/10.2174/0929867322666150729115321]
[20]
George, V.C.; Dellaire, G.; Rupasinghe, H.P.V. Plant flavonoids in cancer chemoprevention: Role in genome stability. J. Nutr. Biochem., 2017, 45, 1-14.
[http://dx.doi.org/10.1016/j.jnutbio.2016.11.007] [PMID: 27951449]
[21]
Li, G.; Ding, K.; Qiao, Y.; Zhang, L.; Zheng, L.; Pan, T.; Zhang, L. Flavonoids regulate inflammation and oxidative stress in cancer. Molecules, 2020, 25(23), 5628.
[http://dx.doi.org/10.3390/molecules25235628] [PMID: 33265939]
[22]
Zhou, Y.; Shu, F.; Liang, X.; Chang, H.; Shi, L.; Peng, X.; Zhu, J.; Mi, M. Ampelopsin induces cell growth inhibition and apoptosis in breast cancer cells through ROS generation and endoplasmic reticulum stress pathway. PLoS One, 2014, 9(2), e89021.
[http://dx.doi.org/10.1371/journal.pone.0089021] [PMID: 24551210]
[23]
Vrhovac Madunić, I.; Madunić, J.; Antunović, M.; Paradžik, M.; Garaj-Vrhovac, V.; Breljak, D.; Marijanović, I.; Gajski, G. Apigenin, a dietary flavonoid, induces apoptosis, DNA damage, and oxidative stress in human breast cancer MCF-7 and MDA MB-231 cells. Naunyn Schmiedebergs Arch. Pharmacol., 2018, 391(5), 537-550.
[http://dx.doi.org/10.1007/s00210-018-1486-4] [PMID: 29541820]
[24]
Periyasamy, K.; Baskaran, K.; Ilakkia, A.; Vanitha, K.; Selvaraj, S.; Sakthisekaran, D. Antitumor efficacy of tangeretin by targeting the oxidative stress mediated on 7,12-dimethylbenz(a) anthracene-induced proliferative breast cancer in Sprague-Dawley rats. Cancer Chemother. Pharmacol., 2015, 75(2), 263-272.
[http://dx.doi.org/10.1007/s00280-014-2629-z] [PMID: 25431347]
[25]
Martínez-Pérez, C.; Ward, C.; Turnbull, A.K.; Mullen, P.; Cook, G.; Meehan, J.; Jarman, E.J.; Thomson, P.I.T.; Campbell, C.J.; McPhail, D.; Harrison, D.J.; Langdon, S.P. Antitumour activity of the novel flavonoid Oncamex in preclinical breast cancer models. Br. J. Cancer, 2016, 114(8), 905-916.
[http://dx.doi.org/10.1038/bjc.2016.6] [PMID: 27031849]
[26]
Tseng, T.H.; Chien, M.H.; Lin, W.L.; Wen, Y.C.; Chow, J.M.; Chen, C.K.; Kuo, T.C.; Lee, W.J. Inhibition of MDA-MB-231 breast cancer cell proliferation and tumor growth by apigenin through induction of G2/M arrest and histone H3 acetylation-mediated p21 WAF1/CIP1 expression. Environ. Toxicol., 2017, 32(2), 434-444.
[http://dx.doi.org/10.1002/tox.22247] [PMID: 26872304]
[27]
Fang, Y.; Zhang, Q.; Wang, X.; Yang, X.; Wang, X.; Huang, Z.; Jiao, Y.; Wang, J. Quantitative phosphoproteomics reveals genistein as a modulator of cell cycle and DNA damage response pathways in triple-negative breast cancer cells. Int. J. Oncol., 2016, 48(3), 1016-1028.
[http://dx.doi.org/10.3892/ijo.2016.3327] [PMID: 26783066]
[28]
Seo, H.S.; Ku, J.M.; Choi, H.S.; Choi, Y.K.; Woo, J.K.; Kim, M.; Kim, I.; Na, C.H.; Hur, H.; Jang, B.H.; Shin, Y.C.; Ko, S.G. Quercetin induces caspase-dependent extrinsic apoptosis through inhibition of signal transducer and activator of transcription 3 signaling in HER2-overexpressing BT-474 breast cancer cells. Oncol. Rep., 2016, 36(1), 31-42.
[http://dx.doi.org/10.3892/or.2016.4786] [PMID: 27175602]
[29]
Cook, M.; Liang, Y.; Besch-Williford, C.; Hyder, S. Luteolin inhibits lung metastasis, cell migration, and viability of triple-negative breast cancer cells. Breast Cancer (Dove Med. Press), 2016, 9, 9-19.
[http://dx.doi.org/10.2147/BCTT.S124860] [PMID: 28096694]
[30]
Guo, G.; Zhang, W.; Dang, M.; Yan, M.; Chen, Z. Fisetin induces apoptosis in breast cancer MDA‐MB‐453 cells through degradation of HER2/neu and via the PI3K/Akt pathway. J. Biochem. Mol. Toxicol., 2019, 33(4), e22268.
[http://dx.doi.org/10.1002/jbt.22268] [PMID: 30431692]
[31]
Palit, S.; Kar, S.; Sharma, G.; Das, P.K. Hesperetin Induces Apoptosis in Breast Carcinoma by Triggering Accumulation of ROS and Activation of ASK1/JNK Pathway. J. Cell. Physiol., 2015, 230(8), 1729-1739.
[http://dx.doi.org/10.1002/jcp.24818] [PMID: 25204891]
[32]
Cook, M.T. Mechanism of metastasis suppression by luteolin in breast cancer. Breast Cancer (Dove Med. Press), 2018, 10, 89-100.
[http://dx.doi.org/10.2147/BCTT.S144202] [PMID: 29928143]
[33]
Ci, Y.; Qiao, J.; Han, M. Molecular mechanisms and metabolomics of natural polyphenols interfering with breast cancer metastasis. Molecules, 2016, 21(12), 1634.
[http://dx.doi.org/10.3390/molecules21121634] [PMID: 27999314]
[34]
Wu, H.T.; Lin, J.; Liu, Y.E.; Chen, H.F.; Hsu, K.W.; Lin, S.H.; Peng, K.Y.; Lin, K.J.; Hsieh, C.C.; Chen, D.R. Luteolin suppresses androgen receptor-positive triple-negative breast cancer cell proliferation and metastasis by epigenetic regulation of MMP9 expression via the AKT/mTOR signaling pathway. Phytomedicine, 2021, 81, 153437.
[http://dx.doi.org/10.1016/j.phymed.2020.153437] [PMID: 33352494]
[35]
Si, L.; Fu, J.; Liu, W.; Hayashi, T.; Nie, Y.; Mizuno, K.; Hattori, S.; Fujisaki, H.; Onodera, S.; Ikejima, T. Silibinin inhibits migration and invasion of breast cancer MDA-MB-231 cells through induction of mitochondrial fusion. Mol. Cell. Biochem., 2020, 463(1-2), 189-201.
[http://dx.doi.org/10.1007/s11010-019-03640-6] [PMID: 31612353]
[36]
Ci, Y.; Zhang, Y.; Liu, Y.; Lu, S.; Cao, J.; Li, H.; Zhang, J.; Huang, Z.; Zhu, X.; Gao, J.; Han, M. Myricetin suppresses breast cancer metastasis through down-regulating the activity of matrix metalloproteinase (MMP)-2/9. Phytother. Res., 2018, 32(7), 1373-1381.
[http://dx.doi.org/10.1002/ptr.6071] [PMID: 29532526]
[37]
Mirossay, L.; Varinská, L.; Mojžiš, J. Antiangiogenic effect of flavonoids and chalcones: An update. Int. J. Mol. Sci., 2017, 19(1), 27.
[http://dx.doi.org/10.3390/ijms19010027] [PMID: 29271940]
[38]
Cerezo, A.B.; Winterbone, M.S.; Moyle, C.W.A.; Needs, P.W.; Kroon, P.A. Molecular structure‐function relationship of dietary polyphenols for inhibiting VEGF‐induced VEGFR‐2 activity. Mol. Nutr. Food Res., 2015, 59(11), 2119-2131.
[http://dx.doi.org/10.1002/mnfr.201500407] [PMID: 26250940]
[39]
Park, J.J.; Hwang, S.J.; Park, J.H.; Lee, H.J. Chlorogenic acid inhibits hypoxia-induced angiogenesis via down-regulation of the HIF-1α/AKT pathway. Cell Oncol. (Dordr.), 2015, 38(2), 111-118.
[http://dx.doi.org/10.1007/s13402-014-0216-2] [PMID: 25561311]
[40]
Shanmugam, M.K.; Warrier, S.; Kumar, A.P.; Sethi, G.; Arfuso, F. Potential Role of Natural Compounds as Anti-Angiogenic Agents in Cancer. Curr. Vasc. Pharmacol., 2017, 15(6), 503-519.
[PMID: 28707601]
[41]
Subbaraj, G.K.; Kumar, Y.S.; Kulanthaivel, L. Antiangiogenic role of natural flavonoids and their molecular mechanism: An update. Egypt. J. Intern. Med., 2021, 33(1), 29.
[http://dx.doi.org/10.1186/s43162-021-00056-x]
[42]
Zhou, Z.; Mao, W.; Li, Y.; Qi, C.; He, Y. Myricetin inhibits breast tumor growth and angiogenesis by regulating VEGF/VEGFR2 and p38MAPK signaling pathways. Anat. Rec. (Hoboken), 2019, 302(12), 2186-2192.
[http://dx.doi.org/10.1002/ar.24222] [PMID: 31266091]
[43]
Zhao, X.; Wang, Q.; Yang, S.; Chen, C.; Li, X.; Liu, J.; Zou, Z.; Cai, D. Quercetin inhibits angiogenesis by targeting calcineurin in the xenograft model of human breast cancer. Eur. J. Pharmacol., 2016, 781, 60-68.
[http://dx.doi.org/10.1016/j.ejphar.2016.03.063] [PMID: 27041643]
[44]
Zhao, K.; Yao, Y.; Luo, X.; Lin, B.; Huang, Y.; Zhou, Y.; Li, Z.; Guo, Q.; Lu, N. LYG-202 inhibits activation of endothelial cells and angiogenesis through CXCL12/CXCR7 pathway in breast cancer. Carcinogenesis, 2018, 39(4), 588-600.
[http://dx.doi.org/10.1093/carcin/bgy007] [PMID: 29390073]
[45]
Kumar, A.; Jaitak, V. Natural products as multidrug resistance modulators in cancer. Eur. J. Med. Chem., 2019, 176, 268-291.
[http://dx.doi.org/10.1016/j.ejmech.2019.05.027] [PMID: 31103904]
[46]
Liskova, A.; Samec, M.; Koklesova, L.; Brockmueller, A.; Zhai, K.; Abdellatif, B.; Siddiqui, M.; Biringer, K.; Kudela, E.; Pec, M.; Gadanec, L.K.; Šudomová, M.; Hassan, S.T.S.; Zulli, A.; Shakibaei, M.; Giordano, F.A.; Büsselberg, D.; Golubnitschaja, O.; Kubatka, P. Flavonoids as an effective sensitizer for anti-cancer therapy: Insights into multi-faceted mechanisms and applicability towards individualized patient profiles. EPMA J., 2021, 12(2), 155-176.
[http://dx.doi.org/10.1007/s13167-021-00242-5] [PMID: 34025826]
[47]
Robey, R.W.; Pluchino, K.M.; Hall, M.D.; Fojo, A.T.; Bates, S.E.; Gottesman, M.M. Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat. Rev. Cancer, 2018, 18(7), 452-464.
[http://dx.doi.org/10.1038/s41568-018-0005-8] [PMID: 29643473]
[48]
Ye, Q.; Liu, K.; Shen, Q.; Li, Q.; Hao, J.; Han, F.; Jiang, R.W. Reversal of multidrug resistance in cancer by multi-functional flavonoids. Front. Oncol., 2019, 9, 487.
[http://dx.doi.org/10.3389/fonc.2019.00487] [PMID: 31245292]
[49]
Lee, W.R.; Shen, S.C.; Lin, H.Y.; Hou, W.C.; Yang, L.L.; Chen, Y.C. Wogonin and fisetin induce apoptosis in human promyeloleukemic cells, accompanied by a decrease of reactive oxygen species, and activation of caspase 3 and Ca2+-dependent endonuclease. Biochem. Pharmacol., 2002, 63(2), 225-236.
[http://dx.doi.org/10.1016/S0006-2952(01)00876-0] [PMID: 11841797]
[50]
Le Marchand, L.; Murphy, S.P.; Hankin, J.H.; Wilkens, L.R.; Kolonel, L.N. Intake of flavonoids and lung cancer. J. Natl. Cancer Inst., 2000, 92(2), 154-160.
[http://dx.doi.org/10.1093/jnci/92.2.154] [PMID: 10639518]
[51]
Fotsis, T.; Pepper, M.S.; Aktas, E.; Breit, S.; Rasku, S.; Adlercreutz, H.; Wähälä, K.; Montesano, R.; Schweigerer, L. Flavonoids, dietary-derived inhibitors of cell proliferation and in vitro angiogenesis. Cancer Res., 1997, 57(14), 2916-2921.
[PMID: 9230201]
[52]
Kikuchi, H.; Yuan, B.; Hu, X.; Okazaki, M. Chemopreventive and anticancer activity of flavonoids and its possibility for clinical use by combining with conventional chemotherapeutic agents. Am. J. Cancer Res., 2019, 9(8), 1517-1535.
[PMID: 31497340]
[53]
Bansal, T.; Jaggi, M.; Khar, R.K.; Talegaonkar, S. Emerging significance of flavonoids as P-glycoprotein inhibitors in cancer chemotherapy. J. Pharm. Pharm. Sci., 2009, 12(1), 46-78.
[54]
Zhang, E.; Liu, J.; Shi, L.; Guo, X.; Liang, Z.; Zuo, J.; Xu, H.; Wang, H.; Shu, X.; Huang, S.; Zhang, S.; Kang, X.; Zhen, Y. 7-O-geranylquercetin contributes to reverse P-gp-mediated adriamycin resistance in breast cancer. Life Sci., 2019, 238, 116938.
[http://dx.doi.org/10.1016/j.lfs.2019.116938] [PMID: 31593704]
[55]
Qian, J.; Xia, M.; Liu, W.; Li, L.; Yang, J.; Mei, Y.; Meng, Q.; Xie, Y. Glabridin resensitizes p-glycoprotein-overexpressing multidrug-resistant cancer cells to conventional chemotherapeutic agents. Eur. J. Pharmacol., 2019, 852, 231-243.
[http://dx.doi.org/10.1016/j.ejphar.2019.04.002] [PMID: 30959046]
[56]
Iki, S.; Urabe, A. Prevention and treatment of the side effects of cancer chemotherapy. Gan To Kagaku Ryoho, 2000, 27(11), 1635-1640.
[PMID: 11057312]
[57]
Songbo, M.; Lang, H.; Xinyong, C.; Bin, X.; Ping, Z.; Liang, S. Oxidative stress injury in doxorubicin-induced cardiotoxicity. Toxicol. Lett., 2019, 307, 41-48.
[http://dx.doi.org/10.1016/j.toxlet.2019.02.013] [PMID: 30817977]
[58]
Burns, C.V.; Edwin, S.B.; Szpunar, S.; Forman, J. Cisplatininduced nephrotoxicity in an outpatient setting. Pharmacotherapy, 2021, 41(2), 184-190.
[http://dx.doi.org/10.1002/phar.2500] [PMID: 33417725]
[59]
Della Latta, V.; Cecchettini, A.; Del Ry, S.; Morales, M.A. Bleomycin in the setting of lung fibrosis induction: From biological mechanisms to counteractions. Pharmacol. Res., 2015, 97, 122-130.
[http://dx.doi.org/10.1016/j.phrs.2015.04.012] [PMID: 25959210]
[60]
Zitvogel, L.; Apetoh, L.; Ghiringhelli, F.; Kroemer, G. Immunological aspects of cancer chemotherapy. Nat. Rev. Immunol., 2008, 8(1), 59-73.
[http://dx.doi.org/10.1038/nri2216] [PMID: 18097448]
[61]
Taguchi, T. Side effects of cancer chemotherapy and steps to deal with them. Gan To Kagaku Ryoho, 1995, 22(14), 2017-2028.
[PMID: 8607610]
[62]
Johnstone, R.W.; Ruefli, A.A.; Lowe, S.W. Apoptosis. Cell, 2002, 108(2), 153-164.
[http://dx.doi.org/10.1016/S0092-8674(02)00625-6] [PMID: 11832206]
[63]
Liu, Y.Q.; Wang, X.L.; He, D.H.; Cheng, Y.X. Protection against chemotherapy- and radiotherapy-induced side effects: A review based on the mechanisms and therapeutic opportunities of phytochemicals. Phytomedicine, 2021, 80, 153402.
[http://dx.doi.org/10.1016/j.phymed.2020.153402] [PMID: 33203590]
[64]
Amawi, H.; Ashby, C.R., Jr; Tiwari, A.K. Cancer chemoprevention through dietary flavonoids: What’s limiting? Chin. J. Cancer, 2017, 36(1), 50.
[http://dx.doi.org/10.1186/s40880-017-0217-4] [PMID: 28629389]
[65]
Torre, M.; Dey, A.; Woods, J.K.; Feany, M.B. Elevated oxidative stress and DNA damage in cortical neurons of chemotherapy patients. J. Neuropathol. Exp. Neurol., 2021, 80(7), 705-712.
[http://dx.doi.org/10.1093/jnen/nlab074] [PMID: 34363676]
[66]
Tonetti, M.; Giovine, M.; Gasparini, A.; Benatti, U.; De Flora, A. Enhanced formation of reactive species from cis-diammine-(1,1-cyclobutanedicarboxylato)- platinum(II) (carboplatin) in the presence of oxygen free radicals. Biochem. Pharmacol., 1993, 46(8), 1377-1383.
[http://dx.doi.org/10.1016/0006-2952(93)90102-3] [PMID: 8240386]
[67]
Un, H.; Ugan, R.A.; Gurbuz, M.A.; Bayir, Y.; Kahramanlar, A.; Kaya, G.; Cadirci, E.; Halici, Z. Phloretin and phloridzin guard against cisplatin-induced nephrotoxicity in mice through inhibiting oxidative stress and inflammation. Life Sci., 2021, 266, 118869.
[http://dx.doi.org/10.1016/j.lfs.2020.118869] [PMID: 33309722]
[68]
Bhagat, A.; Kleinerman, E.S. Anthracycline-induced cardiotoxicity: Causes, mechanisms, and prevention. Adv. Exp. Med. Biol., 2020, 1257, 181-192.
[http://dx.doi.org/10.1007/978-3-030-43032-0_15] [PMID: 32483740]
[69]
Carozzi, V.A.; Marmiroli, P.; Cavaletti, G. The role of oxidative stress and anti-oxidant treatment in platinum-induced peripheral neurotoxicity. Curr. Cancer Drug Targets, 2010, 10(7), 670-682.
[http://dx.doi.org/10.2174/156800910793605820] [PMID: 20578989]
[70]
Dias, M.C.; Pinto, D.C.G.A.; Silva, A.M.S. Plant flavonoids: Chemical characteristics and biological activity. Molecules, 2021, 26(17), 5377.
[http://dx.doi.org/10.3390/molecules26175377] [PMID: 34500810]
[71]
Pietta, P.G. Flavonoids as antioxidants. J. Nat. Prod., 2000, 63(7), 1035-1042.
[http://dx.doi.org/10.1021/np9904509] [PMID: 10924197]
[72]
Vyas, D.; Laput, G.; Vyas, A. Chemotherapy-enhanced inflammation may lead to the failure of therapy and metastasis. OncoTargets Ther., 2014, 7, 1015-1023.
[http://dx.doi.org/10.2147/OTT.S60114] [PMID: 24959088]
[73]
Trofenciuc, N.M.; Bordejevic, A.D.; Tomescu, M.C.; Petrescu, L.; Crisan, S.; Geavlete, O.; Mischie, A.; Onel, A.F.M.; Sasu, A.; Pop-Moldovan, A.L. Toll-like receptor 4 (TLR4) expression is correlated with T2* iron deposition in response to doxorubicin treatment: cardiotoxicity risk assessment. Sci. Rep., 2020, 10(1), 17013.
[http://dx.doi.org/10.1038/s41598-020-73946-9] [PMID: 33046755]
[74]
Zhang, W.B.; Lai, X.; Guo, X.F. Activation of Nrf2 by miR-152 inhibits doxorubicin-induced cardiotoxicity via attenuation of oxidative stress, inflammation, and apoptosis. Oxid. Med. Cell. Longev., 2021, 2021, 1-14.
[http://dx.doi.org/10.1155/2021/8860883] [PMID: 33574984]
[75]
Mills, P.J.; Parker, B.; Dimsdale, J.E.; Sadler, G.R.; Ancoli-Israel, S. The relationship between fatigue and quality of life and inflammation during anthracycline-based chemotherapy in breast cancer. Biol. Psychol., 2005, 69(1), 85-96.
[http://dx.doi.org/10.1016/j.biopsycho.2004.11.007] [PMID: 15740827]
[76]
Maleki, S.J.; Crespo, J.F.; Cabanillas, B. Anti-inflammatory effects of flavonoids. Food Chem., 2019, 299, 125124.
[http://dx.doi.org/10.1016/j.foodchem.2019.125124] [PMID: 31288163]
[77]
Goldstein, M.; Kastan, M.B. The DNA damage response: Implications for tumor responses to radiation and chemotherapy. Annu. Rev. Med., 2015, 66(1), 129-143.
[http://dx.doi.org/10.1146/annurev-med-081313-121208] [PMID: 25423595]
[78]
Hurley, L.H. DNA and its associated processes as targets for cancer therapy. Nat. Rev. Cancer, 2002, 2(3), 188-200.
[http://dx.doi.org/10.1038/nrc749] [PMID: 11990855]
[79]
Zhang, W.; Gou, P.; Dupret, J.M.; Chomienne, C.; Rodrigues-Lima, F. Etoposide, an anticancer drug involved in therapy-related secondary leukemia: Enzymes at play. Transl. Oncol., 2021, 14(10), 101169.
[http://dx.doi.org/10.1016/j.tranon.2021.101169] [PMID: 34243013]
[80]
Gonzalez, M.J.; Schemmel, R.A.; Gray, J.I.; Dugan, L., Jr; Sheffield, L.G., Jr; Welsch, C.W. Effect of dietary fat on growth of MCF-7 and MDA-MB231 human breast carcinomas in athymic nude mice: relationship between carcinoma growth and lipid peroxidation product levels. Carcinogenesis, 1991, 12(7), 1231-1235.
[http://dx.doi.org/10.1093/carcin/12.7.1231] [PMID: 2070488]
[81]
Yahfoufi, N.; Alsadi, N.; Jambi, M.; Matar, C. The immunomodulatory and anti-inflammatory role of polyphenols. Nutrients, 2018, 10(11), 1618.
[http://dx.doi.org/10.3390/nu10111618] [PMID: 30400131]
[82]
Hosseinzade, A.; Sadeghi, O.; Naghdipour Biregani, A.; Soukhtehzari, S.; Brandt, G.S.; Esmaillzadeh, A. Immunomodulatory effects of flavonoids: Possible induction of T CD4+ regulatory cells through suppression of mTOR pathway signaling activity. Front. Immunol., 2019, 10, 51.
[http://dx.doi.org/10.3389/fimmu.2019.00051] [PMID: 30766532]
[83]
Markowitz, J.; Wesolowski, R.; Papenfuss, T.; Brooks, T.R.; Carson, W.E., III Myeloid-derived suppressor cells in breast cancer. Breast Cancer Res. Treat., 2013, 140(1), 13-21.
[http://dx.doi.org/10.1007/s10549-013-2618-7] [PMID: 23828498]
[84]
Xu, P.; Yan, F.; Zhao, Y.; Chen, X.; Sun, S.; Wang, Y.; Ying, L. Green tea polyphenol EGCG attenuates MDSCs-mediated immunosuppression through canonical and non-canonical pathways in a 4T1 murine breast cancer model. Nutrients, 2020, 12(4), 1042.
[http://dx.doi.org/10.3390/nu12041042] [PMID: 32290071]
[85]
Forghani, P.; Khorramizadeh, M.R.; Waller, E.K. Silibinin inhibits accumulation of myeloid‐derived suppressor cells and tumor growth of murine breast cancer. Cancer Med., 2014, 3(2), 215-224.
[http://dx.doi.org/10.1002/cam4.186] [PMID: 24574320]
[86]
Williams, R.J.; Spencer, J.P.E.; Rice-Evans, C. Flavonoids: Antioxidants or signalling molecules? Free Radic. Biol. Med., 2004, 36(7), 838-849.
[http://dx.doi.org/10.1016/j.freeradbiomed.2004.01.001] [PMID: 15019969]
[87]
Kim, G.Y.; Suh, J.; Jang, J.H.; Kim, D.H.; Park, O.J.; Park, S.K.; Surh, Y.J. Genistein inhibits proliferation of BRCA1 mutated breast cancer cells: The GPR30-Akt axis as a potential target. J. Cancer Prev., 2019, 24(4), 197-207.
[http://dx.doi.org/10.15430/JCP.2019.24.4.197] [PMID: 31950019]
[88]
Spencer, J.P.E. The interactions of flavonoids within neuronal signalling pathways. Genes Nutr., 2007, 2(3), 257-273.
[http://dx.doi.org/10.1007/s12263-007-0056-z] [PMID: 18850181]
[89]
Samec, M.; Liskova, A.; Koklesova, L.; Samuel, S.M.; Zhai, K.; Buhrmann, C.; Varghese, E.; Abotaleb, M.; Qaradakhi, T.; Zulli, A.; Kello, M.; Mojzis, J.; Zubor, P.; Kwon, T.K.; Shakibaei, M.; Büsselberg, D.; Sarria, G.R.; Golubnitschaja, O.; Kubatka, P. Flavonoids against the Warburg phenotype-concepts of predictive, preventive and personalised medicine to cut the Gordian knot of cancer cell metabolism. EPMA J., 2020, 11(3), 377-398.
[http://dx.doi.org/10.1007/s13167-020-00217-y] [PMID: 32843908]
[90]
Wang, G.; Wang, J.J.; Guan, R.; Du, L.; Gao, J.; Fu, X.L. Strategies to target glucose metabolism in tumor microenvironment on cancer by flavonoids. Nutr. Cancer, 2017, 69(4), 534-554.
[http://dx.doi.org/10.1080/01635581.2017.1295090] [PMID: 28323500]
[91]
Martel, F.; Guedes, M.; Keating, E. Effect of polyphenols on glucose and lactate transport by breast cancer cells. Breast Cancer Res. Treat., 2016, 157(1), 1-11.
[http://dx.doi.org/10.1007/s10549-016-3794-z] [PMID: 27097608]
[92]
Guo, Y.; Wei, L.; Zhou, Y.; Lu, N.; Tang, X.; Li, Z.; Wang, X. Flavonoid GL-V9 induces apoptosis and inhibits glycolysis of breast cancer via disrupting GSK-3β-modulated mitochondrial binding of HKII. Free Radic. Biol. Med., 2020, 146, 119-129.
[http://dx.doi.org/10.1016/j.freeradbiomed.2019.10.413] [PMID: 31669347]
[93]
Tao, L.; Wei, L.; Liu, Y.; Ding, Y.; Liu, X.; Zhang, X.; Wang, X.; Yao, Y.; Lu, J.; Wang, Q.; Hu, R. Gen-27, a newly synthesized flavonoid, inhibits glycolysis and induces cell apoptosis via suppression of hexokinase II in human breast cancer cells. Biochem. Pharmacol., 2017, 125, 12-25.
[http://dx.doi.org/10.1016/j.bcp.2016.11.001] [PMID: 27818240]
[94]
Nandakumar, N.; Rengarajan, T.; Balamurugan, A.; Balasubramanian, M.P. Modulating effects of hesperidin on key carbohydrate-metabolizing enzymes, lipid profile, and membrane-bound adenosine triphosphatases against 7,12-dimethylbenz(a)anthracene-induced breast carcinogenesis. Hum. Exp. Toxicol., 2014, 33(5), 504-516.
[http://dx.doi.org/10.1177/0960327113485252] [PMID: 23690228]
[95]
Basse, C.; Arock, M. The increasing roles of epigenetics in breast cancer: Implications for pathogenicity, biomarkers, prevention and treatment. Int. J. Cancer, 2015, 137(12), 2785-2794.
[http://dx.doi.org/10.1002/ijc.29347] [PMID: 25410431]
[96]
Fatima, N.; Baqri, S.S.R.; Bhattacharya, A.; Koney, N.K.K.; Husain, K.; Abbas, A.; Ansari, R.A. Role of flavonoids as epigenetic modulators in cancer prevention and therapy. Front. Genet., 2021, 12, 758733.
[http://dx.doi.org/10.3389/fgene.2021.758733] [PMID: 34858475]
[97]
Sheng, J.; Shi, W.; Guo, H.; Long, W.; Wang, Y.; Qi, J.; Liu, J.; Xu, Y. The inhibitory effect of (−)-epigallocatechin-3-gallate on breast cancer progression via reducing SCUBE2 methylation and DNMT activity. Molecules, 2019, 24(16), 2899.
[http://dx.doi.org/10.3390/molecules24162899] [PMID: 31404982]
[98]
Lewis, K.; Jordan, H.; Tollefsbol, T. Effects of SAHA and EGCG on growth potentiation of triple-negative breast cancer cells. Cancers (Basel), 2018, 11(1), 23.
[http://dx.doi.org/10.3390/cancers11010023] [PMID: 30591655]
[99]
Adinew, G.M.; Taka, E.; Mendonca, P.; Messeha, S.S.; Soliman, K.F.A. The anticancer effects of flavonoids through mirnas modulations in triple-negative breast cancer. Nutrients, 2021, 13(4), 1212.
[http://dx.doi.org/10.3390/nu13041212] [PMID: 33916931]
[100]
Mohapatra, P.; Singh, P.; Sahoo, S.K. Phytonanomedicine: A novel avenue to treat recurrent cancer by targeting cancer stem cells. Drug Discov. Today, 2020, 25(8), 1307-1321.
[http://dx.doi.org/10.1016/j.drudis.2020.06.003] [PMID: 32554061]
[101]
Singh, D.; Singh, P.; Pradhan, A.; Srivastava, R.; Sahoo, S.K. Reprogramming cancer stem-like cells with nanoforskolin enhances the efficacy of paclitaxel in targeting breast cancer. ACS Appl. Bio Mater., 2021, 4(4), 3670-3685.
[http://dx.doi.org/10.1021/acsabm.1c00141] [PMID: 35014452]
[102]
Li, X.; Zhou, N.; Wang, J.; Liu, Z.; Wang, X.; Zhang, Q.; Liu, Q.; Gao, L.; Wang, R. Quercetin suppresses breast cancer stem cells (CD44 +/CD24 −) by inhibiting the PI3K/Akt/mTOR-signaling pathway. Life Sci., 2018, 196, 56-62.
[http://dx.doi.org/10.1016/j.lfs.2018.01.014] [PMID: 29355544]
[103]
Li, Y.W.; Xu, J.; Zhu, G.Y.; Huang, Z.J.; Lu, Y.; Li, X.Q.; Wang, N.; Zhang, F.X. Apigenin suppresses the stem cell-like properties of triple-negative breast cancer cells by inhibiting YAP/TAZ activity. Cell Death Discov., 2018, 4(1), 105.
[http://dx.doi.org/10.1038/s41420-018-0124-8] [PMID: 30479839]
[104]
Tan, A.R.; Yang, X.; Berman, A.; Zhai, S.; Sparreboom, A.; Parr, A.L.; Chow, C.; Brahim, J.S.; Steinberg, S.M.; Figg, W.D.; Swain, S.M. Phase I trial of the cyclin-dependent kinase inhibitor flavopiridol in combination with docetaxel in patients with metastatic breast cancer. Clin. Cancer Res., 2004, 10(15), 5038-5047.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-0025] [PMID: 15297405]
[105]
Bible, K.C.; Lensing, J.L.; Nelson, S.A.; Lee, Y.K.; Reid, J.M.; Ames, M.M.; Isham, C.R.; Piens, J.; Rubin, S.L.; Rubin, J.; Kaufmann, S.H.; Atherton, P.J.; Sloan, J.A.; Daiss, M.K.; Adjei, A.A.; Erlichman, C. Phase 1 trial of flavopiridol combined with cisplatin or carboplatin in patients with advanced malignancies with the assessment of pharmacokinetic and pharmacodynamic end points. Clin. Cancer Res., 2005, 11(16), 5935-5941.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-2566] [PMID: 16115936]
[106]
Ruenroengklin, N.; Zhong, J.; Duan, X.; Yang, B.; Li, J.; Jiang, Y. Effects of various temperatures and pH values on the extraction yield of phenolics from litchi fruit pericarp tissue and the antioxidant activity of the extracted anthocyanins. Int. J. Mol. Sci., 2008, 9(7), 1333-1341.
[http://dx.doi.org/10.3390/ijms9071333] [PMID: 19325806]
[107]
Xiao, J.; Ni, X.; Kai, G.; Chen, X. A review on structure-activity relationship of dietary polyphenols inhibiting α-amylase. Crit. Rev. Food Sci. Nutr., 2013, 53(5), 497-506.
[http://dx.doi.org/10.1080/10408398.2010.548108] [PMID: 23391016]
[108]
Xiao, J.; Kai, G.; Yamamoto, K.; Chen, X. Advance in dietary polyphenols as α-glucosidases inhibitors: A review on structure-activity relationship aspect. Crit. Rev. Food Sci. Nutr., 2013, 53(8), 818-836.
[http://dx.doi.org/10.1080/10408398.2011.561379] [PMID: 23768145]
[109]
Miniscalco, A.; Lundahl, J.; Regårdh, C.G.; Edgar, B.; Eriksson, U.G. Inhibition of dihydropyridine metabolism in rat and human liver microsomes by flavonoids found in grapefruit juice. J. Pharmacol. Exp. Ther., 1992, 261(3), 1195-1199.
[PMID: 1602384]
[110]
Schubert, W.; Eriksson, U.; Edgar, B.; Cullberg, G.; Hedner, T. Flavonoids in grapefruit juice inhibit the in vitro hepatic metabolism of 17β-estradiol. Eur. J. Drug Metab. Pharmacokinet., 1995, 20(3), 219-224.
[http://dx.doi.org/10.1007/BF03189673] [PMID: 8751044]
[111]
Morris, M.E.; Zhang, S. Flavonoid-drug interactions: Effects of flavonoids on ABC transporters. Life Sci., 2006, 78(18), 2116-2130.
[http://dx.doi.org/10.1016/j.lfs.2005.12.003] [PMID: 16455109]
[112]
Alvarez, A.I.; Real, R.; Pérez, M.; Mendoza, G.; Prieto, J.G.; Merino, G. Modulation of the activity of ABC transporters (P-glycoprotein, MRP2, BCRP) by flavonoids and drug response. J. Pharm. Sci., 2010, 99(2), 598-617.
[http://dx.doi.org/10.1002/jps.21851] [PMID: 19544374]
[113]
Khan, H.; Ullah, H.; Martorell, M.; Valdes, S.E.; Belwal, T.; Tejada, S.; Sureda, A.; Kamal, M.A. Flavonoids nanoparticles in cancer: Treatment, prevention and clinical prospects. Semin. Cancer Biol., 2021, 69, 200-211.
[http://dx.doi.org/10.1016/j.semcancer.2019.07.023] [PMID: 31374244]
[114]
Lin, W.; Wang, W.; Yang, H.; Wang, D.; Ling, W. Influence of Intestinal Microbiota on the Catabolism of Flavonoids in Mice. J. Food Sci., 2016, 81(12), H3026-H3034.
[http://dx.doi.org/10.1111/1750-3841.13544] [PMID: 27792839]
[115]
Nurmi, T.; Mursu, J.; Heinonen, M.; Nurmi, A.; Hiltunen, R.; Voutilainen, S. Metabolism of berry anthocyanins to phenolic acids in humans. J. Agric. Food Chem., 2009, 57(6), 2274-2281.
[http://dx.doi.org/10.1021/jf8035116] [PMID: 19231863]
[116]
Seo, H.S.; Ku, J.M.; Choi, H.S.; Woo, J.K.; Lee, B.H.; Kim, D.S.; Song, H.J.; Jang, B.H.; Shin, Y.C.; Ko, S.G. Apigenin overcomes drug resistance by blocking the signal transducer and activator of transcription 3 signaling in breast cancer cells. Oncol. Rep., 2017, 38(2), 715-724.
[http://dx.doi.org/10.3892/or.2017.5752] [PMID: 28656316]
[117]
Bauer, D.; Mazzio, E.; Soliman, K.F.A. Whole transcriptomic analysis of apigenin on TNFα immuno-activated MDA-MB-231 breast cancer cells. Cancer Genomics Proteomics, 2019, 16(6), 421-431.
[http://dx.doi.org/10.21873/cgp.20146] [PMID: 31659097]
[118]
Lee, H.H.; Jung, J.; Moon, A.; Kang, H.; Cho, H. Antitumor and anti-invasive effect of apigenin on human breast carcinoma through suppression of IL-6 expression. Int. J. Mol. Sci., 2019, 20(13), 3143.
[http://dx.doi.org/10.3390/ijms20133143] [PMID: 31252615]
[119]
Liu, R.; Ji, P.; Liu, B.; Qiao, H.; Wang, X.; Zhou, L.; Deng, T.; Ba, Y. Apigenin enhances the cisplatin cytotoxic effect through p53-modulated apoptosis. Oncol. Lett., 2017, 13(2), 1024-1030.
[http://dx.doi.org/10.3892/ol.2016.5495] [PMID: 28356995]
[120]
Cao, X.; Liu, B.; Cao, W.; Zhang, W.; Zhang, F.; Zhao, H.; Meng, R.; Zhang, L.; Niu, R.; Hao, X.; Zhang, B. Autophagy inhibition enhances apigenin-induced apoptosis in human breast cancer cells. Chin. J. Cancer Res., 2013, 25(2), 212-222.
[PMID: 23592903]
[121]
Hong, J.; Fristiohady, A.; Nguyen, C.H.; Milovanovic, D.; Huttary, N.; Krieger, S.; Hong, J.; Geleff, S.; Birner, P.; Jäger, W.; Özmen, A.; Krenn, L.; Krupitza, G. Apigenin and luteolin attenuate the breaching of MDA-MB231 breast cancer spheroids through the lymph endothelial barrier in vitro. Front. Pharmacol., 2018, 9, 220.
[http://dx.doi.org/10.3389/fphar.2018.00220] [PMID: 29593542]
[122]
Leary, M.; Heerboth, S.; Lapinska, K.; Sarkar, S. Sensitization of drug resistant cancer cells: A matter of combination therapy. Cancers (Basel), 2018, 10(12), 483.
[http://dx.doi.org/10.3390/cancers10120483] [PMID: 30518036]
[123]
Zhu, Y.; Yao, Y.; Shi, Z.; Everaert, N.; Ren, G. Synergistic effect of bioactive anticarcinogens from soybean on anti-proliferative activity in MDA-MB-231 and MCF-7 human breast cancer cells in vitro. Molecules, 2018, 23(7)
[124]
Mafuvadze, B.; Liang, Y.; Besch-Williford, C.; Zhang, X.; Hyder, S.M. Apigenin induces apoptosis and blocks growth of medroxyprogesterone acetate-dependent BT-474 xenograft tumors. Horm. Cancer, 2012, 3(4), 160-171.
[http://dx.doi.org/10.1007/s12672-012-0114-x] [PMID: 22569706]
[125]
Chen, D.; Landis-Piwowar, K.R.; Chen, M.S.; Dou, Q.P. Inhibition of proteasome activity by the dietary flavonoid apigenin is associated with growth inhibition in cultured breast cancer cells and xenografts. Breast Cancer Res., 2007, 9(6), R80.
[http://dx.doi.org/10.1186/bcr1797] [PMID: 18300387]
[126]
Sun, D.W.; Zhang, H.D.; Mao, L.; Mao, C.F.; Chen, W.; Cui, M.; Ma, R.; Cao, H.X.; Jing, C.W.; Wang, Z.; Wu, J.Z.; Tang, J.H. Luteolin inhibits breast cancer development and progression in vitro and in vivo by suppressing notch signaling and regulating MiRNAs. Cell. Physiol. Biochem., 2015, 37(5), 1693-1711.
[http://dx.doi.org/10.1159/000438535] [PMID: 26545287]
[127]
Lin, D.; Kuang, G.; Wan, J.; Zhang, X.; Li, H.; Gong, X.; Li, H. Luteolin suppresses the metastasis of triple-negative breast cancer by reversing epithelial-to-mesenchymal transition via downregulation of β-catenin expression. Oncol. Rep., 2017, 37(2), 895-902.
[http://dx.doi.org/10.3892/or.2016.5311] [PMID: 27959422]
[128]
Zhou, Q.; Wang, S.; Zhang, H.; Lu, Y.; Wang, X.; Motoo, Y.; Su, S. The combination of baicalin and baicalein enhances apoptosis via the ERK/p38 MAPK pathway in human breast cancer cells. Acta Pharmacol. Sin., 2009, 30(12), 1648-1658.
[http://dx.doi.org/10.1038/aps.2009.166] [PMID: 19960010]
[129]
Liu, H.; Dong, Y.; Gao, Y.; Du, Z.; Wang, Y.; Cheng, P.; Chen, A.; Huang, H. The fascinating effects of baicalein on cancer: A review. Int. J. Mol. Sci., 2016, 17(10), 1681.
[http://dx.doi.org/10.3390/ijms17101681] [PMID: 27735841]
[130]
Ding, J.; Polier, G.; Köhler, R.; Giaisi, M.; Krammer, P.H.; Li-Weber, M. Wogonin and related natural flavones overcome tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) protein resistance of tumors by down-regulation of c-FLIP protein and up-regulation of TRAIL receptor 2 expression. J. Biol. Chem., 2012, 287(1), 641-649.
[http://dx.doi.org/10.1074/jbc.M111.286526] [PMID: 22086925]
[131]
Huang, Y.; Zhao, K.; Hu, Y.; Zhou, Y.; Luo, X.; Li, X.; Wei, L.; Li, Z.; You, Q.; Guo, Q.; Lu, N. Wogonoside inhibits angiogenesis in breast cancer via suppressing Wnt/β-catenin pathway. Mol. Carcinog., 2016, 55(11), 1598-1612.
[http://dx.doi.org/10.1002/mc.22412] [PMID: 26387984]
[132]
Huang, K.F. zhang, G.D.; Huang, Y.Q.; Diao, Y. Wogonin induces apoptosis and down-regulates survivin in human breast cancer MCF-7 cells by modulating PI3K-AKT pathway. Int. Immunopharmacol., 2012, 12(2), 334-341.
[http://dx.doi.org/10.1016/j.intimp.2011.12.004] [PMID: 22182776]
[133]
Chung, H.; Jung, Y.; Shin, D.H.; Lee, J.Y.; Oh, M.Y.; Kim, H.J.; Jang, K.S.; Jeon, S.J.; Son, K.H.; Kong, G. Anticancer effects of wogonin in both estrogen receptor-positive and -negative human breast cancer cell lines in vitro and in nude mice xenografts. Int. J. Cancer, 2008, 122(4), 816-822.
[http://dx.doi.org/10.1002/ijc.23182] [PMID: 17957784]
[134]
Abd El-Hafeez, A.A.; Khalifa, H.O.; Mahdy, E.A.M.; Sharma, V.; Hosoi, T.; Ghosh, P.; Ozawa, K.; Montano, M.M.; Fujimura, T.; Ibrahim, A.R.N.; Abdelhamid, M.A.A.; Pack, S.P.; Shouman, S.A.; Kawamoto, S. Anticancer effect of nor-wogonin (5, 7, 8-trihydroxyflavone) on human triple-negative breast cancer cells via downregulation of TAK1, NF-κB, and STAT3. Pharmacol. Rep., 2019, 71(2), 289-298.
[http://dx.doi.org/10.1016/j.pharep.2019.01.001] [PMID: 30826569]
[135]
Lu, Z.; Lu, N.; Li, C.; Li, F.; Zhao, K.; Lin, B.; Guo, Q. Oroxylin A inhibits matrix metalloproteinase-2/9 expression and activation by up-regulating tissue inhibitor of metalloproteinase-2 and suppressing the ERK1/2 signaling pathway. Toxicol. Lett., 2012, 209(3), 211-220.
[http://dx.doi.org/10.1016/j.toxlet.2011.12.022] [PMID: 22245252]
[136]
Li, S.; Yuan, S.; Zhao, Q.; Wang, B.; Wang, X.; Li, K. Quercetin enhances chemotherapeutic effect of doxorubicin against human breast cancer cells while reducing toxic side effects of it. Biomed. Pharmacother., 2018, 100, 441-447.
[http://dx.doi.org/10.1016/j.biopha.2018.02.055] [PMID: 29475141]
[137]
Smith, M.L.; Murphy, K.; Doucette, C.D.; Greenshields, A.L.; Hoskin, D.W. The dietary flavonoid fisetin causes cell cycle arrest, caspase-dependent apoptosis, and enhanced cytotoxicity of chemotherapeutic drugs in triple-negative breast cancer cells. J. Cell. Biochem., 2016, 117(8), 1913-1925.
[http://dx.doi.org/10.1002/jcb.25490] [PMID: 26755433]
[138]
Sudhakaran, M.; Sardesai, S.; Doseff, A.I. Flavonoids: new frontier for immuno-regulation and breast cancer control. Antioxidants, 2019, 8(4), 103.
[http://dx.doi.org/10.3390/antiox8040103] [PMID: 30995775]
[139]
Harmon, A.W.; Patel, Y.M. Naringenin inhibits glucose uptake in MCF-7 breast cancer cells: A mechanism for impaired cellular proliferation. Breast Cancer Res. Treat., 2004, 85(2), 103-110.
[http://dx.doi.org/10.1023/B:BREA.0000025397.56192.e2] [PMID: 15111768]
[140]
Zhang, F.; Dong, W.; Zeng, W.; Zhang, L.; Zhang, C.; Qiu, Y.; Wang, L.; Yin, X.; Zhang, C.; Liang, W. Naringenin prevents TGF-β1 secretion from breast cancer and suppresses pulmonary metastasis by inhibiting PKC activation. Breast Cancer Res., 2016, 18(1), 38.
[http://dx.doi.org/10.1186/s13058-016-0698-0] [PMID: 27036297]
[141]
Sheokand, S.; Navik, U.; Bansal, A.K. Nanocrystalline solid dispersions (NSD) of hesperetin (HRN) for prevention of 7, 12-dimethylbenz[a]anthracene (DMBA)-induced breast cancer in Sprague-Dawley (SD) rats. Eur. J. Pharm. Sci., 2019, 128, 240-249.
[http://dx.doi.org/10.1016/j.ejps.2018.12.006] [PMID: 30553062]
[142]
Van Aller, G.S.; Carson, J.D.; Tang, W.; Peng, H.; Zhao, L.; Copeland, R.A.; Tummino, P.J.; Luo, L. Epigallocatechin gallate (EGCG), a major component of green tea, is a dual phosphoinositide-3-kinase/mTOR inhibitor. Biochem. Biophys. Res. Commun., 2011, 406(2), 194-199.
[http://dx.doi.org/10.1016/j.bbrc.2011.02.010] [PMID: 21300025]
[143]
Zeng, L.; Yan, J.; Luo, L.; Ma, M.; Zhu, H. Preparation and characterization of (−)-Epigallocatechin-3-gallate (EGCG)-loaded nanoparticles and their inhibitory effects on Human breast cancer MCF-7 cells. Sci. Rep., 2017, 7(1), 45521.
[http://dx.doi.org/10.1038/srep45521] [PMID: 28349962]
[144]
Im, N.K.; Jang, W.J.; Jeong, C.H.; Jeong, G.S. Delphinidin suppresses PMA-induced MMP-9 expression by blocking the NF-κB activation through MAPK signaling pathways in MCF-7 human breast carcinoma cells. J. Med. Food, 2014, 17(8), 855-861.
[http://dx.doi.org/10.1089/jmf.2013.3077] [PMID: 25000305]
[145]
Chen, J.; Zhu, Y.; Zhang, W.; Peng, X.; Zhou, J.; Li, F.; Han, B.; Liu, X.; Ou, Y.; Yu, X. Delphinidin induced protective autophagy via mTOR pathway suppression and AMPK pathway activation in HER-2 positive breast cancer cells. BMC Cancer, 2018, 18(1), 342.
[http://dx.doi.org/10.1186/s12885-018-4231-y] [PMID: 29587684]
[146]
Wang, L.; Li, H.; Yang, S.; Ma, W.; Liu, M.; Guo, S.; Zhan, J.; Zhang, H.; Tsang, S.Y.; Zhang, Z.; Wang, Z.; Li, X.; Guo, Y.D.; Li, X. Cyanidin-3-o-glucoside directly binds to ERα36 and inhibits EGFR-positive triple-negative breast cancer. Oncotarget, 2016, 7(42), 68864-68882.
[http://dx.doi.org/10.18632/oncotarget.12025] [PMID: 27655695]
[147]
Kaushik, S.; Shyam, H.; Sharma, R.; Balapure, A.K. Dietary isoflavone daidzein synergizes centchroman action via induction of apoptosis and inhibition of PI3K/Akt pathway in MCF-7/MDA MB-231 human breast cancer cells. Phytomedicine, 2018, 40, 116-124.
[http://dx.doi.org/10.1016/j.phymed.2018.01.007] [PMID: 29496164]
[148]
Mukund, V. Genistein: Its role in breast cancer growth and metastasis. Curr. Drug Metab., 2020, 21(1), 6-10.
[http://dx.doi.org/10.2174/1389200221666200120121919] [PMID: 31987018]
[149]
Xu, H.; Hu, M.; Liu, M.; An, S.; Guan, K.; Wang, M.; Li, L.; Zhang, J.; Li, J.; Huang, L. Nano-puerarin regulates tumor microenvironment and facilitates chemo- and immunotherapy in murine triple negative breast cancer model. Biomaterials, 2020, 235, 119769.
[http://dx.doi.org/10.1016/j.biomaterials.2020.119769] [PMID: 31986348]
[150]
Zheng, H.; Li, Y.; Wang, Y.; Zhao, H.; Zhang, J.; Chai, H.; Tang, T.; Yue, J.; Guo, A.M.; Yang, J. Downregulation of COX-2 and CYP 4A signaling by isoliquiritigenin inhibits human breast cancer metastasis through preventing anoikis resistance, migration and invasion. Toxicol. Appl. Pharmacol., 2014, 280(1), 10-20.
[http://dx.doi.org/10.1016/j.taap.2014.07.018] [PMID: 25094029]
[151]
Younas, M.; Hano, C.; Giglioli-Guivarc’h, N.; Abbasi, B.H. Mechanistic evaluation of phytochemicals in breast cancer remedy: current understanding and future perspectives. RSC Advances, 2018, 8(52), 29714-29744.
[http://dx.doi.org/10.1039/C8RA04879G] [PMID: 35547279]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy